Matematicheskaya fizika, analiz, geometriya
2003, v. 10, No. 3, p. 424-441

Jacobi operator with step-like asymptotically periodic
coefficients

J. Bazargan
Department of Mathematical Physics, V.N. Karazin Kharkov National University
4 Svobody Sq., Kharkiv, 61077, Ukraine

E-mail: jbazarganuk@yahoo.com

|. Egorova*

Mathematical Divizion, B.Verkin Institute for Low Temperature Physics and Engineering
National Academy of Sciences of Ukraine
47 Lenin Ave., Kharkiv, 61108, Ukraine

E-mail:egorova@ilt.kharkov.ua

Received June 15, 2003

The direct/inverse scattering problem is considered for the Jacobi oper-
ator with different asymptotically periodic coefficients on the half axes. It
is supposed that the backgrounds on the half-axes have the period 2 and
the perturbation has the second finite moment. The problem is studied by
means of the generalized Marchenko approach ([8, 2]).

1. Introduction. Statement of results

For the Jacobi operator

(Ly)n = ap—1Yn—1 + bpyn + AnYn+1, (1'1)

the direct/inverse scattering problem on the constant background is well studied
problem (for the operator with fast stabilized coefficients see [5] and references
therein, for step-like fast-stabilized coefficients see [10, 9, 4]). On the periodic
background the scattering problem was completely solved for the Schrédinger op-
erator ([2]). For the Jacobi operator, the Jost solutions and the spectral measure
on the half axis are studied in [7], and similar questions on the whole axis — in
[5]. The transformation operator on the periodic background is constructed in
[3]. But the inverse scattering problem in the prescribed class of perturbation of

Mathematics Subject Classification 2000: 47B36, 47A40.
*The work of this author was supported by INTAS (grant No. 2000-272).
Keywords: Jacobi operator; scattering problem; asymptotically periodic coefficients.

© J. Bazargan and |. Egorova, 2003



Jacobi operator with step-like asymptotically periodic coefficients

periodic coefficients is not studied properly. We consider the scattering problem
for the step-like Jacobi operator with asymptotically periodic coefficients that are
close to different periodic backgrounds of period 2 on the half-axes. Namely, let
L. be periodic operators with the coefficients a;t 19 = at >0, bf 1o = bt eR
correspondingly*. We suppose that these operators have non-empty gaps in their
spectra and that they have one coinciding spectral band. More precisely, we
suppose that

(1) the spectra of operators L; and L_ have the following mutual location:

G(L+) = [/‘-I—a’*l—] U [uay]’ G(L—) = [Ha’/] U [u_,z/_], Pp <Vyp < p <V <[ ? 1/_),
1.2

(2)** the points of auxiliary spectra d4 and d_ do not coincide with the ends of
gaps and their centers:

5+ € (V+,/,L), o_ € (th’—)a O 7£ Y+, (13)

where vy = (uy +v)/2, 7- = (p+v-)/2.

Let L be the Jacobi operator, defined by formula (1.1) with coefficients that
are asymptotically close to the coefficients of the operators Ly with the following
rate of convergence:

+oo
> n*{lan — aif| + by — bE |} < 0. (1.4)

n=no

Remind now the well-known facts of the spectral theory of the periodic Jacobi
operator of period 2. Consider the Floquet—Weyl solution 1/)?5()\) of the equation

(Ley)n =Ayn, n€Z, AeC, (1.5)

such that ¥E()\) € £2(Z%), X € C\ o(L+). This solution is defined up to a
multiplicative constant, depending on A. Following [2] and [3], we choose it in
such a way, that %2 + |[$F]> = 2, VA € o(Ly). Let 0+()\) be the Floquet
momentum of the operator L. As known [5], the function wx(\) = "+ gives
a conform mapping of the upper half plane C' = C({X : ImA > 0} on the
lower unit half disk with a cut DY, = D({w : Imw < 0}\B' (L), B'(£) = {w :
argw = —Z, e "t <|w| <1} . Here D = {w : [w| < 1}, T = {w : |w| = 1},
hy = sup{|/Im6+*(N\)|, A € [v*,u]} and h- = sup{|ImO~(N\)|,\ € [v,u"]}. The

* Everywhere in this paper the sign "+" corresponds to the data on the right half-axis and
the sign "-" corresponds to the left half-axis.

