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We consider an integrable model of stimulated Raman scattering. The
corresponding hyperbolic partial differential equations are referred to as SRS
nonlinear equations. We study the initial boundary value Goursat problem
for these equations in the quarter of (z,t)-plane. The initial function van-
ishes at infinity while boundary data are local perturbations of a simplest
periodic functions. We obtain the representation of the solution of the SRS
nonlinear equations in the quarter of (z,t)-plane via functions, satisfying
Marchenko integral equations, and, on this basis, we investigate the asymp-
totic behavior of the solution for large time. We prove that the periodic
boundary data generate an unbounded train of solitons running away from
the boundary.

1. Introduction

The SRS nonlinear equations as a model of stimulated Raman scattering have
appeared in [11, 10, 6]. The phenomenon of stimulated Raman scattering is
described [6] by three coupled PDEs which define the pump electric field, the
Stokes electric field and the material excitation as functions of distance and time.
These equations are integrable, i.e., they admit a Lax pair formulation. These
integrable equations are also associated with a model of self-induced transparency
[1] in a special case. Since the initial and boundary values for these problems
are typically on a finite or semi-infinite interval 7] generally one cannot use
the inverse scattering transform in its traditional form of whole line. We will
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consider here the initial boundary values Goursat problem for the SRS nonlinear
equations in the quarter zt-plane, i.e., on the semi-infinite interval. Many papers
initiated by problems on the half-line deal with nonlinear dynamics of the spectral
or scattering data. We prefer an approach [5] where scattering (spectral) data
have explicite dynamics: first we input "scattering matrix" for the z-equation
(by initial function), then we input "scattering matrix" for the t-equation (by
boundary functions), and finally we input "scattering matrix" for the compatible
z and t-equations as a product of previous ones. In this case the kernel of the
Marchenko integral equations or a jump matrix of the corresponding Riemann—
Hilbert problem has an explicit z, ¢t dependance via exponent. It makes possible
to study an asymptotic behavior of the solution of the nonlinear problem by using,
for example, the powerful steepest descent method of P. Deift and X. Zhou [3]
while the nonlinear dynamics of the spectral or scattering data makes almost
impossible to obtain an effective asymptotics of the solution. We use below our
approach [8, 9] for studying soliton asymptotics based on the Marchenko integral
equations. We consider a case when boundary data have a simplest periodic
behavior at infinity. Thus, we consider the initial-boundary value problem for
the SRS equations:

2iqy = u, Uy = 2ivq, vy =i(qu — qp) with z,t € R, (1.1)
q(z,0) = u(x), with z € Ry ; (1.2)
w(0,t) =wv(t), v(0,t) =w(t) with t € Ry, (1.3)

where u(z) vanishes as £ — oo, and the boundary values are perturbations

v(t) = alt) + (t), o(t) >0, t— oo, (1.4
w(t) = B(t) + w(t), w(t) =0, t— o0

of the simplest periodic functions a(t) = —2awe*t and B(t) = —2bw.

We assume that the solution g(x,t), u(x,t), v(z,t) of the SRS nonlinear equa-
tions for z,t € R, is infinitely differentiable, continuous with all its derivatives up
to the boundary {z = 0;¢ = 0} of the quarter zt-plane and ¢(z, t), u(z,t) € S(R})
in z for any fixed t € Ry, where S(R;) is the space of infinitely differentiable
functions on R, such that derivatives of any order n > 0 vanish at infinity faster
than any negative power of x.

It is easy to see that equations (1.1) possess the following property:

V2 (e, 1) + |z, D2 = 1

if we put that 4(a? + b?)w? = 1. This property shows that it is sufficient to find
the function ¢(z,t) because the others unknown functions are defined by formulas

p(z,t) = 2igy(z, t), v(z,t) = £/1—|u(z,t)]?. (1.6)
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In what follows we consider only the case when v(oco,t) = —1.

To obtain a representation of the solution via Marchenko integral equations
and to study of its asymptotic behavior we shall use simultaneous spectral analysis
of an eigenvalue problem for the linear z-equation

Py +ikogyp = Q(z, )y, (1.7)
w=(y %) awn=(_0, %)

and for the linear t-equation

b= Qi Q) = (_’{f_fz;f)t) by V((Z?)) , (18)
when z,t € R;. This system of linear equations are compatible if and only if
q(z,t), p(z,t) and v(z,t) satisfy the SRS nonlinear equations [1, 6].

