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Some properties of the 4-dim Riemannian spaces with the metrics
ds* = 2(zaz — tas)dz® + 4(zas — taz)dzdy + 2(zay — tas)dy® + 2dzdz + 2dydt
connected with the second order nonlinear differential equations
y"' +au(@,y)y” +3ax(z,y)y” + 3as(e,y)y +au(z,y) =0 (¥)

with arbitrary coefficients a;(z,y) are studied. The properties of dual equa-
tions for the equations (*) are considered. The theory of the invariants
of second order ODE’s for investigation of the nonlinear dynamical systems
with parameters is used. The property of the eight dimensional extensions of
the four-dimensional Riemannian spaces of General Relativity are discussed.

1. Introduction
The second order ODE’s of the type
y" +a1(z,y)y"” + 3as(z,v)y"” + 3as(z,y)y’ + as(z,y) =0 (1)
are connected with nonlinear dynamical systems in form
& =P(z,y,2z,0), §y=Q(z,y,2,04), 2=R(z,y,2 ),

where «; are parameters.
For example, the Lorenz system

t=o0ly—x), y=rz—y—zr, Z=xy—bz
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having chaotic properties at some values of parameters is equivalent to the equa-
tion

3 2 1 y2
y' =y +(ay = ) +emy’ = Bady’ = Baty’ — P+ 07 =0, (2
where
b 1 1 b 1 1 b(r—1
q=2totl B=—, 5= (0-;- )’ 5:(04—)’ . (r2 )’
g g ag g g

and for investigation of its properties the theory of invariants was first used in
[1-5].
Other example is the third order differential equations like

d®z N d*z dz\? n 0
_ a— — _ €r =

dt3 dt? dt
with parameter a having chaotic properties at the values 2,017 < a < 2,082 [16].
It can be transformed to the form (1)

1 a T
yl/ + _yl2 + _y/ + _2 _ 1 — O (3)
Y Y Y

with the help of standard substitution.

According to the Liouville theory [6-9] all equations of type (1) can be divided
in two different classes:

I Vs = O, IL. Vs 75 0.

Here the value vs is the expression of the form

vs = Lo(L1 Loy —LoL1y)+ Ly (LoL1y — L1 Loy) —a1 L3 +3a9 L2 Lo —3a3 L1 L3 +aq L3,

then L1, Lo are defined by the formulaes

1o}

L = a—y(a4y + 3a2a4) — 8—$(2a3y — a9y + a1a4) — 3a3(2a3y - a2x) — G401y,
0 0

Ly = %(alm — 3(11&3) + a—y(agy — 2a9, + a1a4) — 3a2(a3y — 2a2m) + a104y.

In case v5 # 0 the absolute invariants are

Otm—2 Otm—2
— L
Ay " )

[5tm — (m — 2)trtm_o|v2/® = 5(L1
where

—-m/5
tm = UmVs / y  VUm+42 = Lley — Lovmg + mup, (L2w - Lly)-
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From the formulaes (4) follows that some relations between the invariants are
important for theory of the second order ODE’s.
As example in the simplest case tg = at2 we have

t11 = a(2a—1)t3, t13 = a(2a —1)(3a — 2)t2, t15 = a(2a —1)(3a — 2)(4a —3)t5 ... .

These relations show that some value of parameters

a=0, 1/2, 2/3, 3/4, 4/5...

are special for the corresponding second order ODE’s.

To take the example of equation in form

3 2
y' +ai(z,y)y" + as(z,9)y” + 3(—zaz(z,y) — yai(z,y))y'
+(z” —y)as(z,y) + zyai(z,y) —2/3 =0.

In the case
2 2

_5—y27 0’2(3’-’?/) :@

we get the equation with the following series of absolute invariants:

(],1(15, y) =

tg 11 t13 t15 t17 t19

S =2, =6, —5=24, —2=120, - =720, — =>5040,
t2 t3 t & 8 ¢
23} 123 t25
—5 = 40320, - =362880, -7 = 3628800.
t t t
7 7 7

So we get the example of the second order ODE with the invariants forming the
series

2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800,

For the second order differential equation (2) equivalent to the Lorenz system
the vs-invariant has the form vs = Az? + PBZ? + C, where

A = apf(10a—a’—68), B= a(ga2+§a(5—252), C= a(§a4+665—4ae—a27).
In this case the condition v5 = 0 corresponds to the conditions A = 0, B = 0,
C = 0 which contains for example the values ¢ = —1/5, b = —16/5, r = —7/5
which have not been previously met in theory of the Lorenz system.