**Condition (1.3) as far as condition (1.10) below are unessential and are introduced to avoid
complement technical difficulties.
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function w4 (A) maps also conformally the lower half plane C’' = C({A : Im\ <
0} on the upper half disk I/} = D({w : Imw > 0}\B"(£), with a cut (%) =
{w:argw =7, e "+ < |w| < 1}. Under the mapping w4 ()) the spectrum o (L),
considered as boundary values from the half planes C' and C", has two images T',
and T, where T, |JT" = T4 is the unit circle. Put Wy =D/, DY UJ(-1,1).
The inverse map A = A\(wx) is a single valued function as wy € W \{0} up to the
boundary W, . Therefore the function ¢n (M) can be considered as a function of
the variable wy, 1 (we) = $hF(A(ws)). The Weyl solution 9 (w+) possess the
properties

()  Yrwi) =vr(ws), [PEP+ [t P =2, we€ Ty, VneZ. (1.6)

(b) Function %;- (w<) takes real values on the boundaries of cuts 8'(+) and
B"(+£). It takes equal values in the points of these cuts symmetrical with respect
to the real axis. Function 4 (w4 ) takes also real values as wy € [—1,0) |J(0, +1].

In fact, property (a) imply ([3]) that {¢F(e?}necz is an orthogonal system
of functions on Ty with respect to measure df/m. Note also, that the functions
PE(\) are continuous with respect to A in the domain C\ (o(Lz ) |J 6+ |J v, where
~4 is the zero of function* ().

Let now L be an operator (1.1),(1.4). As shown in [7] and [5], the equation

(Ly)n = Ayn (1.7)

has so-called Jost solutions with the asymptotic behavior f(X) — = (X) — 0
n — 00, A € C\{y4+,d+}. These solutions also can be considered as the functions
of variables w, and w_, that is f¥(ws) = fZ(A(w)). For the Jost solutions the
representation holds

+oo

filws) = Y Ki(n,m)pih(ws), |ws] =1, (1.8)

m=n

where K and K_ are the transformation operators attached to +o0o0 and —oo
correspondingly. These operators are constructed in [3]. They possess the prop-
erty LK. = Ky L., from which the coefficients of operator L can be related to
the coefficients of the transformation operator. Besides, under condition (1.4) the
estimate is valid

+oo
|Ki(n,m) <C > {la—af|+|b— b5}, +m>+n.  (1.9)

=[P

* Everywhere in this paper we denote by point the derivative with respect to the spectral
parameter .

426 Matematicheskaya fizika, analiz, geometriya , 2003, v. 10, No. 3



Jacobi operator with step-like asymptotically periodic coefficients

This estimate is analogous to those estimate for the Schrédinger operator ([8],
Lemma 3.1.1), that allows to solve the inverse problem in the class of perturbation
with the first finite moment.

The spectrum o (L) of the operator L consists of two intervals [pT, 1] and
[#~,v7], of the spectrum of multiplicity one and the interval [u,v] of spectrum
of multiplicity two. It has also a finite number of eigenvalues Ai,..., A\, €
R\(o(L*)Jo(L™)). The finiteness of the discrete spectrum of operator L can
be proved in the same way as in [8] and [5]. To simplify our considerations we
suppose that

7—!—3’7—554-’5— g{)\la a)‘p}' (110)

Under the mapping wy(\) (resp.,w_(A)) the band of the spectrum of multi-
plicity two [u, 7] maps on the arc of the unit circle AJ (resp., A;), the band
[ti4,v4] - on the arc A (resp., interval Aj), the band [u_,v_] - on the interval
A7 (resp., the arc AT). We enumerate the eigenvalues of operator L in such a
way that {A,... , A} C (vg, p) U(v, p=) and {Ag41,... ,Ap} CR\ [p4,v_].The
first s eigenvalues of the operator L have two images on the sides of cuts (%)
and (”(+) in the symmetric with respect to the real axis points. We denote
them as w'j[,,C and wl,k correspondingly. The set {As41,...,Ap} is mapped into
the intervals ((—1,0) J(0,1))\AF, we denote their images as wy .

