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About the string with beads
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We consider a classical problem of free oscillations of the elastic weight-
less string with N beads which has been originally studied by Lagrange. We
prove that for N being prime or a power of 2 the maximal displacement of
the bead from its equilibrium position increases to infinity as N — oo while
the total energy of system remains bounded by independent on N constant.

We consider a classical problem of free oscillations of an elastic weightless
string with beads. This problem is given by the following system:

mz; = c(zj41 —22j+2j-1), j=1,... ,N—=1, m >0, ¢> 0; (1)

with the following boundary and initial conditions

zo(t) = 0; (2)
ZN(t) = Oa (3)
z(0) =2, #(0)=2;, j=1,... ,N—1. (4)

Here (j,t) +— 2;(t) (0 <t < 00) are unknown functions and the dots over z denote
the derivatives with respect to the time variable ¢. The initial conditions j — z;-),

j— z]1 (j=1,...,N —1) in (4) are assumed to be known.
For the first time the solution of the problem above was given by Lagrange [1]:
N—1 N-1 1
2 k k Z; k
zj(t) = N ; sin %j 7; (z;) sin %r cos wit + w—Jk sin 7TFr) sinwgt,  (5)

j=1,...,N—1,
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wk=2,/isin%, k=1,...,N—1. (6)

In the original Lagrange work [1] the system (1)—(4) was used to describe the
behavior of the “elastic chain of beads”, i.e., the system of N+ 1 material points of
equal mass m oscillating along a straight line due to elastic “springs” of stiffness ¢
connecting neighboring points. For this mechanical problem the function (j,t) —
z;(t) describes the displacement of the point j from its equilibrium position.

Slightly modified problem (1)—(4) was studied in [2]. In this work the partic-
ular initial values

2 =0, 2z =0, j=1,...,N—1, (7)
are chosen and the initial condition (2) is replaced by
zo(t) = F(= const). (8)

The modified problem still describes the oscillations of N 4 1 material points but
the displacement of the leftmost point is now equal to F'.

From now on we refer to the problem (1)—(4) as to the problem L.

Already Lagrange had noted [1] that the oscillations described by problem L
are non-periodic because the frequencies wy are pairwise incommensurable. It was
shown in [4] that for N being a prime number or a power of 2 the frequencies wy,
are not only incommensurable but linearly independent over the field of rational
numbers Q. We denote by M the set of such numbers .

Introduce

¢V = sup z(t).
0<t<o0

We have the result from [2]: if N € M, then

li N 9
AR TG = oo ©)

for the problem J.

It was shown in [5] that for N being a power of 2, s € (0,1) being a diadic
number and j = sN the quantity ¢ JN increases logarithmically as N — oo.

A popular explanation of the large wave effect is that this effect is produced
by the energy pumping due to the constant exterior force. In this article we
show that for the problem L the asymptotic (9) is true even in the case when
the total energy of the system is an independent on N constant. Since z;(t) is
a displacement of material point of number j the expression

N N
_m 9 C e
W= 9 jz_:o zj + 9 j§—1:(zj Zj-1) (10)

is a total energy of the system.
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Theorem 1. Take 1 < g < N —1 and [ > 0 and consider problem L with
N € M and initial conditions

zj=0,j=1,...,N—1, (11)
=1, 1<j<gq 23=0 ¢g<j<N-L (12)
Then
N—-1 k wk
l 7k . COS a5 — cos 5+ (2g + 1)
N . - 2N 2N
o= — sin(— . 13
G =y X |sny P (13
Proof. Substituting (11) and (12) into (5), we obtain
N-1 q
21 k k
zj(t) = N sin %j (Z sin %7‘) coswgt, j=1,... ,N—1, (14)
k=1 r=1
where wy, are given by (6).
It follows from the Kronecker theorem (see, for example, [6]) that
N-—1 q
21 k k
N _ . . .
G = NZ |smﬁ‘7251nﬁr\, (15)
k=1 r=1
if w, (k=1,...,N — 1) are linear independent over the field of rational num-

bers Q.
Now one can obtain (13) from (15) by calculating the internal sum in (15). m