Here we present the expressions for the invariants of the second order equation
equivalent to the equation (3).

For that we transform the equation (3) to the form

1 4 4 a 2 1 Y
Vit Gt oWt s ot mEt e

= -0
T Ty T Ty X%y z
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which is more convenient for calculations. For this equation we get the invariants:

1 4(2a%y + 18zy — 9)
Uy = —§G, 1 ,

oy

1, (54zy? — 2Ty — 20a3y — 180azy + 72a)
UV = —a

o7 2Tyl5 ’

2 (702zy? — 297y — 14003y — 1260azy + 432a)

=31 29y19 '
4 4(990zy® — 369y — 14003y + 1260azy + 384a)

VL = o0 711y23 g

40 0 (2754zy? — 927y — 308a3y — 2772azy + 768a)

Vi3 = g1 1327 g
80 1o (4271422 — 13203y — 4004ay — 36036azy + 9216a)
V15 = 543¢ RENE :

From these expressions we can see that only numerical values of coefficients
in the formulaes for invariants are changed at the transition from invariant v, to
Vm+2. This fact can be of use for studying of the relations between the invariants,
when the parameter a is changed. Remark that the starting equation (3) is
connected with the Painleve-I equation in the case a = 0.

Note that the first applications of the Liouville invariants for the Painleve
equations was done in the works of author [1-6]. Last results see in [20].

2. The Riemann spaces in theory of the second order ODE’s
Here we present the construction of the Riemann spaces connected with the
equations of type (1).
The equations (1) with arbitrary coefficients a;(x,y) may be considered as
equations of geodesics of 2-dimensional space Ao

& — azd? — 2a08y — a1y = 0,

§ + asd? + 2a357 + axy? = 0

equipped with the projective connection Hfj dependent from the coefficients
a; ('Ta y) .

For construction of the Riemannian space connected with the equation of type
(1) we use the notice of Riemannian extension D* of space As with connection
Hfj [10] . The corresponding metric is

ds? = —21Eépda'dad + 2d¢da’
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and in our case it takes the following form (&1 = z, &, = 7):

ds® = 2(za3 — Taq)dz? + 4(zay — Taz)dzdy + 2(za1 — Tas)dy? + 2dzdz + 2dydr.
(5)

So, it is possible to formulate the following statement

Proposition 1. For a given equation of type (1) there exists the Riemannian
space with metrics (5) having integral curves of equation as part of its geodesics.

Really, the calculation of geodesics of the space W* with the metric (5) lead
to the system of equations

dQ_m_a dz\’ _ 9% d_ﬂ’d_?/_a d_y2:0
dsz 3\ ds 2dsds '\ ds ’

2 2 2
M +a4 (d_:l?) +2a3d_:cd_g; +a2 (d_y> — ()’

ds? ds ds d ds
d’z dz\? dx dy
= + [z(a4y . a") _ Ta4z] <%> + 2[za3y — 7'(&33c + a/l)]%E
/ dy >
+[z(a2y + ) — T(agz + 2a)] s
dz dz dz dt dy dz dydr
2 — 20,280 1 90, 2 YE 94, -
T2 s T M s ds T2 s ds (M sds O
d?r T dzr d
152 + [2(asy — 2d') — T(asy — (d—> + 2[z(agy — @) — Tasg]— T dZ
dy 2 dzx dz dx dt dy dz dy dr
- YY) 4o CTIT 4 94y ~ 24y -
Hrary = Tlaa + o)) (ds> 0 s T s ds T M s ds 22 s ds 0

in which the first two equations of the system for coordinates z, y are equivalent
to the equation (1).

In turn two last equations of the system for coordinates z(s) and #(s) have
the form of the 2x matrix linear second order differential equations

d2U

av
g2 + A(z,y)—

s B(z,y)¥ =0, (6)

where U(z,y) is two component vector ¥; = z(s), Uy = #(s) and values A(z,y)
and B(z,y) are the 2 x 2 matrix-functions.

Note that full system of equations has the first integral

. . S
zw+ty:§+u,
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which allow us to use only one linear second order differential equation from the
full matrix system (6) in applications.

