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Following the methodology outlined in the series of papers “The Stokes
structure in asymptotic analysis”, [8, 9], we present some features of the
Airy equation which are not generally available in the classical literature on
transcendental functions and asymptotic analysis.

1. Airy’s equation

Airy’s equation has the form

y'(2) - 2y(2) = 0. (1.1)

All functions, y(z), satisfying (1.1) are analytic and single-valued in C. We
will regard these functions as regular solutions as opposed to formal solutions
which we define below.

The general regular solution of Airy’s equation can be expressed in term of
Bessel functions of order +1, see [21, 1]:

y(z) = Clx/EJ% (%'ng) + CQ\/EJ7% (%'ng) . (1.2)

Since the Airy equation plays an important role in various problems of physics

and mechanics, and an exceptional role in asymptotic analysis, its regular solu-

tions form a separate class of special functions, the Airy functions. Quite apart

from this, the Airy equation is a good testing ground for ideas in asymptotic

analysis. We use it to illustrate an approach which has been described in [8] and
[9] and which can be used more generally.
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The regular solutions of Airy’s equation in the complex plane have the fol-
lowing properties:

(i) Every regular solution y(z) of (1.1) is an entire function represented by
the power series

+9'(0) (2 +

st E e (1.3)

which is convergent for any z (see [15, p. 54, (8.03)]). In particular if y(z) is a
solution then y(ze?™) is also a solution and in fact

y(2e"™) = y(2). (1.4)

(ii) If y(2) is a solution of ( 1.1) then the functions y(w™'z) and y(wz), where
w = e, are also solutions of (1.1) and any two of these solutions are linearly
independent. Moreover, the following identity is valid:

y(2) + wy(wz) +w ly(w™z) =0 (1.5)

(see [15, p. 55, (8.06)]).

Although the Airy equation was introduced by Airy in 1838, the systematic
study of its solutions was not pursued until almost a hundred years later by Fock
[7], and Miller [14].

2. Airy’s functions
Introduce the angular domain, or sector, of C for —co < a < 8 <
S(a,f) ={z:a<argz < B,0 < |z| < o} (2.1)
and the following ray
lg={z:argz=10,0<|z| < 0}. (2.2)

The Airy functions, Ai(z) and Bi(z), are regular solutions of (1.1) defined by

3
Ai(z) = 2% / exp(at — )t (2.3)
00
where the path 7y runs from oo along a ray inside the sector S (—‘%r, —%) to the
origin and then returns to oo along any ray inside the conjugate sector S(7, 5%r);
and
Bi(z) = iw?Ai(w’z) — iwAi(wz) (2.4)
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(see [4, p. 9, (2.5.12)]) and [15, p. 53, (8.02); p. 393 (1.10)]).

Traditionally the paths above are taken along the rays l_%rr and [ 2. These
rays, together with the positive real axis [y, play an important role in asymptotic
analysis and are called Stokes rays for the Airy equation. The integral (2.3) is
absolutely convergent for any finite z and obviously satisfies (1.5). Of course,
it is possible to deform any finite part of the path of integration (see Fig. 1).
Solving (1.1) and using the Laplace transform yields, in fact, three contours
Yk, k = —1,0,1, and three corresponding solutions which, following [15, p. 413,
(8.02)], we represent as

Aig(2) = Ai(2), Aii(z) = Ai(w12),Ai_1(2) = Ai(wz). (2.5)
Any two of them are linearly independent.

We have the integral representation

wk

3
Aig(z) = E/ exp(zt — %)dt,k — _1,0,1. (2.6)
Tk

(See Fig. 1).

WOK
/_

B!

Figure 1. Contours for integral representation of Airy functions.

Moreover, one can prove, by the method of steepest descent that as z — oo,

kni
6

3
Aig(z) = 2mie= (D32 (1 4 0(1)), 2 ¢ Ly, b =—1,0,1. (2.7)

1
Thus Aiy(z) is bounded inside the sector w*S (—%, %) excluding a neighborhood

of the origin. (See [15, p. 116, (4.02)]).
In particular,

(140(1)),z ¢ lyy, 2z — 0. (2.8)
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and relation (2.8) describes the behavior of Ai(z) throughout the complex plane
with the significant exception of the negative real axis [,. For the negative real
axis the behavior is different and is given by

4

which is also obtained by the method of steepest descent (see [15, p. 102-103,
13.4]). Relations (2.8) and (2.9) show that the Airy function is rapidly decreasing
along the positive axis and rapidly oscillating along the negative axis. The first
ray is a Stokes ray, and the second is a separation ray. (See Fig. 2).

Ai(—z) = T2z cos <§z3 — E) (1+0(1)),z = 4o00. (2.9)

27
3

l
X

Figure 2. Stokes rays — dashed, separation rays — black.

Unfortunately integral representations such as (2.3) are not generally available
for other equations so other more widely applicable approaches are desirable.