The main goal of this paper is to obtain the representation of
the solution of the SRS nonlinear equations via functions, satisfying Marchenko
integral equations, and to study the asymptotic behavior of the solution as t — oo.
We prove that the principal part of the asymptotics is represented by a series of
asymptotic solitons. The asymptotics of the solution shows that the periodic
regime on the boundary (z = 0) generates an infinite train of solitons running
away from the boundary.

2. Representation of the solution

First of all we need to input the Floquet—Bloch solution of equation

i 5y — [ BE) el
¢t - EQQ(t)(l): Qg(t) - (—i@(t) —ﬁ(t)> (2'1)
with periodic coefficients. For the case a(t) = —2awe*! and B(t) = —2bw

the Floquet—Bloch solution takes a form

k+b+X(k k+b—X (k) iw
\/ 2X<k)() \/ 2X(k)()e '

kb X(K) iw kbt X (k
V +2X(k)( Leiwt \V +2}_(|—(k)()

where the function A(k) is equal to

X(k !
(_%) X (k) = V/(k+0)? +a?, “’QZW'

5(t, k)) eiA(k)tagj

A(k) =

| &
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We fix the branch of the square root by relation:
X(k)=k+b+0(K™), k- oo

The vector functions £* (¢, k) satisfy equation (2.1) and they are analytic functions
away from the point 0 and some set ¥ where ImA(k) = 0, k& € C. The simple
analysis of the function A(k) shows that the set ¥ = R Uy, where R is real axis
of the complex k-plane, and 7y, is a finite arc whose endpoints are branch points
Ey = —b+ia and Ey = —b — ia (fig.1). It is easy to prove that the arc 7y lies
outside the circle of the radius |Eg| (in particular kg = —1/2bw? < —2b).

Imk
0,
Ey
73/
ko
_\ 0 Rek
Y
Bo O

Figure 1: The set X (b > 0).

So, we obtain a partition of the complex k-plane: Q4 UQ_ U X = C, where
Qp ={keC|Imk>0,ImA(k) >0}, O ={keC|Imk < 0,ImA(k) < 0},
and ¥ ={k € C|ImA(k) =0} = RU~p.

Let the solution of the problem (1.1)—(1.5) exists, it is sufficiantly smooth and
rapidly decreasing. Then the solution ¢(z,t) can be written as

q(z,t) = 2Ks(z, 2, 1), (2.2)

where the functions K;(z,y,t) and Ks(z,y,t) satisfy the Marchenko linear inte-
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gral equations:

o
Ki(z,y,t) — /Kg(x,z,t)H(z +y,t)dz=0for 0 <z <y < oo, (2.3)
x
o0
Kola,,t) + Ha +9,) + [ Kile )z +3,) (24)
T

with the kernal
H(z,t) — Z mjeiz]-ac+it/2zj

2 €04
1 1 T
+o- [ clR)e AR 4 / r(k)e Tt/ 2k g, (2.5)
6Q+ —00

Here 092, is the bondary of the domain 2, which are defined by the spectrum
¥ of the t-equation (2.1) with coefficients a(t) = —2awe“! and B(t) = —2bw.
They are depicted on the figure. The functions r(k) and c(k), numbers z; € Q
and numbers m; € C (j = 1,2,...,1) are uniquely defining by the initial and
boundary functions.

To prove this representation let us introduce basic solutions for compatible -
and t-equations. The first basic solution is the matrix-valued Jost solution of the
z-equation (1.7):

itog

oo
U(z,t,k) = [ e k203 +/K(:c,y,t)e_iky”3dy e % , (2.6)
xr

which is well-defined for all real k with exception of the two points co and 0 where
it has essential singularities. The kernel of this triangular integral representation
has the following form (cf. [4]):

— K(‘Tayat) _R (ZE,’y,t)
K(z,y,t) = (K;(x,y,t) I_ﬁ?w,yat) )

with entries of C*°(Ry x Ry x Ry) functions with respect to z, y, ¢t and of
the Schwartz type as © + y — oo for any ¢ € R;. The matrix K(z,z,t) and
matrix Q(z,t) are connected by relation: o3K(z,z,t) — K(z,z,t)o3 = Q(z,t)0s.
The last equality yields important formula (2.2) for the function g(z,t).