Thus, we have constructed the four-dimensional Riemannian space with the
metric (5).

The curvature tensor of this metric has the components

1 _ _p3 __p2 _ph g 1 _ _pd
Rijg = —R319 = —Ry1p = Ryjp = &, Ry19 = —R3i5 = q,
2 3 " pl  _pl _p2 _ p2 __
Rijy = —Rjp = —a’, Ry = Rypp = R31p = Rypp =0,
R, = 22(apd” — azd’) 4 27(a4d — azd”),

RS, = 22(aza’ — aga) + 27(aza — azd!),

(afy — af + s — agal),

!

)
R315 = z(ap — oy + a1 — aza)
y )

+ 7(
/ n n
+ 7(ay — ay + asa — aza”).

4 "
R = z(a, — ap + a10” — aza

The Ricci tensor R, = Rélk of the space D* has the components
Ri1 =2d", Riz=2d', Ry =2,
where

2 !
a=agy — a1z +2(ara3 —a3), o =azy —ag + ar1a4 — azas,

o = ayy — asy + 2(azas — a%)
and the scalar curvature R = ¢"¢*™R,,,, of the space D*is R = 0.

The Weyl tensor of the space D* has only one component Ci919 = tL1 — zLs.
Note that the values L , Ly and o' in this formulaes are the same with the
Liouville expressions in theory of invariants of the equations (1).

Using the components of the Riemann tensor, the equation ‘ Rap — AgaB | =
0 for determination of the Petrov type of the spaces D* have been considered.
Here R4p is symmetric 6 X 6 matrix constructed from the components of the
Riemann tensor R;;j; of the space D*.

In particular we have checked that all scalar invariants of the space D* of
such types

Ri;jR7 =0, R;uR"™ =o,...

constructed from the curvature tensor of the space M* and its covariant deriva-
tives are equal to zero.
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Remark 1. The spaces with metrics (5) are flat for the equations (1) with
the conditions a« =0, o =0, o/’ =0, on coefficients a;(z,y).

The equations with this properties have the components of projective curvature
Ly =0, Ly =0, and they are reduced to the form y" = 0 with help of the points
transformations.

On the other hand, there are ezamples of equations (1) with conditions L1 = 0,
Ly =0, but a #0, o # 0, o # 0. For such type of equations the curvature of
corresponding Riemann spaces is not equal to zero.

As example the equation

Y+ 29y — oyy? + gy — 2% =0,

where the function p(x,y) is solution of the Wilczynski—Tzitzeika nonlinear equa-
tion integrable by the Inverse Transform Method

Py = 4’ — e (7)

has the conditions L1 =0, Ly = 0 but a # 0, o/ # 0, o # 0. In particular even
for the linear second order differential equations the corresponding Riamannian
spaces are not flat.

Remark 2. The studying of the properties of the Riemann spaces with the
metrics (5) for the equations (2) with chaotic behavior at the values of coefficients
(o0 =10, b=28/3, r > 24) is important problem. The spaces with such values of
parameters have a specifical geometric structure. To studying this problem the
geodesic deviation equation

d2,r]i
ds?

4 opi demdnt O dot da!

J—
Im-gs ds orJ ds ds ! 0,

where Ffm are the Christoffell coefficients of the metrics (5) with the coefficients

«a 1 2
Ca=(F-5), a4=€$y4—ﬁw3y4—ﬁw2y3—7y3+5%

a1:0, a9 — — 3 37

1
Y
may be used.

It is interesting to note that for the Painleve II equation y" = 2y> + zy + p
the solutions of the geodesic deviation equations depends from the parameter .

3. On relation with theory of the surfaces

The existence of the Riemann metrics for the equations (1) may be used for
construction of the corresponding surfaces.
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One possibility concerns the study of two-dimensional subspaces of a given
4-dimensional space which are the generalization of the surfaces of translation.
The equations for coordinates Z*(u,v) of such type of the surfaces are

o*zt ., 077 9z*
8u6’u+ 7k Gy O =0, (8)

where I‘gk are the components of connections of a given space.
From these equations we can see that two last equations of the full system
are linear and have the form of the linear 2 x 2 matrix Laplace equations

0?v ov ov

Let us consider some examples.
The first example concerns the conditions

u=xz, v=y, z=2z(uv)=2zy), t=tzy)=1iuo).