Consider the scattering relations

Teff = Rafi+fa, |wzl =1, (1.11)

We prove that the transmission coefficients T and the reflection coefficients R
possess the following properties:

A. The functions Ri(wx), and Ty(wy) are bounded on the unit circle Ty
and continuous on the set To \ {w : w* = 1}. Function (w} — )Ty (wy) s
continuous and bounded on the set T+ \ {w : w* = 1}. Besides, Ri(wl') =
Ri(wi), Te(wi')=Te(wa).

B. The equalities hold

Ti(T:)™' =R, w:€ AT, (1.12)
R_-f-(ﬁé-f-)_l = _R—(T—é—)_l, w4 € Ag:a (1'13)
0+(0) MTL> =1 |Rsf?, wie€ AT, (1.14)

lim  (w* - )T (w)(Re(w) +1) =0, k=0,1,2,3. (1.15)

w—rexp(ink/2)
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Note, that the function éi(éjF)_l is bounded and positive as wy € AF. Introduce
the function

Mws) =74 Mwz) _7)1/2’ (1.16)

Tp(we) = Y(A(wy)) = ()\(’LU:I:) =04 Mws) —0-

where a branch of the square root is considered that takes positive values as
A>vo. Put Py =Wy \ (AF U{wssi1s... ,wip)).

C. The function U,T. 0, can be continued as meromorphic func-
tion into the domain Py with the simple poles in the points w4 s11,... ,W+p.
It also have pole in the point wi(d+) iff 6+ is the pole of corresponding Weyl
Junction mz. Being considered as the functions of variable X in the domain
C\(o(L)Ua(LYU{M,--- s At Urve Uds) the functions 0. satisfy the equa-
lity

Ti0, =T 6_ = (W)™ (1.17)

Here W = a,, 1 ( fnil i fn_ f 1) is the Wronskian of the Jost solutions (1.8).

Denote as (ozf)*2 =St 1fE(A\)]? the right and the left norms of eigen-
functions, corresponding to the eigenvalue Ax. Due to (1.10) these norms are well
defined.

D. The equality holds (W)?|x=y, = (af oy )~2, where W()) is defined as
(1.17).

E. The transmission coefficients Ty are bounded functions as A\ — oo (i.e.,
wt — 0) and

Ti(we) = (Ko (—1,-1)K_(-1,-1))"' + O(ws), ws—0 (1.18)
Following the standard scheme of investigation of the inverse scattering problem,

we derive the Marchenko equations on the half axes.

Lemma 1.1. The transformation operators kernels satisfy the discrete inte-
gral equations:

+oo
= Ki(n,m)+ > Ki(n,)Fs(l,m), (1.19)

I=n

d(n, m)
Ki(n,n)

where d(n, m) is the Kronneker symbol and

P
=3 (o) )i (M)

k=1
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i [ @t @E@do o [ R, (120)
Agt —Tr
ha(w) = i(|T )20+ (2wh5) ") (w +140) > 0, we AL (1.21)

By the notation éi(é:F)_l(w +10), as w € A} we mean values of the function
0+ ()" when X goes to the points of band [y, v] from the lower half plane.
The kernel (1.20) of equation (1.19) consists of 3 summands: the first one corre-
sponds to the discrete spectrum of the operator L, the second one corresponds to
the part of the spectrum of multiplicity one with the image AF = wy ([u=, v<]).
The third summand is the generalized Fourier transform of the reflection coeffi-
cients Ry with respect to the eigenfunctions of operator Ly:

™

— 1 . . :