The matrix ¥(z,t,k) satisfies the z-equation (1.7) and t-equation (1.8). It
follows from the next lemma. Let us rewrite the z- and t-equations in the form

W, = Uz, t, k)W, (2.7)
W, = V(z,t, k)W (2.8)
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and let us supposed that this system of equatioins are compatible, i.e., matrices
U(z,t,k) and V(z,t, k) satisfy the relation

Uiz, t, k) — Va(z, 1, k) + Uz, 8, k)V (2,8, k) = V(z, 1, k)U(z, 1, k) = 0

for all k.

Lemma 2.1. Let the system (2.7), (2.8) be compatible for all k and
let W(zx,t, k) satisfy the x-equation (2.7) for all t and det W (z,t,k) = 1. Let
also W (zg,t, k) satisfy the t-equation (2.8) for some x = xy (including the case
zo = 00). Then W(z,t,k) satisfies the t-equation for all x.

Proof. The matrix W(w,t, k) = Wy — V(x,t, k)W solves the equation
(2.7). Indeed,

Wy =U(z,t, k)W + (U = Vo + UV = VU)W = Uz, t, k)W.

The matrices W, W are solutions of the same equation. Therefore they are con-
nected by a linear transformation W (z,t, k) = W(z,t,k)C(t, k). Since W (xo, t, k)

—~

= 0 and det W(z,t,k) = 1, then C(t,k) and W(z,t,k) are identically equal to
zero. Lemma 2.1 is proved. [

The second basic solution we introduce as follows. Let

x
pla,t k) =e 4 [ Ay, e tndy (2.9)

—X

be the solution of the z-equation and let

t
Gt k) = e + ﬁ /B(t, s)e @ ds (2.10)
—t

be the solution of ¢t-equation with £ = 0. Then we put
®(z,t, k) = o(z,t,k)o(t, k).

Due to the Lemma (2.1) the matrix ®(z,t, k) is the solution of compatible z-
and t-equations satisfying the condition: ®(0,0, k) = g, where o is the identical
matrix. The triangular integral representations (2.9) and (2.10) with infinitely
smooth kernel A(z,y,t) and B(t,s) can be found in [2] for ¢(z,t, k) and in [4]
for ¢(t, k), because t-equationis the same sort as z-equation for the Heisenberg
model of ferromagnets.
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In what follows, we use the following notations: the over-bar denotes the com-
plex conjugation; Ci denotes the upper (lower) complex half plane; if A =
(A= AT) denotes a 2 x 2 matrix, the vectors AT denote the first and second
columns of A.

The third basic solution involves the Floquet-Bloch solution £(t, k) of equa-
tion (2.1), which is bounded in t € R for k € ¥. It is analytic away from essentially
singularity point (0) and set ¥. For k outside of ¥ the matrix-valued function
E(t, k) is unbounded with respect to t € R and k € C. However, its first column
E7(t, k) has exponential decay in the domain Q. ast — oo and the second column
E1(t, k) has exponential decay in the domain Q_, ie., EF(t, k) = O(eF™mAME!),
t — oo. But, they grow exponentially when k& € 2_ and k € Q4 respectively. The
determinant det £(t, k) = 1 with ecxeption of the points k = Ey, Ey where it vav-
ishes. We introduce the third basic solution as follows. Let \ii(t, k) be a solution
of the Volterra integral equation

Ut k) = E(t.0) - 3 [ €D EmRIQ0, D) — Qo kdr, (211

where Q(O,t)A is defined by (1.8) with z = 0, and Qg(t) is defined by (2.1).
The matrix W(Z,k) satisfies the ¢-equation with z = 0 under the asymptotic
condition ¥(¢,k) = E(t, k) + o(1) as t — co. We input the matrix

Y (z,t,k) = o(z,t,k)¥(t, k), ke, (2.12)

where ¢(z,t, k) is defined by (2.9). Due to the Lemma (2.1) the matrix Y (z,t, k)
is a solution of the z- and t-equations with det Y (z,¢,k) = 1. For k outside of X
the function \i/(t, k), hence also Y(z,t, k), is unbounded with respect to ¢t € R, .
The matrix-valued function Y (z,t, k) has the same analytic properties in k € C
as £(t, k), since the Green matrix £(¢,k)€~1(7, k) is an entire function in k € C,
and the integral equation (2.11) is of Volterra type with 7 € (¢,00). There-
fore, Y*(z,t, k) are analytic in the domains Q= while vector functions ¥*(z,t, k)
are analytic in the domains Cy, and matrix ®(z,¢, k) is an entire functioin in
the complex k-plane.
The basic solutions we have introduced are clearly linearly dependent

U(z,t, k) = ®(z,t,k)S(k),
Y (2,1, k) = ®(z,t, k) P(k),
Y (z,t,k) = U(z,t, k) R(K).