From the first equations of the full system we get az(z,y) = 0, as(z,y) = 0, and
from the next two we get the system of equations

622' ]- 60/4(-7;7’!/) a'z _
507y — 3 P +ai(z,y)as(z,y)z = 0,

0%t 1 Oai(x,y) Ot B
Baray - a_l or a_y+af1($ay)a4(may)t_0'

Any solution of such system of equations give us the examples of the surfaces
which corresponds to the second order ODE’s in form

d’y dy\’
v aen) (1) +aw) =o

4. Symmetry, the Laplace-Beltrami equation,
tetradic presentation

Let us consider the system of equations
§ij +&i=0

for the Killing vectors of metrics (5). In particular case €3 = & =0, & = &(z,y)
we get the system of equations

&1z = —aséy + aqéo, £2y = —a1&1 + a2d2,
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€1y + E2p = 2[—a28y + a3éa).

1. In case {1 = @4, &2 = @, we have the system of equations
(I)q:a: = a4<I>y — a3<I'$, q)z‘y = 0,3@!/ — a2<I>$, (byy = a2<I>y — a1<I>m, (10)

which is compatible at the conditions « = 0, o/ =0, o' = 0.
By analogy way the system of equations for the Killing tensor

Kijs + Kjii + Kiij = 0
and the Killing-Yano tensor Y;; = —Y};
Yiju+Yi;i =0
for a spaces with the metrics (5) may be investigated.

Remark 3. The Laplace—Beltrami operator

A=g¥ (B:B?;wj B Pi?j B;Zk)

and corresponding spectral problem AV = AU can be used for investigation of
the properties of the metrics (5).
For example, the equation AV = 0 has the form

(tag — 2a3)¥,, + 2(taz — 2a2) ¥,y + (tag — za1)Vy + Uy + ¥y = 0, (11)

and at some conditions on coefficients a;(x,y) it can be integrated by the method
of separation of variables.

Another possibility for the studying of the properties of a given Riemann
spaces is connected with computation of the heat invariants of the Laplace—Beltrami
operator. For that the fundumental solution K (7,z,y of the heat equation

ov _ i o l.c.a_‘l’)
or 0x'OxI Y oxk
may be considered.

The function K(7,x,y) has the following asymptotic expansion on diagonal as
t— 0+

[e.e]
K(r,xz,z) =~ Zan(:v)'r”_2
n=0

and the coefficients an(z) are local invariants (heat invariants) of the Riemann
space D* with the metrics (5).
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Remark 4. The metric (5) has a tetradic presentation
gij = wiwinay, msz=nu=1, ny;=0.
From this we get a particular case of the metrics (5)
ds? = 2wlw? + 2w,

where

1
wt=de+dy, w?=dz+dy+ ti(dz—dt),

(a2 — as)
1

wt = _t(a4d$ + a'2dy)> w = Z(a3d$ + aldy) + m
2 — Q4

(agdz — aydt)

and
a1 + a3 = 2az, az + aq4 = 2a3.

Remark 5. Some of equations on curvature tensors in space D* connect with
ODE’s. For erample, the conditions

Rijik + Rjkyi + Riij = 0
lead to the following relations on coefficients a;(x,y)
oy +2a30” — 2a,0 =0, ay +2a10’ — 2a9a =0,

aZ +2al, + 4azd” — 2a4a — 2a3a’ =0, (12)

oy + 2(1; — daza + 2a90’ + 2a:0" = 0.

The solutions of this system give us the ezamples of the second order ODE'’s
connected with the space D* with a given condition on the Ricci tensor. The
simplest one are

3 3
y"_@y'2+y3=0, y"—gy'2+y4=0, ' +3(2+y)y +y° +6y° —16 = 0.

5. The Riemann metrics of zero curvature
and the KdV equation

The system of matrix equations in form

Loy — Ly +['1,I9] =0, I3z~ +[T1,T3] =0, TI3y—To, +[[2,I3]=0,
(13)

where [j(z,y,2) — the 3 x 3 matrix functions with conditions I‘fj = I‘fi are
studied.
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This system can be considered as the condition of the zero curvature of the
some 3 — dim space equipping by the affine connection with the coefficients
I'(z,y,2). Let I‘fj(ac,y,z) be in the form

n
Ffj = Z y"An(z, 2)

with some matrix-functions A, (z,z), depending from the variables z,z. Then
after substituting these expressions in formulas (13) we get the system of nonlinear
equations for components of affine connection. Some of these equations may be
of interested for applications.