3. Airy functions and hypergeometric functions

We now introduce another integral representation of the Airy function in
terms of Gauss’ hypergeometric function. We will show that the phase ampli-
tude of the Airy function can be expressed as the Laplace transform of Gauss’
hypergeometric function.

Let us begin with the formal solutions of the Airy equation. Set firstly

N

(3.1)

o
I
Wl
N

and recall the Pochhammer symbol

F(k—i—a).

T o) (3.2)

(a)p=ala+1)...(a+k—1) =
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The expressions

(3.3)

and

© (3 1
71(z) = 271 e Z M (3.4)

satisfy (1.1) formally and thus represent a pair o(z), §1(2) of linearly independent
formal solutions. We can write these as

Jo(2) = 2= 167 Py(2), (3.5)
01(2) = 2715 Py (2), (3.6)
where
5o (CDF(B), (5),
P()(Z) - I;) 9k (l)k Ck ’ (37)
o (5 1
Pi(z) = Z 7g2)k1)£621’§ . (3.8)
k=0

We regard Py(z) and P (z) as the formal phase amplitudes of the formal solutions.
There is a striking similarity between the coefficients in Py(z), P;(z) and those
of the Gauss hypergeometric functions

15 = (3), (3) \*
F —= ] = —= .
i) EhBC
15,6\ _ @) )
F{=,-,1;2]= 3.10
(6’ 6’ 7 2) ;) (1) 2 bl ( )
which suggests a relationship between them. Indeed, using
1 ¢ 7
o oo,
0

which is the key to Borel summation, we can express ]50(2) formally as*

yiea o [ ome _¢
g/ F<6 o 2) de (3.11)

* The symbol 2= means that the equality is understood in the sense of formal power series:
we have to substitute the formal expansion (3.9) into the integral in (3.11), and then integrate
the formal expansion term-by-term. The resulting formal series will be a formal power series
(with respect to %)
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and hence
; ¢ —£< 5 1. ¢
yo(Z) C F _56 1 _5 d£1 (312)
where F(% % —%) is Gauss’ hypergeometric series,
A (15 6\ =D () (B
Fl=2.1.-2)= 3.13
(6653) =X wrm e (3.13)

Similarly we have

i K:
0

~ .ps. _1 i _ A~ 1 5
() 22 kel [ F (3,6,1; g) e, (3.15)
0

where F' (6, & 1; 5) is also defined by (3.13) with the change of variable £ — —&.

Replacing F(é, 2, 1;— §) by F(é, 2, 1; —§) in (3.11), we obtain an absolutely
convergent integral for $(¢) > 0. This integral represents an analytic function

o
15 13
= R (2,12 ) de 3.16
[ (5505 ) e (3.16)
0
Here F(G, &L %) is an element of Gauss’ hypergeometric function obtained

by analytic continuation of the series (3.9) from the disk |[£| < 2 to the annulus
2 < ||€]] < oo cut along the negative ray. We take that element which is real when
¢ > 0, and single-valued in the whole &- complex plane cut along the negative ray.
We can prove that F (é, g, 1;— ) <\§| ) ,& = +oco. It can be shown from

(3.16) that the function Py(z) is bounded in the sector S (—%, %) of the z-plane.
Given 0, —m < 0 < 7, introduce

Puole)=¢ [ e €F (1,5 1-—§) e, (3.17)
0

where the path of integration is taken along Iy, so that Pyo(z) = Py(z). The
function Py g(z) is analytic and bounded in the sector S (— ”+2‘9 = 20) Further
analysis of the integral (3.17) shows that the functions Py g(2 ) are elements of the
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same analytic function Py(z) bounded in the wider sector S (—m, 7). (Py(z) is here
used to denote the analytic continuation of the function defined by (3.16)). Thus
we can regard Py ¢(z) as a restriction of Py(z) to S (—%20, ”_TQG) . Moreover, one
can verify that

Py(z)=1+0(1), z— oo, (3.18)

inside any closed subsector of S (—m, 7).
On the other hand, we can prove that the function

z_ie_CPo(z) (3.19)

is a solution of Airy’s equation. Comparison of (3.18) and (3.19) with (2.8) shows
that (3.19) is simply a constant multiple of Ai(z).

However in attempting to make a similar replacement in the integral (3.14)
it needs to be noted that the point £ = 2 is a branch point of the hypergeo-
metric function F(G, & 1; g) Thus on the interval (2 +oo) the formal expression
F(é, 2, 1; %) must be replaced by a branch of F(G, &1 2) Cutting the complex
plane along the positive real axis, we consider two possibilities

& 1 &
c/ F(g5n5) (3.20)

& £
c/ F (5505 ) a6 (3.21)

where the first path C7 is along the upper edge of the cut, and the second Cy

along the lower edge. Both integrals are absolutely convergent, as F’ ( 6o s %) =
O (|log|2 —£]|), &€ — 2, and, as observed above, F' (é, 5.1 g) = (|§|5/6) € —

00, on both edges of the cut. We thus obtain a pair of corresponding functions
z_%eCP,l(z), 2" 1e Py (2).