The matrices S(k), P(k) and R(k) depend neither on z nor on ¢ because by virtue
of the z-equation they do not depend on z, and by virtue of the t-equation they
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do not depend on ¢. Hence for k € R and for k£ € 3 we have
S(k) =9(0,0,k), kel
P(k) =Y(0,0,k), kex; (2.13)
R(k) = S~Yk)P(k), keR

. i sy (k) sT(k)Y .
Transition matrix S(k) = ¥(0,0,k) = L is completely defined
s (k) 55 (k)

by initial function u(z) € S(Ry) by using the scattering problem for the
z-equation with ¢ = 0. The function sj (k) may vanish at some points k; € C;.
Moreover, these zeros can be multiple and there can exist limit points on the
real axis R [4]. To avoid this difficulties we shall consider a subset Sp(Ry) of
functions u(x) € S(R;) for which s (k) has a finite number of simple zeros in
Cy and s§ (k) #0 for k € R,

Let us briefly discuss the discrete spectrum of the z-problem. The main rela-

tion of the z-scattering problem is

1 _ _
o k)@ (z,t, k) = U (z,t,k) + (k)T (z,t, k) for k € R, (2.14)
where
55 (k)
r(k) = — 22,
s3 (k)

The function F(z,t,k) = ® (z,t,k)/s3 (k) is analytic in k& € C; with exception
of a discrete set

={k;j € C; | s (kj) =0,j =1,2,...,n},

where it has poles. If s5 (k;) = det[® (z,t, k;j), UT(z,t, k;)] = 0, then @~ (z,t, k;)
Jl\IJ (z,t,k;). Hence, res F(z,t,k)|k=k; = c}\I/"'(a:,t,kj) with

1 1
1 J : 1
Cc; = - , j=L12,...,n, and ;= .
T8 (ky) T sy (k)
The dot indicates differentiation with respect to k. Note that s (k;) # 0 be-

cause otherwise we come to a contradiction: ¥ (z,t,k;) = 0 since U] (0,0, k;) =
s (kj) =0 and ¥5(0,0,k;) = s§ (k;) = 0.

Transition matrix P(k) is uniquely defined by boundary data v(¢) and w(t),
and its integral representation derived from the defining relation (2.13), (2.12),
(2.11):

P() = £(0.1) — 3¢ [ €070 RQW.1) - Q) Tt B
0

Matematicheskaya fizika, analiz, geometriya , 2003, v. 10, No. 3 373



Eugene Khruslov and Vladimir Kotlyarov

which completely describe analytic properties of the matrix P(k). In particular,
we have the following asymptotics:

og + O(k_l), k — oo,

P(k) =
Py + O(k) k—0
with
iv(0)
, 1 1 —w(0) 71_1”(0)
V2| O )
1—w(0)

Hence matrix P(k) is well defined for k£ = 0.

Transition matrix R(k) of the scattering problem for compatible z-
and t-equations is the product S~ (k)P(k) of the transition matrix S(k) of the
scattering problem for z-equation defined by initial function u(z) and transition
matrix P(k) of the scattering problem for ¢-equation defined by boundary values
v(t) and w(t). The matrix R(k) has the following form:

— +
R(k) = (:;_EZ; %EZ;) L rt(k) ==y (k), 1 (k) =T (k) for k€ R
with r (k) = py (k)sg (k)—py (k)s] (k) analyticin k& € Q4 (hence 7 (k) is analytic
in k € Q_) and r, (k) = p; (k)s] (k) — p] (k)s; (k) nonanalytic and well-defined
for k € R with exception of the point 0 and self-intersecting point kg of the set
(hence r; (k) is not analytic and well-defined for k& € R\ ({0}U{ko})). The analytic
properties of the matrices S(k) and P (k) yield that R(k) is of C*°(R\ k¢ ) matrix.
It has the following asymptotics:

R(k) = oo +O(k™1), k — oo
| Ry +0(k), k—0, where Ry=S"1(0)F,.