Remark. If z(t) is the solution of problem L with initial conditions (11)
and (12) then W (t) = ¢l? which does not depend on ¢ and N. [

Asymptotic properties of the solution CJN of the problem L with initial condi-
tions (11) and (12) are given by

Theorem 2. If q in (12) does not depend on N then CJN is bounded:

' < 2q. (16)
Ifg=N—1 and N € M then
lim ¢V = ﬂ1nj +0(1) (17)
N—oo 7 7r2

as j — oo.
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Proof. The estimate (16) is a direct consequence of (14) and the bound
|sine| < 1.
Consider now the case g = N — 1 and N € M. Denote

7k T

& = IN’ A&y = oIN

Then from Theorem 1 we obtain

N—1
CJN _ 2;1 Z |sin(2j§k)COS€k — cos(2N — 1)§k|A£k

P sinfk
CAN e S 1A 1)
= ; | sin(2j& Siny k-

The sum in the right hand side of (18) can be taken over odd k only, and we
can understand ZQJN as the Riemann sum for the integral

4 ™
i /2 | sin 25€| cot € de.
™ Jo

Therefore
N o2
G — — | sin 25¢| cot & d¢ (19)
™ Jo
as N — oo.
The right hand side of (19) can be represented as

20 [IT s 1 [T 2 s
— |sins|cot—_ds:,—/ (\sins\——)cot—,ds
25T Jo 27 iT™ Jx s 23

2l /]'7r 2 dj + 0(1) (20)
— cot — )
i ) e
From the Second theorem on mean value we obtain that the first term in the
right hand side of (20) is equal to

l g 2

~ cot = (|sins|——) ds, m <o <jm.

Jjm 27 Jr T

For j — oo the last expression is bounded because % is equal to a mean value of

the periodic function s +— |sin s|. The second term in the right hand (20) is equal
to

21 LT al .
el (—27 Insin Z) = Inj + O(1)
as j — oo. This immediately implies (17). [ ]
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Clearly (9) is a consequence of (17). Thus for ¢ = N — 1 the expression (9)
holds true despite the fact that the energy W is independent on N. Hence the
large wave effect is not related to the energy pumping.

We conclude with the discussion of some open problems related to the large
wave effect. The first question is how essential is the condition N € M for (9).
The second question is how fast max; ¢ JN increases as N — 00.

In this paper we have studied two cases: ¢ = const and ¢ = N — 1. Also
it can be proven that (9) remains true if g increases linearly in N. Therefore it
is interesting to understand what is the slowest grows rate ¢(NN) for which (9)
remains true.

The next interesting question is a nature of large waves and the time moments
of their appearance. We can note the following fact. For m = pN, ¢ = E/N the
system (1) can be considered as an approximation of the wave equation [7]

putt — Eugy = 0.

But for the wave equation there is no effect similar to the effect of a large
wave. This fact does not contradict to the convergence of the line method [7]
because the convergence follows from the estimates of the solution of the wave
equation and of system of ordinary differential equations given for the bounded
time intervals. Our proof is true for infinite time interval only.

The existence of times when a large wave is observed is a consequence of
Kronecker’s theorem. The characterization of the set of these times is an open
problem.

The effect of large waves is based on the linear independency of the frequencies
wi over Q. This is the case when the oscillations of the chain are most chaotic
[8]. However the relation between chaotic properties and the effect of large waves
is an open problem.

For the problem L the large wave {2;(¢)} is mildly sloping along x-axis and
evolves sufficiently slowly because the total energy of the system is constant (10)
and the kinetic and potential parts of total energy are not too high. Therefore
the large wave should exist for a certain time intervals. The existence and the
structure of these intervals is also an open problem.
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