Similar analysis to that above shows that these functions are proportional to
Ai_i(z) and Ai;(z), respectively. We thus have the theorem.

Theorem 1. For 0 in the intervals —m < 0 < 7,0 < 0 < 27w and —27 < 6 < 0,

respectively, and for z € S( 7T+20 T 329) the following integral representations
are valid ) | s ¢
Ai ¢ [ e ¥F — 3.22
i(2) = o= e @/ Rt AT 3 (3.22)
—n<0<m,
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1 1
Aiq(z) = 2ﬁzie€§/e§4F (6’ g, 1; g) dg, (3.23)
lg
0<0<2m,
i 1 1 _ 15 _ ¢
_ ¢ gp(l® .8
Ay (2) 2\/7_rz ie C/e F<6,6,1, 2) dg, (3.24)
lg
—2r <0 <0.

Remark 1. These formulae can also be obtained from formulae (11) or (12)
of [8] for the Hankel functions setting v = % which is not surprising in view of

(1.2).
Writing

Aig(z) = Nl 322 Py(2), (3.25)

we call Py(z) the phase amplitude of Aix(z). Thus,
Py(z) =14 0(1),z € W*S (=7, 7), 2z = . (3.26)

Remark 2. Comparing (3.22) and (3.12), shows that Ai(z) = Aip(z) and
9Jo(z) are generated in the same way by the same elements of Gauss’ hypergeo-
metric function and series, respectively. Further analysis, see (3.12) and (3.15),
shows that different formal, as well as regular solutions of the Airy equation,
are generated similarly by different elements of the same Gauss hypergeomet-
ric function. These observations are very important and can be considered as a

particular case of a much more comprehensive theory (see [18] and the article of
Ramis in [5]).

Remark 3. It is remarkable that the simple formula (3.22) seems not to have
appeared in the classical literature. Moreover, the formal solution of the Airy
equation, has been presented in the classical literature (see, for example, Olver,
[15, p. 116]), Antosiewicz in [1, p. 448, (10.4.59)], as

Ci 1)*2FD(3k + 3)
33k (2k)!T( )Ck

(3.27)

And the relationship to the hypergeometric function is obscure, while (3.27) is
identical to

(. )’“(5) (2)
N CZ O (528

(see Berry in [19] and Ramis [18]), whzch is obviously closer to the hypergeometric
series F' %, %, 1; —% .
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We now compare the two integral representations for the Airy function (2.3)
and (3.22). The relation (2.3) is more elementary and is valid everywhere in the
complex plane. However (3.22) has a definite advantage over (2.3). To extract
the asymptotic behavior of the Airy function from (2.3) requires a calculation
using the method of steepest descent. To obtain the asymptotic behavior from
(3.22) in the complex plane, except for a small sector including the negative real
axis, we observe that the main contribution is from a small interval of integra-
tion (0, ) on the positive real axis. Substituting the hypergeometric series for
F(é, 2, 1;— ) in (3.22 ) and integrating term by term yields, by Watson’s lemma,
the full asymptotlc expansion of the Airy function. In addition, the second in-
tegral representation (3.22) may be used to obtain the optimal estimate for the
remainder in the complex plane. Such an estimate would be based on the behav-

ior of F (é, g, 15— §) at its branch point £ = —2, as opposed to Olver’s method
shown in [16, 17].

Probably (3.22) can be used to provide numerical evaluation of the Airy func-
tion which could be compared with recent results in [20].

There is another more important advantage of (3.22) which we now demon-
strate, and which, in particular, leads naturally to “asymptotics beyond all or-
ders” (see the article of Berry in [19] and [3]).

The Gauss hypergeometric functions F(a, b, c;€) are analytic in the complex
plane with the points 0,1,00 deleted. There is a branch of F(a,b,c;¢) which is
analytic inside the unit circle with Taylor series

F(a,b,c;€) = 2% ‘Z (3.29)

k

convergent for |{| < 1. This function and its analytical continuations satisfy
the well known hypergeometric differential equation. If we consider the analytic
continuation

F*(a,b,¢;€) = F(a,b,c; 1+ (£ — 1)) (3.30)

its value, after encircling the point 1, will differ from F(a,b,c;¢). In fact, the
following monodromic relations are valid (see [12, (4.2 eq. (25)]):

F*(a,b,¢;€)
= F(a,b,c;€) FT (a,b,¢) (1 =€) PFlc—a,c—b1+c—a—b1-¢), (3.31)

where
2inT(c)eFim(c—a—b)

T (ab,e) = T(a)I(BT(1+c—a—b)

(3.32)
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For our particular case a = %, b= %, c =1, (3.31) can be written as

F (% g 1;1+ (g — 1)ei2”f> =F (% % 1; g) FTF (g % 1;1— g) (3.33)
with T = 1.