In what follows we suppose that the function 7] (k) does not vanish for k£ € R,
and its zeros can occur at the points z; € {14 and all of them are simple.
The second main relation of the compatible scattering problem is:

1
Gz, t,k) = ——Y (z,t,k
(#.48) = ¥ (@b
= U (z,t, k) + p(k) ¥ (z,t,k) for k € R where p(k) :=ry (k)/r7 (k).

(2.15)
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The function G(z,t, k) is analytic in k& € €2, with exception of the points z; where
1y (zj) = 0. If r{ (zj) = 0 then Y~ (z,t,2;) and ¥ (z,t,z2;) are linear dependent

Y~ (z,t,2;) = fyjz\IJ’L(ac,t,zj), j=1,2,...,m,

2
hence res G(z,t,2;) = 2Vt (z,t,2;), 2 = S
J 71 (%)

J
with respect to k) with 'yJQ- = pi_ () = pﬁ_ (2 ) Using asymptotics of the function
51 (%) 53 (%)
Y (z,t,k) in the neighborhood of k = 0o and k = 0 for k € 2, we find

/

(the dot denotes differentiation

2 |
(o) + O(|k|_1)] e ikz+35) for |k| = oo, k € Qy,

Gz, t, k) = <
(,%,k) (2.16)
o—it/4k

[ 1 (1 —v(z,t)

_7"1_(0) 2(1 - V(a:,t)) iﬂ(l‘,t) ) + O(|k|)

for |[k| = 0, k € Q4.

r

This asymptotic formula will be used below.
The main relations (2.14) and (2.15) of the compatible scattering problem
yield
G(z,t,k) — F(z,t, k) = c(k)¥ (z,t, k), (2.17)
where
__ py(k)
s3 (k)ry (k)
Hence, ¢(k) has a meromorphic continuation from the real axis R to the domain
Q., because sj(k), py (k) and r[ (k) are analytic in the domain Q.. Hence
relation (2.17) is true for k£ € Q. with exception of poles at the points, where
s3 (zj) = 1 (2;) = 0. Since the zeros of s3 (k) and r; (k) are simple and in finite
number, all poles of ¢(k) are simple and their number is finite.
To deduce the integral equations of the inverse scattering problem let us put

for k e R (2.18)

h(z,t,k) = G(z,t,k) — (3) e~ k2=it/4% for ke R

The function h(z,t,k) has different left and right boundary values on v =
7o N Q. Indeed,

h(z,t,k —0) — h(z,t,k +0) = G(z,t,k — 0) — G(z,t,k + 0)
Y_(.I,t,k — O)Tl_(k + 0) — Y_("Eatak + O)rl_(k — O)
7 (k+0)ry (k—0) ’
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and since r] (k) = det[Y ~(z,t,k), U1 (z,t, k)] one can find

h(z,t,k —0) — h(z,t,k + 0)

_ detfe (0,k+0),E 0.k~ 0] (a,t,k) _ _ i0F(z,tk)
ri (k+0)r; (k—0) ri (k+0)r; (k—0)
Therefore
h(z,t,k —0) — h(z,t,k +0) = f(k)¥ " (z,t,k), ke, (2.19)
where
Fk) = i

7 (k—0)r (k+0)

Taking into account analytic continuation of the relation (2.17) into the domain
Q4 , we find that for k € 'yar

[c(k —0) —c(k +0)] ¥ (x,t,k) = G(z,t,k — 0) — G(z,t,k + 0)
and by the same reasons as above
c(k —0) —c(k+0) = f(k), ke, (2.20)

where c¢(k F 0) is the left and the right boundary values of the function ¢(k) on
% -
Let us consider the integral

o

1 _
J(:E? Y, t) = % / h(xa ta k)elky+lt/4kdk.
—0o0

Using equations (2.14), (2.15), (2.18), (2.6), we find

J(z,y,t) = (2) (z,y,t) + ((1)) Fy(z+y,t) + 70 (}?) (z,2,t)Fs(z +y,t)dz,

T

where
1 7 . .
Fs(.'L',t) _ / p(k)elk(z+y)+1t/2kdk

27
-0

1 T 1 7

_ - ik(z+y)+it/2k - ik(z+y)+4it/2k

5 c(k)e dk + 7 /r(k)e dk.