As example let us consider the space with the metrics

g2 0 y2(z,2)+m(a,7)
gik = 0 1
yzl(myz)"'m(z"z) yzl(myz)2 —2yle (ac,z)+21(m,z)m(z,z)+2n(m,z)

= o

Then in particular case I(z,z) = n(z,z) we get the components of the Riemann
tensor for a given space

3l ol 0l
Riz13 = ( 3I— + —) y

0z3 T o0r ' Oz

Pm o Pl _@m _omdm 0%

00z 0z? Ox? Ox 0z  Ox2
SO o2 OO 0m 02O OO
0z ox ox ox 0z or ox ox

and 5 o om ol
m m
Ri303 = (—g + 2m% + l% + %) /y.

From the condition R;;x; = 0 it follows that the function {(z, 2) is the solution

of the KdV-equation

ol ol 8%l
9z lor "o 0

and all flat metrics of such type with help of solutions of this equation are deter-
mined.

Note that after the Riemannian extension of such space the metrics of the
six-dimensional space can be written. The equations of geodesics of such type of
6-dim space contains the linear second order ODE (Schrédinger operator) which
well known in theory of the KdV-equation.
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6. Antiself-dual-Kahler metrics and the second order ODE’s

Here we discuss the relations of the equations (1) with theory of the
ASD-Kahler spaces [15].
It is known that all ASD null Kahler metrics are locally given by the

ds® = —Oudz® + 20 ,dzdy — ©,,dy? + dzdz + dydt,
where the function ©(z,y, z,t) is the solution of the equations
ezz + eyt + ezzett - ®§t = A(x,y, Z,t),

Az + Ayp + Ouy, + O, Ay — 20 ,,A4, = 0.

This system of equations has the solution in form
1 3, 1 2, 1 2 1 3
O = —con(,9)2" + a1 (5,9)2% — 5as(z, ot + saa(e, )t

and lead to the metrics (5) with geodesics determined by the equation (1).

However in this case the coefficients a;(x,y) are not arbitrary but satisfy the
conditions Ly = 0, Ly = 0. According with the Liouville theory, this means that
such type of equations can be transformed to the equation y” = 0 with the help
of the points transformations.

Note that the conditions L; = 0, Ly = 0 are connected with the integrable
nonlinear p.d.e. (as the equation (7’), for example) and by this means we can get
a many examples of ASD-spaces.

7. The applications to the general relativity

The notice of the Riemann extensions of a given metrics can be used for
the studying of general properties of the Riemannian spaces with the Einstein
conditions '

Rix = ¢""Riji =0
on the Riemann tensor R;j; and their generalizations [19]. Let us consider some

examples.
Let

ds? = —t?Prdz? — t?P2dy? — t?P3dz? + di? (14)

be the metric of the Kasner type which has applications in classical theory of
gravitation.
The Ricci tensor of this metrics has the components

Rll = (p2 +p3 +p1 - 1)t2]71—2’ R22 = (p2 +p3 +p1 _ 1)t2p2—2’
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- P2 +p3+pi—pt —ps— 3
R3z = p3(ps +ps+p1 — D72 Ry = ( 2 1P~ P3) , (14')
and in case R;; = 0 we get well known the Kasner solution of the vacuum Einsten
equations.
Now we apply the construction of Riemann extension for the metrics
(14). In result we get the eight-dimensional space with local coordinates

(z,y,2,t, P,Q, R, S) and the metrics

ds® = —2T%.&da’da? + 2dzdP + 2dydQ + 2dzdR + 2dtdS (15)

were Ffj are the Christoffel coefficients of the metrics (14) and & = (P, Q, R, S).
They are:

4 2p1—1 4 2p2—1 4 2p3—1
Fnzpltp1 s I‘22:172tp2 , I‘33:p3tp3 ;

Ty =pi/t, T3, =pa/t, T3, =ps/t.

We may use these expressions, and the metrics of the space D® can be written
in form
ds? = —2p1t?P118dx? — 2pot?P2 1 Sdy? — 2pst?P3 1S d2?

—4p1 /tPdzdt — 4ps [tQdydt — 4ps [t Rdzdt + 2dzdP + 2dydQ + 2dzdR + 2dtdS.