The monodromic property (3.33) must be inherited by solutions of the Airy
equation. Using integral representations (3.22), (3.23) and (3.24), we could derive
the corresponding monodromic relations for the phase amplitudes of the Airy
functions. For example, using (3.22), (3.25), (3.33), we can derive the following
relation:

. 3
Po(2) = P_1(ze™2™) + Te3%* Py(z) (3.34)

and similar relations for P_1(ze€?™), Py(ze*?™), P (ze*2™") where the T’s are com-
plex constants, connection coefficients, which can be calculated from (3.32). In
our cases T' = +i, and for (3.34), T = 1.

We can also consider the phase-amplitudes as functions of the variable

Pe(2) = Pe(©). (3.35)

Thus we can seek monodromic relations among Py, ((e**™) and P; (¢) . For ex-
ample, we can derive from (3.22) the following relation:

Po((e™) = Po(C) + Toe™ P (¢e*™) (3.36)
and the similar relation for P; (e?™)
P1(Ce’™) = P1C) + Tie”*Po(0)- (3.37)

These relations agree with relations (30), (35) of [8] with v = 1 and are also in
agreement with (1.2). It is possible to express these connection coefficients in
terms of those in the three element Stokes structure.

It is worth noting that the relation (3.34), because of (3.25), can be rewritten
in terms of Airy functions as

Aig(ze™) = —iAi_1(ze ™) + iAii(ze™),

which immediately provides another derivation of (2.9).
However it is more important for us that the above monodromic relations for
the phase-amplitudes suggest the definition of the Stokes structure.

Definition 1. A set of functions {p_1(z),po(2),p1(2)}
(i) analytic on the Riemann surface of logz and for any € > 0 satisfying the
estimate

p(2)] < M.exp((; +¢) |2I?)
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for some M, >0,
(ii) bounded in the sectors

S(-1) = 8§(-51/3,7/3),

( S(—m, ), (3.38)
(1) = S(=n/3,5m/3),

(a=)
=
Il

respectively,
(iii) satisfying the monodromic relations with connection coefficients
T—l; TO’ T

p-1(2) = pi(2) + To1e”%po(2), (3.39)
po(2e®™) = p_1(2) + Toe 2 pi(ze®™), (3.40)
p1(ze¥™) = po(z) + Tie*p_1(2) (3.41)

forms the three-element Stokes structure

6(3) = 6 {p-1(2),po(2),p1(2)} (3.42)
generated by €S, with ¢ defined by (3.1).

Definition 2. A set of functions {p1(¢),p2(¢)}
(1) analytic on the Riemann surface of log( and for any ¢ > 0 satisfying the
estimate

Ip(2)] < M. exp((2 +¢) |C])

with M, >0,
(ii) bounded in the sectors
3r 3w
1) =9(—=—=—.2—
T 5T
2)=8(——=,—=
respectively,
11) satisfying the monodromic relations with connection coefficients 17,15
istyi 5 d ) lati " . fFici T T
pi(Ce®™) = pi(¢) + Tie*pa(Ce®™), (3.43)
p2(Ce®™) = pa(¢) + Toe *p1(¢) (3.44)

forms the two-element Stokes structure
6(2) = &{pi(2),p2(2)}

generated by e¢.

Matematicheskaya fizika, analiz, geometriya , 2003, v. 10, No. 3 395



V. Gurarii and D. Lucy

Remark 4. As explained above it is possible to show that the phase amplitudes
Py(z),k = —1,0,1,0f the Airy functions form a three element Stokes structure
with T_1 = Ty = Th = i. However in terms of { defined by (3.1) the phase am-
plitudes Py, (¢) ,k = 0,1, defined by (3.35), form a two element Stokes structure.
This can be understood from the following observation. The change of variable

2 3 _1
¢=224,y(2) = 7 hu(() (3.45)
constitutes the Liouville transformation, see [6]. This transforms the Airy equa-

tion to the form 5
w'(0) = w(0) = =gz u(C). (3.46)

The equation (3.46) can be regarded as a canonical form for the Airy equation
which “separates” the exponential terms and the phase amplitudes. We will show
in Section 5, using the Airy equation as a model, how to extend this idea of
a canonical form to matriz equations. It is worth noting that, unlike the Airy
functions, for solutions of (3.46) we have w((e®™) # w(¢). In fact, the two-
element Stokes structure above is the Stokes structure for the equation (3.46).

In the next section we will show how to derive the Stokes structure directly
from the differential equation without any reference to Gauss’ hypergeometric
function. The principal aim of this paper is to obtain formulae for the connection
coefficients of the Stokes structure. Another aim, which will be the subject of
subsequent papers, is to derive the integral representations of Theorem 1 starting
from the Stokes structure.