—00 -0
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On the other hand, using estimate (2.16) of G(z,t, z) for large and small &, taking
into account (2.18) and (2.19), applying the Jordan lemma, we find

J(z,y,t) =1 Z res [h(z, t, k)eiky+it/4k]
Zj€ Qy
ry (2;)=0

- —/[h z,t,k — 0) — h(z,t, k + 0)]e*ytit/* g

=- Z m;el V25 Ut (3,4, 7))
z]‘EQ+

1 R
b / f(k)eFyHit/ 4Ryt (5 ¢ k)dE.
o

Finally, we have the integral equations (2.3), (2.4) of the inverse scattering
problem with kernal:

H( Z m; elzja:—l—lt/Zz] + — /f 1kz+1t/2kdk
27
Z; €04 70
1 T 1 T
- k ikl‘+4it/2k dk i / ik.’L‘-Ht/k . 291
g CT ton [ R (@)
—00 —00

The coefficients m; are given by

mj = py (z)lis] (z))77 ()] 7" = py (25)[isg (25)71 (2))] 7" = —ires .=, (k).
(2.22)

Taking into account jump relation (2.20) for the function c(k) on arcs vy,
the kernel H(z,t) can be written in the form (2.5).
Now it is natural to introduce the set

R ={ki,ke,....kn € Qy;21,20,...,2m € Qy37(k), p(k),r{ (k), k € R}

and to call it as the scattering data for compatible differential equations ( 1.7),
(1.8) with ¢(z,t),v(z,t) and u(z,t) satisfying (1.1)—(1.5). These scattering data
possess the following properties:

Condition A

r(k) € C*(R) (k) =O(k") & — oo;
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e r(k)s] (k) is analytic in k € C_, where

Tk—k i [ log(1+|r(s)[*)ds
4y — j :
SQ(k)_jI_llk—EjeXp[%/_OO po— , keCy

is analytic for k € C,..

Condition B

o p(k),ry (k) € C(R\ {ro});

e the function r{ (k) is analytic in k € Q4, where it has finite number of
simple zeroes z; (j =1,2,...,m)

e the function p(k) and r{ (k) are not independent:

L+ |p(k)? =|ry (B)| 7%, keR

e The function p(k) and all its derivatives have jumps at the real point xg:
p(l)(K’O_O)_p(l)(K‘O-i_O) :f(l)(K’O)a ZZO,].,...,
where f(k) = i(r] (k—0)r; (k+0))~!, k € vf and Jim (k—Eo)~Y2f(k) =
— Lo
fo #0.

Condition C

e the function c(k) = p(k) — r(k) extends analytically to the domain Q.
where it has finite number of simple poles at points z; (j =1,2,...,m)
and satisfies the jump relations:

c(k—0)—c(k+0)=f(k), kenj.

The kernel H(z,t) of the Marchenko equations is completely defining by

the scattering data R because deficient coefficients m; (2.22) and functions f(k),
c(k) evaluated via known from scattering data values. Thus, for example, for
the case when initial function u(z) = 0 and boundary values are pure periodic
(v(t) = —2awe™’ and w(t) = —2bw) the solution q(z,t), p(z,t) and v(z,t) of
the SRS nonlinear problem is defined by Marchenko integral equations with fol-
lowing special kernel:

1 I
H(z,t) = o / (k +b—/(k +b)2 +a2) ik +it/2k 1.
o
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3. Generation of asymptotic solitons by boundary data
Letadata R = {k1,ko,..., kn € Qy;21,20,...,2m € Qy;7(k), p(k),r] (k),k €
R} satisfy the conditions A, B, C. Then the following statement are true.

Statements. 1. The zt-integral equation

o0
K(z,y,t) + H(z +y,t) + /K(w,z,t)?—l(z +y,t)dz =0, (3.1)
X

0<z<y<oo, 0<t< @

with the 2 x 2 matriz kernel

where scalar function H(z,t) given by (2.21), is uniquely solvable in the space
LY (z,00) for any x >0 and t > 0.

2. The solution K(z,y,t) belongs to C*(Ry x Ry x Ry), it and all its deriva-
tives decrease faster than any megative power of x + vy, for x +1y — oo, and t
fized.