The Ricci tensor 8Rij of such space have the same components with the Ricci
tensor 4Rij of the space D* (14’). So the condition on the Riemann space to be
Ricci-flat is conserved before and after extension.

In turn the equations of geodesics of extended space

d*t 9 dz dy dz

el 21022 2p2—1 (Y2 212 _

ds? th (ds) tp2 (ds) +ps (ds) ’
Po  pidedt Ay opadydt o &z opadedt
ds? t dsds 7 ds? t dsds T ds? t dsds ’

d2R p3 dt dR _ 2 3t2p371%@
ds? t ds ds ds ds

pipst?Pr~l dx 9 Popst?P21 dy .o p§t2p3_1 dz o p3 , dt. o
22—  (— 2= (= 2= (— 2—(—
+( g T G () () ) B
p3t?P3— 1 dz dt
2 - e
+ t ds ds 0,
PQ ppdtdQ . . 1dydS
— 2 E = opotP2 T
ds? t ds ds P2 ds ds
+ 2P1P2t2p1_1(d_37)2+2p2p3t2p3_1(@)2) 2p%t2p2—1(@)2 2&(@)2 Q
t ds t ds t ds t2 ‘ds

Matematicheskaya fizika, analiz, geometriya , 2003, v. 10, No. 3 319



Valerii Dryuma

pot?P2~1 dy dt

t dsds~
PP pap e

ds? t ds ds ! ds ds

pipst?? ! dz o, | popit?PT! dy pit? Tl dz o, opy db,
oPIPSVT  (@Zya | oGPPIV - (BYyay | oPIV - (OTy2 | oPL %y2) p
+( t (ds) + t (ds) )+ t (ds) + t2(ds)
pin - da i _
t dsds~

d?S D3 dz dR o P2 dy dQ o P1 dx dP 4p% dy dt 4p§ dz dtR

ds? "t ds ds t ds ds t ds ds 12 dsds t dsds
2p; — 1)1~ g 2py — 1)t?P271 g
n p1(2p1 — 1) (_x)2+p2( p2 — 1) dy s
t ds t ds
p3(2ps — 1)t dz
—)1585=0
+ t (ds )

contain the linear 4 x 4 matrix system of the second order ODE’s for the additional
coordinates ¥ = (P,Q, R, S)

A>T

v
FE A(:c,y,z,t)d— + B(z,y,z,t)0.

ds
Here A, B are the 4 x 4 matrix-functions depending on the coordinates (z,y, z,t).
It is important to note that the relation

iP 4+ 9yQ + 2R +1S =s/2 + p

must be take into account and using this fact the methods of soliton theory for
the integration of the full system of geodesics and the corresponding Einstein
equations may be applied.

Note that the signature of the space 8D is 0, i.e., it has the form (4 +++——
——). From this follows that starting from the Riemann space with the Lorentz
signature (— — —+) we get after the extension the additional subspace with local
coordinates P, @, R, S having the signature (— + ++).

For the Schwarzschild metrics

1-— m)dacQ — 2%dy? — z? sin® ydz® + (1 — m)dtQ
x x

ds®* = —1/(
the Christoffell coefficients are

m

My =——
W 92(z +m)

’ F%Q = _(w +m)’
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. (z +m)m
Ty = —(z + m)sin’y, th:_Ta
1 1 cos Yy m
2, ==, T2, =—sinycos Mm,==-, 1, =-—2 4 - "
127 g 738 yeosy, ts= gy siny ’ 1 2z(z +m)

After the extension with the help of a new coordinates (P, @, R, S) we get the
D8 space with the metrics

ds? = —2T'}; Pdz? — 2T'3, Pdy® — 2T'33 Pdz* — 2T}, Pdt?

—2I'2,Qdz? — 4T%,Qdxdy — AT3; Rdzdz — 4T3, Rdydzdx — 4T}, Sdxdt.

8. Dual equations and the Einstein—-Weyl geometry
in theory of the second order ODE’s

In the theory of the second order ODE’s 4" = f(z,v,y') we have the funda-
mental diagram

y' = f(z,y,y") = ®(z,y,a,b) =0<=1b" = g(a,b, V),

which show the relations between a given second order ODE ¢" = f(z,y,%'), its
general integral ®(z,y,a,b) = 0 and so called dual equation " = g(a,b,b') which
can be obtained from general integral when variables  and y as the parameters
are considered. In particular for the equations of type (1) the dual equation

b" = g(a,b,b") (16)
has the function g(a, b, ') satisfying the partial differential equation

Gaace T 2Cgabcc + 2ggaccc + C2gbbcc + 2cggbccc

+9290(:cc + (ga + Cgb)gccc - 4gabc - 4cgbbc — CGcGbee

—3909bcc — 9eGace + 49cGbe — 39bgce + 6gp = 0 (16")

Koppish (1905), Kaiser (1914).