Unfortunately, the method used above to obtain the integral representation
of Theorem 1 is, again, not generally available for other equations.

4. The Stokes structure for the Airy equation

We consider three adjoining sectors s(—1) = S(—m,—%),s(0) = S(-%, %),
and S(%,7).
As in [9] the separation rays for the Airy equation are defined as

2
log, 0k = —= + k. k = 0, 1. (4.1)
3 3
The sectors s(k), together with the separation rays ly, ,k = 0, %1, comprise the

whole complex plane C with the origin deleted (see Fig. 2).

Proposition 1. Given k,k = 0,%1, there exists a solution of (1.1) which
is bounded in s(k). Moreover, this solution is uniquely defined up to a constant
factor.
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Proposition 2. Given a ray | any solution y (z) of (1.1) can be presented in
the form

3 3
y(z) = (Az*%e*%ﬂ + Bz*iegzg)(l +0(1)),z €l,z2 — o0,

with complex constants A and B.
Using these propositions we can introduce the principal normalized solution
yx(2z) such that
3
yr(z) = pm e 37D (1+0(1)),z € s(k),z = oco.

Thus, we obtain another definition of Airy functions. Writing

3
yk(2) = zmiem5(-Dke? Py(z),k =0,+1, (4.2)

we can regard yi(z),k = 0,%1, as normalized Airy functions and we will regard
Py (z) as their phase-amplitudes.

Although these propositions follow from any simple version of the B-H-T
(Birkhoff-Hukuhara—Turrittin) theorem, they are in fact more elementary. For
example, we can derive Proposition 1, using (3.46) and the corresponding integral
equation (see [6, p. 79 (5)]). This equation can be written in the form

w = wy + Kw,

where K is the Volterra integral operator. Let S be a sector in the complex plane
and & (S) the space of functions w, analytic and bounded inside S, such that
w(z) = 0 as z — 00, and with uniform norm ||w|| = sup|w|. We consider the
operator K acting in & (S). Then our proposition follows simply from the fact
that || K|| < ¢ <1 for some gq.

For z € s(k) we have respectively

Py(z) =1+ 0(1),z = o0,k =0, £1. (4.3)

We now introduce the extended sectors
27 27
S(k) = {Z -+ ?k <argz < m+ ?k,O < |z| < 00,k = 0,:&:1.} . (44)

Note that S(k) subtends an angle three times as large as that of s(k).

Proposition 3. The phase-amplitude Py(z) of the Airy function yx(2), k =
0,+1, satisfies (4.3) inside any closed sub-sector of the extended open sector S(k).
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This can be proved following the steps of the proof of Proposition 3 ([9]).
We can extend what has been said above to any perturbation of the Airy
equation of the form

y"(2) — (z + % + - ) y(2) =0, (4.5)

where by, ... are complex constants.

If by # 0 then any regular solution of this equation is a multi-valued analytic
function which can be considered as single-valued on the Riemann surface of
log z. We can preserve the preceding notation yi(z) for the normalized solutions
of (4.5) with the behavior

—(—1)kL _2 z%

ue(2) = Ve (14 o(1), 2 > oo,

inside S(k). After crossing a separation ray lg,, ,0n = —5 + %’Tm, m € Z,m# 0,
the behavior of, say, yo(z) takes the form

yo(z) = (Amz_%e*‘: + Bmz*iec)(l +0(1)),z — oo,

with complex constants A, By,-

Our main aim is to introduce methods for evaluating the coefficients A, B,
in terms of the coefficients of the Stokes structure.

Let us consider again the system of sectors S(—1), S(0), S(1) and the system of
normalized Airy functions. We can extend this system to a system of sectors S(k—
1), S(k), S(k+1) on the Riemann surface of log z defined by (4.4) as previously but
for all integers k. We also consider the corresponding systems of normalized Airy
functions {yx—1(2), yx(2), yx+1(2)} satisfying (4.2) and (4.3) for all integers k. We
preserve the same notation {yx_1(2),yk(2),yk+1(2)} for normalized solutions of
the perturbed Airy equation (4.5) satisfying (4.2) and (4.3 ) for all integer k. It is
clear that neighboring functions y(2), yx+1(z) are linearly independent solutions
of (1.1) or (4.5), respectively. Moreover the following fact is true.

Proposition 4. 1. If yi(2),yx+1(2),yk+2(2) are neighboring normalized
solutions of (1.1) or (4.5), then for k € Z

Ye(2) = Yr+2(2) + Tryr+1(2), (4.6)
where Ty, are complex constants.