3. The matriz

o0
U(z,t, k) = eik$03+/K(.’L‘,y,t)eikya3dy o itos/4k

Z

satisfies the symmetry condition
U(z,t, k) = 02V (x,t,k)os for k € R
and is a solution of the x-equation (1.7) with Q(z,t) given by
Q(z,t) = 03K (z,x,t)o3 — K(z,x,1). (3.2)

4. U(z,t,k) is a soluAtz'on of the both x- and t-equations constructed from
the matrices Q(x,t) and Q(x,t), using equations (3.2), (1.6), (1.7) and (1.8).

Statement 1 follows from the following lemma about the solvability of the
zt-integral equations.

Lemma 3.1. Let the data R satisfying properties A, B, C. Then, the
xt-integral equation (3.1) is uniquely solvable in the space L'(x,00).
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Proof. Under conditions A-C the integral operator of the xt-integral equa-
tion is compact in the space £!(z,00). Then, by Fredholm theory the zt-integral
equation has a unique solution if the homogeneous equation has no nonzero so-
lution. If a nonzero solution does exist in £!(x, o), in view of the homogeneity
of the integral equation, it is bounded, hence it belongs to £2(z,00). The inte-
gral operator is clearly skew-Hermitian in £2(z, 00), so we obtain a contradiction,
because the only solution in this case is zero. ]

We omit proofs of the rest statements because they are almost the same that in
[4]. Now let us describe the main result of the paper.

Let us put C = |2Ep|™2 = w? and for N € N let us define the asymptotic
domain Gy(t) by

1
Gn(t)={z €eRy |z>Ct— %logtNH}.

Theorem 3.1. Let 1£n1<n |zj| > |Eo|. Then the solution of the nonlinear
ji<m

problem (1.1)—(1.5) has in Gn(t) the following asymptotics for t — co:

N+1
Z 9ig exp[—2ib(z + Ct) — id;]

1), t— € Gn(2),
cosh[2a(z — Ct — z;) + log t21—1/2] +o(1) 0 T ~n(t)

and
pu(z,t) = 2igy (=, t), vz, t) = —/1— 4q(z,1)[2,
where
1 r A+ b)log[l A)|?
éj:(sj(O)Jr; / ( +(/2J<:gb[)21|52( W
—|Eo|
) |Eo|1 ) 2
T x§0)+% / Wd)\, p(A) =7(A) +c(N),
—|Eo|

(0)

and numbers 6;-) and xz;” are given formulas involving h(Ey), where
h(k) = (k — Eo) /2 (k). The functions r()\) and c(\) are defined by initial and
boundary data according to the Section 2.
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Remark 1. If there exist numbers z; with |z;| < |Ey| then the asymptotics of
the function q(x,t) will contain additionally a finite number of ordinary solitons

e )

cos mz;(r — zil2 —y;
(7712j|<8o)) d SR
which move faster than asymptotic solitons away from the boundary in the domain
x > Ct and correspond to those eigenvalues z; € Cy for which |z;| < |Ep].

Remark 2. The main result given by Theorem 3.1 is also true for the case
when a(t) and B(t) are arbitrary periodic or quasi-periodic finite-gap functions
with respect to differential equations (2.1).

It is easy to see that asymptotic solitons given by Theorem 1.1 are similar
to ordinary solitons but their velocities depend on ¢. In contrast with ordinary
solitons they are not exact solutions of nonlinear equation, however they satisfy
it with increasing accuracy when ¢ — oco. For this reason such objects are called
asymptotic solitons. The number of these asymptotic solitons increases to infinity
when ¢ — oo if the observation domain in the neighborhood of the the solution
front is extended correspondingly.

Qualitatively these results do not depend on whether the initial function u(z)
and vanishing part 9(¢) and w(¢) of boundary functions are identically zeroes or
not. In the case u(z) = 0 the scattering function r(k) is also identically zero,
and p(k) depends on the boundary data only. Thus we come to the following
conclusion: any periodic or quasi-periodic boundary data «(t) and B(t) generates
an unbounded train of asymptotic solitons which run away from the boundary.
This phenomenon can not be destroy by any local or vanishing perturbations of
the periodic boundary data as well as by vanishing initial functions. An ordinary
solitons (in finite number) may appear if there exist such number z; that |z;| <
[ Eol-

P r oo f. [Sketch of a proof of the Theorem 3.1.] For study of the asymp-
totic behavior of the solution g(z,t) we use the integral equation (3.1), which is
uniquely solvable in the space £!(x,00) and, due to the statements above, rep-
resent infinitely smooth and rapidly decreasing function g(z,t) . We carry out
the asymptotic analysis of the integral equations by reducing the problem to de-
generated integral equations, obtaining a determinant formula for the solution
and studying its asymptotics as ¢ — oo.