R (n,m) = — / Ry (") ()i () do. (1.22)
-

The finiteness of the second moment of perturbation (1.4) implies the following

condition

F. Let Pi(n,m) = Ri(n,m). Then

|Ps(n,-)|| - +n| € £1(Z4), £n > ny,
TLQ(G;EP_}_(TL,TL + 1) - a:—IP-F(n - 11”)) € el(Z-F)a
n*(a,_yP-(n,n —1) — e, P_(n+1,n)) € £1(Z-),

n?(Pi(n,n) — Pi(n+1,n+1)) € £1(Z4). (1.23)

The conditions A—F are characteristic for our scattering problem. Namely, let L
and L_ be two arbitrary periodic Jacobi operators of period 2 with coefficients
aff+2 = af, bff+2 = bt and mutual location of their spectra as in (1.2), (1.3).
Let 6. and 6_ be their Floquet momenta and let T4 and T_ be the circles

corresponding to points ‘ew()‘)| = 1. Denote as

A= {T+(’Ll)_|_),R+(’U)+),T_(’LU_),R_(’LU_),)\1, s a)‘paaii—a s aag_aw:l: € T:I:}
(1.24)

a set of functions T4, R4, satisfying conditions A-B, and a set {A1,...,A,} of
arbitrary different points on the set R\J (o(L+)Jd+ U7+). Here off >0,k =
1,...,p are arbitrary positive numbers. Let the functions 7'y and 7_ satisfy con-
dition C. We select «; from condition D, where W () is the function, defined by
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the condition C. With respect to the data T'y, R, , T , R, A1,... , \p, af, . ,a;t

we construct the functions (1.20) and (1.21), where 9 (ws) = 9= (\) are the
Floquet—Weyl solutions of equation (1.5), normalized with respect to conditions
(1.6) and b. Now suppose that condition F holds. Consider the Marchenko equa-
tions (1.19) for the transformation operator kernels. We show that under the
conditions A—D, F these equations are uniquely solvable. In particular, we ob-
tain values K (—1,—1) and K_(—1,—1). Suppose now that condition E is also
valid. By formulas

TKi(n+1,n+1) a, K_(n,n)
Gt — In 2t ’ i, = —=n ’ Z 1.25
O K. (n,n) ’ On K (n+1,n+1)’ nE & (1.25)
- TK 1 T K. (n—1,
bt = bt 4 In +(n,n+1) a, 1 Ki(n ”)’ ez,
K+(n,n) K_|_(7’L —1,n— 1)

a, K _(n,n—1) a K (n+1,n)

b, =b, —
n =0t K_(n,n) K (n+1,n+1)

nez, (1.26)

we reconstruct two operators L, and L_. From equation (1.19) and condition F
we see that @ —af — 0, bF — b — 0 as n — +oo. Moreover, as it is shown in
[3] condition F implies

+o0 ~
Z n*{|a — af| + |bF — b |} < oo (1.27)

n=ng

In Lemma 3.4 (Section 3) it is proved, that these operators coincide, L, = L_ =
L. Condition (1.27) and this Lemma imply condition (1.4). Thus we solve the
direct /inverse scattering problem and prove the following

Theorem 1.1. Let Ly and L_ be 2-periodic Jacobi operators, satisfying (1.2)
and (1.3). Conditions A-F are necessary and sufficient for a set(1.24) to be scat-
tering data for the Jacobi operator (1.1), satisfying conditions (1.4) and (1.10).

2. The direct scattering problem

Introduce some necessary notations for the periodic operator Ly with the
coefficients a,jf+2 =al, bff“ = b and the spectrum as in (1.2). Let s ()\) and
cE()) be the solutions of equation (1.5) with the initial conditions sf = ¢*, =

15T, = ¢& = 0. Let ux(\) = (s5()\) + ¢ ()))/2 be the Hill discriminant (the
Lyapunov function) of the operator Ly and let 81 () be the Floquet momentum.
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It is related to the function ug(A) by the equality ui(A) = cos(20L(N)). We
denote by v+ the zero of its derivative with respect to A