The E. Cartan has also shown that the Einstein-Weyl 3-folds parameterize
the families of curves of equation (16) which is dual to the equation (1). The
theory of the Einstein-Weyl spaces was developed in [11-13].

The association this theory with the problems of dual equations was discussed
in [16, 17].

Some examples of solutions of equation (16) were obtained first in [2].

Remark 6. For more general classes of the form-invariant equations the no-
tice of dual equation is introduced by analogous way.
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For example, for the form-invariant equation of the type
P (b)b" — Poya(b') = 0,

where P, (V') are the polinomial in b’ degree n with coefficients depending from
the variables a,b the dual equation b" = g(a,b,b") has right part g(a,b,b') in form
of the equation

"/)n+4 'l,bn+3 ¢4
Ynts  Ynys o Ps =0

Yonts Yont3 . Ynia
where the functions v; are determined with help of the relations

d? d d
4!"/)4 = _Wgcc + 4%9&: - gc(4gbc - %gcc) + 39v9cc — 63pp,

d . . .
%Tﬁiq — (i —3)gethi—1 + (i — 5)gphi—2, 0> 4

As ezample for equation 2yy" —y'* —y'* = 0 with solution z = a(t+sint) +b,
y = a(l — cost) we get a dual equation in form

i =

1
b’ = —=tan(b'/2).
a
In this case n = 1 we get the values

3 c 9 C\3 15 9 C\4a
4"(/)4 = ﬁtan 5(1+tal’l 5) y 5"(/)5 = —E tan—(l—}-tan —) s

6l = 20 tan E(1 + tan? E)5,

8ab 2 2
and the relation
zz Z: = % — hatps = 0

1s satisfied.
9. On the solutions of dual equations

Equation (16’) can be written in compact form

dQQCC dgcc _ 4dgbc

T3 9 To T 49c9bc = 398gcc + 6gp = 0 (17)

with help of the operator d% = 0y + Oy + gO,.
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It has many types of the reductions and the simplest of them are
g = c®wlac®™t], g=cwhc®?], g=cwlac*,bc*?, g=a “w[ca®"].

To integrate a corresponding equations let us consider some particular case
g = g(a,c). From the condition (17) we get

d2 g cc dg cc

da? ge da

=0. (18)
After substituting into the equation (18) the relation

Jac = —9Gcc + Xx(gc)
we get the solutions for x(£), €& =g,
_ 1o 1,

So we have two integrable reductions of the equation (17)

gz 9z
9ac + 99cc — ?C =0 gac+ 9Gec — EC =0.

Note that last time the problem of integration of the full dual equation (17)
with the right part g = g(a,b’) as function of two variables a and b' was solved
in work [16].

Remark 7. In the works of E. Cartan the geometry of the equation

mn

y" =F(z,y,9,y")

with General Integral in form ®(z,y,a,b,c) =0 has been developed. In particular
for the equations with the function F' satisfying to the system of conditions

d’Fy dFy _dFy 4 _,
— —2F———-3——+ -F. 2F1F5 +6F; =0
dz? 2 dx dz + 9?2 + AR + 05 ’
d’Fyy, dFy,
— — ——— 4+ Fypp =0 19
dx? dx + o2 =0, (19)

where % = 0y + Y0y + y"0y' + FOy the 3-dim Einsten-Weyl geometry in the
space of initial values (y,y'y", or a,b,c) has been realized.
As example the third order equation
2
m_ 3y'y"
(1+y?)
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of all cycles on the plane give us the simplest but nontrivial example of such type
geometry.

It is interesting to note in the case

H=H(F,), and F = F(z,y")

we get from the system (19) the condition on the function F

2

F.
Foo+ FFyy — ?2 =0.

The corresponding third-order equation is y"' = F(x,y"), and it is connected
with the second-order equation 2" = g(z,z') which has been discussed in the
section (9).
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