Taking into account properties A, B, C and using the method of steepest
descent and integration by parts we come to the following decomposition of
the scalar kernel H(z,t) as t — oo:

H(z,t) = Hy(z,t) + Hi(z,t) + Ro(z,t) + Ri(z,1),
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where Hy(z,t) is degenerate one:

N 1

m:O

¢E=z—-Ct, n=y-—Ct, C’:|2E|72

The function Ry(z + y,t) has the explicit form in term of function p(k):

1 % = .
RO(I‘ + y,t) = % [ﬁ(X + Y)ezt\/X-I-Y _ ﬁ(X + Y)B_Ztm] ’
el /4 5 1
0 = —Y /4 _
)=z o(5)

where X =2z /t and Y = 2y/t. Hi(z+y,t) and Ry (z +y,t) admit the estimates
|Hi(z +y,t)| < Oy |6 +n|N 17V —32emeEtn),
[Ri(o +9,8)| < Cp t7 (X +Y) 2] (X +Y)V2)] +1p"(~ (X + 1Y)

Let H be an integral operator which acts in space £?(x,00) by the formula

i (y’:? (—Ff<y0+z,t) H(ygz’t)> (%; )dz'

T

Then the Marchenko integral equations take the form
(I+ﬁ)K:Ga K = (KlaKQ), G:(Oaﬁ) (33)

Under conditions A, B, C equation (3.3) has unique solution in the space £2(z, 00)
and

I I+H)™ <L

Let H N, fio, 1:11, Ry be corresponding integral operators in the space L£2(z,00)
given by kernals Hy, Ry, Hi, R; . We look for the solution of equation (3.3) in
the form

K=K +1,
where vector-function K satisfies equation

(I+Hy+Ry)K =Gy + Gy (3.4)
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with Gy = (0,Hy) and Gy = (0,Rp). Then difference ¢» = K — K satisfies

an equation
(I+Hyp=06 - MK -REK

with G1 = (0, H; + R1). The last equation yields the estimate
|4 ||=|| K = K ||< C(N)t~1/%+e

in the domain Qx(t) with 0 < € < 1/2. This estimate allow us to consider below
integral equation (3.4) instead of the equation (3.3).

The next step is as follows. Let L = (Li(z,y,t), L2(z,y,t)) be a solution of
the equation

(I+Ry)L=Ggr,  Ggr=(0,Ry). (3.5)
Then solution K of the equation (3.4) can be written in the form
K=L+({I+Q)M, (3.6)

where T + Q = I+ }?O)*l, and @ is an integral operator. The kernal Q(y, z) of
this operator has an explicite representation via vector-function L(y, z). The sub-
stitution (3.6) into (3.5) yields a degenerate integral equation

M+ Hy(I+Q)M =Gy — HyL, (3.7)

The next decisive step is that the equation (3.7) can be explicitely solved in
the limit ¢t — oo. Namely, it is possible to show [9] that for ¢ — oo

|| Ll(.’E,y,t,) - ng)(xayat’) ”C[X,oo): 0(1),
| Lo(z,y,t,) — L8 (@,9,,) [l22(x.00)= 0(1), ¢ — 00,

where

o0
LY(z,y,1) 2/ p(Z +Y)etv +Z+VZ+Y)+CC] dZ
X

o0
+2/ (X, 2)p(Z + Y)eVXFZ-VZ+Y) | c.c.] dz,
X

18(2,y,) = = [N(X, 1)V TTT — N(X,V)e VX7

1
Vi
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with function N(X,Y’) given in an explicite form

o0

i X +Y\ 1201 + |p((X + S)~/?)?]
N(X,Y)= (X +Y x ( ) : d
(X,Y) = p(X + V) exp 27r/ X+S S—Y—i0 s
X
This explicite formula and degenerate integral equation (2.18) allow us to com-
plete the proof of the Theorem 1 by the same way that in [9]. n
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