2. For solutions of (1.1) or (4.5) we have

Ykt3(z) = —iyr(ze ™). (4.7)
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Applying this proposition to the principal normalized solutions yi(z),k =
0,+1, of (1.1) or (4.5), yields

y-1(2) = w1(2) +T-1yo(2), (4.8)
yo(2) = —iy-1(ze”>™) + Toya(2), (4.9)
y1(z) = —iyo(ze 2™ —iTiy_1(ze”2™). (4.10)

Using (4.2), we will rewrite these relations (4.8-4.10) in terms of phase am-
plitudes of the normalized solutions

P_l(z) = Pl(Z)-I-T_le_ZCP()(Z), (411)
Py(ze®™) = P_i(2) + Toe %P (z*™), (4.12)
Pi(ze*™) = Py(z) + T P_1(2). (4.13)

These monodromic relations form a basis for the three element Stokes struc-
ture. In fact, together with (4.3) they establish

Theorem 2. If P_1(z),Py(z), Pi(z) are the phase-amplitudes of the normal-
ized Airy functions, then they form a three-element Stokes structure ( 3.42).

Thus we can regard the Stokes structures (3.42) and (3.44) as a set of algebraic
relations in certain classes of analytic functions.

The Stokes structure can be studied abstractly, independently of the Airy
equation. Applying an appropriate Fourier (Borel) transform to the elements
of the Stokes structure and studying the properties of these transforms, we can
prove, for example, that the Stokes structure generates the three formal power
series which serve as the asymptotic expansions for those elements.

The Stokes structure of Theorem 2 serves not only for the Airy equation,
but also for all of its perturbations (4.5), where now the connection coefficients
depend on the parameters by, etc. of the equations. Our goal is to indicate how to
obtain formulae for these coefficients. However for the particular case of the Airy
equation these coefficients can be found immediately without any calculation.

Theorem 3. Let P_1(z),Py(z), Pi(2) form a three-element Stokes structure
(8.42). Assume in addition that they are the phase-amplitudes of the normalized
Airy functions, then we have

T 1=Ty=T =i. (4.14)
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Proof Using (4.2), the relations (4.11-4.13) can be rewritten in terms of
y-1(2),90(2),y1(2) as (4.8-4.8). Since the Airy functions are single-valued in the

complex plane, yi(2€2™) = yi(z), and we can rewrite (4.8-4.10) as
yo(2) = TZly-1(2) =T (2), (4.15)
y(z) = —iy-1(2) + Toyi(2), (4.16)
yo(z) = —Tiy-1(z) +iy1(2)- (4.17)
which immediately yields (4.14). ]

Corollary 1. The relation (2.9) is valid.
Proof Using (1.4) and (4.14), we can rewrite the relation (4.8) as
yo(ze™) = —iy_1(ze™ ™) + iy (ze™). (4.18)

Then by (4.2), (4.3) and Proposition 3, we have, as z — 400,

3

y1(s) == ed (L4 o(1)), s € S(-T, 0),
1 2.3

ni(2) = 2 hed (14 0(1)), 2 € 5(-F, ).

Remembering that all solutions are single-valued in C, these expressions for
y—1(z) and y;(z), when substituted in (4.18,) yield immediately the behavior
of yo(2z) on the negative real axis as

_lei(%z%—f—%) _ e—z’(%z%+%)
2271 5 (14 0(1)),z = 400,

identical to (2.9) apart from a normalizing factor. n

Remark 5. We have established (2.9) using merely substitution without any
calculation whatsoever.

In fact, Theorem 3, as well as the notion of the Stokes structure represent our
realization of an old idea of Zwaan, shown in [11]. From the Historical Survey
of [11]: “Zwaan [23], (1929), appears to have been the first to use the complex
z—plane to investigate transition points....”. In our context Theorem 3 follows
immediately from the Stokes structure.

Although (4.5) has the same Stokes structure as the Airy equation, the tech-
nique of Theorem 3 cannot be applied to it. Nevertheless we can extend this

400 Matematicheskaya fizika, analiz, geometriya , 2003, v. 10, No. 3



The Stokes structure and connection coefficients for the Airy equation

theorem with appropriate modification to a much larger class of equations, for
example, to the Kummer equation

Y™ (z) — (=1)"2™y(z) = 0,n,m € Z7, (4.19)
or to the equation
v (2) + ary™ Y (2) + .+ an1y(2) + anzy(z) = 0, (4.20)
where aq,...,a,_1,a, are complex numbers.

The first class of equations, (4.19), was introduced by Kummer (see [13]).
The detailed analysis of this equation and a matrix version of it is given in a
series of papers by J. Heading (see [10]), who also provides explicit formulae for
the connection coefficients.

As for the second equation , it appears in many areas, from parabolic partial
differential equations to harmonic analysis. Solutions of these equation can be
represented as the Fourier transform of the exponential of a polynomial

o

y(2) = / (7P e,

—0o0

where P is a polynomial, and the path of integration can be replaced by an
appropriate contour as in (2.6).

In what follows we show how to evaluate connection coefficients for a much
larger set of ODE’s continuing to use the Airy equation as an example.

5. The canonical form of the Airy equation and the Liouville
transformation

We introduce now another way for deriving a canonical form for matrix equa-
tions which separates the matrix exponential from the matrix phase-amplitude.
We will rewrite the Airy equation in matrix form in the standard way. Set

Y:[z,], (5.1)

then the Airy equation takes the form

Y’:[g é]y (5.2)

Indeed, we may treat Y(z) as a square matrix whose columns are linearly
independent vector solutions of (5.2) and we then consider matrix solutions Y (z)
of the Airy equation, with det’Y # 0.
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The change of variable
(5.3)
reduces (5.2) to the form

el L Elh T e e

Following (3.1) and setting

U() = V(O),¢ = 55+, )

(3]l T e

Let us introduce a pair of complex constants o; and ¢2. Using a transforma-
tion of the form

yields

V(o) - [ 5 ] w0, (5.7

we can eliminate the off-diagonal terms of the second matrix in (5.6) by a suitable
choice of o1 and o9, at the cost of an additional term with behaviour O (C% as

¢ — 00. The resulting form can be regarded as a canonical form.
On the other hand, using a transformation of the form

VO = g0 3¢ |we. (5.9

where S1(¢) and S5({) are complex functions, we can eliminate the diagonal terms
of the second matrix in (5.6), after proper choice of the functions S (¢) and S2((),
thus reducing the equation to another canonical form.

There are various benefits of these canonical forms. Using them we can (i)
obtain the formal solutions, (ii) prove a version of the B-H-T theorem, (iii)
find optimal estimates for the remainder following, for example, Olver’s method
presented in [16, 17], (iv) establish integral representations for the connection
coefficients.

For our present purposes it is advantageous to use (5.8).

The change of variables

-
0 ] W(() (5.9)
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takes (5.6) to the form

L ) R

dg 6¢
which can be regarded as a canonical form of the Airy equation. This form

allows us to separate exponentials and phase-amplitudes. Indeed, the change of
variables

et 0 ] (5.11)

wO-PQ |5
transforms (5.10) to
Po=] % |Po-Po] 5 4 |l o |PO B2

This can be considered as a matrix equation

pl, P, 0 2Py 170 11[ Py Py
= —_— - .]_
[132'1 P}, 9Py 0 |TE|1 0] Py P (5:13)

or as a system of vector equations

i )= Lam ] ]
= — 5.14
[Pgll_ —2Py +6C Py (5.14)
and , _
Pl [2Po], 1[0 17] P
AR - B

We can regard the first factor in (5.11) as the matrix phase-amplitude and the
second exponential factor as the matrix “phase”.

The transformations (5.5) and (5.9) are simply the Liouville transformations.
However this presentation shows that it is possible to extend this transformation
to higher order scalar or matrix equations (see [10]), while the classical Liouville
transformation is limited to the case of second order scalar equations.

Consider the vector phase amplitudes

[P0 ] gy [ B2
Pio - | 19 e - | 129 |. (6.16)

An obvious analysis shows these vector phase amplitudes form a two-element
vector Stokes structure (compare with Definition 2, permuting indices 1 and 2)

P2(C627T’i) — P2(C) + 7'162CP1(C62M)

P, (Ce?m) = Py (¢) + Toe X Py (C). (5:17)
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6. Formal solutions and regular solutions

It is clear now that we can seek a formal solution of (5.12), or equivalently of

(5.14) and (5.15), in the form of a formal power series in (7! :

o0

P() =) PW¢™

k=0

Substituting (6.1) into (5.12) yields

Py (Q) = 2 omick
Py (¢) = —ng(_jk);!g(é)k ’
Bo () = —62(—1)%( s (2, L
Py (¢) = g(_l)k%%k-

Returning to the initial variables (5.9) and using (5.11) and U(z) =

yields
1
U = (T5eS Py,
Uz = ¢ 8eSPy,

Uta = ("5 CPy,
Ugg = Ciée_CPm-

S

It follows from

that
y1 = Y11 = U +Un, 9 = Yo =2(Un —Ua),
Yo = Y12 = Uiz + U, yy = Yoo = V2(U12 — U2),
which finally yields
Y1 = C_%GC(PH + Pyy),
yo = (se (Piy + Py).

and . )
Py =2"¢s et (yo + £)
1 ]
P = 2_1<5€_C(y1 — %)

(6.1)

V(¢)

(6.6)

(6.7)
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Using (6.9) and (6.2), (6.3), (6.4), (6.5), yields the formal solutions of the
Airy equation shown in (3.3) and (3.4).
The system of scalar equations obtained from (5.14) and (5.15)

P (¢) = gePa(0),

Py (¢) = =2Pa (¢) + ge Pu(¢), (6.11)

and
P, (¢) = 2P12(¢) + 6_1<P22(C)a

P, () = gePr2(0)
yields immediately an equivalent system of Volterra integral equations which is
very convenient for successive iterations. Using this system it is possible to prove
a version of the B-H-T theorem.

We will show below how to derive from this system an integral representation
for the connection coefficients.

(6.12)

7. Connection coefficients

Theorem 4. Let v be the path running from oo along the positive axis, en-
circling the origin in a counterclockwise direction, and returning to oo along the
positive axis (see Fig. 3). Let T, T2 be the connection coefficients of (5.17). Then

T = / e2<ép22<<)d<, (7.1)
Y
T = _[ eQC%PH(C)dC, (7.2)

where Pyo(C), P11(C) are defined by (6.10).

Proof Consider the right-hand side of (7.1). Using the first equation

Ply(C) = 2Pia(¢) + —Pra(©)

6¢
of (6.12), we have
1
[ eGP = [ (Phac) — 2Pu(@) e (73)
¥ Y

This integral can be expressed as the limit
b
/ = lim / ,
Y a
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where a is positive, b = ae*™ and a — +00. Thus a belongs to the upper branch
of the path «, arga = 0, and b, argb = 27, belongs to the lower branch of v (see
Fig. 3).

ah a
N

Figure 3. The path  for the integral representation

of the connection coefficients 7;.

Representing the right-hand side of (7.3) as

b
/ e % (Py(¢) — 2P12(¢)) d¢ = / e % (P{y(¢) — 2P12(¢)) d¢ + 0(1) ,a — +o0,
Y a

and integrating by parts gives

e*2<P12(g)]'; +o(l). (7.4)
Thus
/ e—ZCéPQQ(g)dg = e 2Py (b) — e 22 Pia(a) + 0 (1) ,a = +oo. (7.5)
v
which can be re-written as
e 2% (P13(b) — Pia(a)) + 0(1) ,a — +oo. (7.6)

It follows from the first co-ordinate of the first vector of (5.17)
Pi3(Ce™™) — Pia(C) = Tie* Pu1 (¢e™™)

that
Plg(b) - Plg(a) = ﬂeZaPH(b). (77)
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Combining (7.5), (7.6) and (7.7), we have

/e2<ép22(€)d<' — 672a7'162aP11(b) =+ O(].) ,a — +o0.

v

Then the integral representation (7.1) follows from the fact that
Pll(b) — 1,

as b — oo along the lower branch of the positive ray. As follows from Proposition
3, this ray, argb = 27, is inside the extended sector

2 2
S(1) = {z:—7r+?7r <argz<7r+?7r,0< |z <oo},
shown by (4.4), which in terms of { can be written as

S(1) = {z : —g <arg( < gW,O < |z| < oo.}

The second relation is proved similarly.
It is quite clear how to alter formulae (7.1), (7.2) to be valid for the perturbed
Airy equation (4.5).

8. Concluding remarks

To derive the values of 71 and 75 from (7.1) and (7.2) we substitute the formal
phase amplitudes Pyy and P}, from (6.5) and (6.2) for Pyy and Py;. Interchanging
formally summation and integration yields a convergent series which, for the
Airy equation, can be expressed in terms of Gauss’ hypergeometric functions at
their singular points. Then, the connection coefficients will be the values of the
corresponding hypergeometric functions at their finite branch points. These also
yield ¢, which is verified by the earlier result in Theorem 3.

To justify this we are forced to introduce a version of the Fourier (Borel)
transforms

_ 1
Ti(¢) = / e PO (8.1)

and 1
Ta(€) = [ (P (O (8.2)
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and to study their analytical properties.
We obtain 77(€) using (6.5) and the formal substitution described above

1
/ 24§61§P22(O fP-S-/ —20¢ 1 Z 72)“{5 ) deC (8.3)

Y v

Interchanging summation and integration formally yields
00 1 1
k (_é)k (é)k —2¢¢ 1
2V e | T (8.4
k=0

which can be written as

=~
Il
<)

i o (=) (), €*
3 kz_o K1), (8:6)
Thus L1
7-1(6) = %ZF (_6’ E’ 15&) (8 7)

Using Py1 (—¢) = Py (¢), we obtain

70 = 3 (5 51¢) (5.9

We now use Gauss’ formula (see, e.g. [2, p. 66]) to check that

iy 11
7’1 7’2 3 < 6’6’ ) )

Of course, using (6.10) and integrating by parts, we can rewrite 77, 72 from
(7.1), (7.2) and Ti(¢), T2(§) from (8.1), (8.2) in terms of the Airy functions
y0(2), Y1 (2).

To obtain (7.1), (7.2) we only used the corresponding relations of (5.17) to-
gether with a canonical form of the Airy equation.

To justify the method of evaluation of 71 and 75 shown above we require the
Stokes structure in its entirety. This will be the subject of a subsequent paper.
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