. 1

0L = —5’1'1,:&(1 — u?t)—l/Z. (2.1)
Recall, that in our case the auxiliary spectrum of operator Ly consists of the only
point 61 = b(jf, being the zero of polynomial si()). Put wx(\) = exp(if+(}N)).
Let m4(\) be those Weyl function of the operator L., that correspond to the
Weyl solution

b (A) = e () +me (Vs (V) (2.2)
from the space £2(Z*) as A € C\o(L<). Then [5]
me(A) = (s5(\) =i (\) F 2(ud(\) = 1)) (257 (V) " (2.3)
As is shown in [3], the function
) o 0 1/2
by (A) =y (V) (czillzT()\)) (2.4)

possess properties (1.6) and b with ¥ (w.) = ¥F (A(w+)). Besides, the functions
1 (wt) have the following asymptotic behavior as wy — 0:

wff(wi) = (aj—c1 e arjf—llcin_lw?tﬂ)

where Ky = (aFai)!/2.
Consider now the asymptotically periodic operator L defined by formulas
(1.1),(1.4). The Jost solutions of equation (1.7) have the following properties

Lemma 2.1. ([7, 5]) The functions fZ(w+) are holomorphic in the domain
W+\{0}, and continuous up to the boundary OW, except of points w(y+) ,w+(0+)
on the sides of the cuts §'(£) and B"(+). The estimates hold

(14 0wy)), (2.5)

+ I Ot Jw [+ +
|fn (w+) - T;Ll;[n a,‘l)n (w+)| <C (ﬂ()\(w+))81()\(w+)))1/2 ap (26)
» _m:nfl % o ‘w_|3fn B
|fn ( —) I_OIO am"pn( —)| < C (ﬂ()\(u)_))81()\(w—)))1/2 n > (27)

where ¢ = Ziozon [m|{|am — ai| + |bm — bE|} and C is a constant depending
on Ly and r.-h.s. of (1.4). The functions fF(w+) take equal real values in the
symmetric with respect to the real axis points of cuts B'(x£) and B"(x). These
functions also possess the symmetry property fF(@f) = fi(ws), w+ € T+ and
take real values as wy € (—1,1).
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The solutions fF and f? are linearly independent as wi € T+. Indeed, their
Wronskian is independent of n and by virtue of (2.6), (2.7), (2.3) and (2.4) we
have as n — oo

<FETE>= lim ot (W v — v ,) = of (0595 — vEeE)

= sE(mx —ma)(ie) "t = +2(wd — 1)Y2(0x) 7 = +2i(1 — ud) V2 (ay) 7L

Formula (2.1) then imply
< fEfE>=4i(0s)7Y, wieTs. (2.8)

From scattering relations (1.11) we have

< fit fE> i < ¥ fi >
o o Brm— e
<f'flafn> 9:|:<fn,fn> <fnaf'fl>
These equalities and Lemma 2.1 imply the property A of the scattering matrix.
Further, when wy € AT then Aws) € (pa,vs), and therefore wy € AT C
(—1,1). From Lemma 2.1 it follows that the functions f,F take on this set real
values and by (2.9) equality (1.12) holds. Formula (2.9) implies that

Ty = (2.9)

R—-I-(ﬁ)_l < f+af_+ >=< f+af__ >= _R—(T—)_l < f__af_ >

This formulas and (2.8) prove (1.13). Note that asymmetric form of represen-
tation (1.13) is not essential since f, and f_ are real on the coinciding band
[4,v]. Formula (1.14) follows from the identity < f*,f¥ >< f¥,fF >71
|T<)? = R |2 — 1 and formula (2.8). By virtue of Lemma 2.1 the Wronskian
WA =< f ,fT > is a holomorphic function with respect to A in the domain
C\(o(L+)Uao (L) U{A1s--- s A Urvx U ). Tt takes complex conjugate values
on the upper and lower sides of the spectrum bands. It is real on the gaps of
spectrum and is properly defined everywhere except of the points 4+ and d+. In
points where W () = 0 the scattering coefficients T and 7_ have simple poles.
Besides, by (2.2)-(2.12) one can be singularities of the order O((A — 6+)'/?) in
the points d+ such as 57 (6+) = 0. In the points y+ the function W () has singu-
larities of order O((A — v+)~1/2) and from (1.17) it follows that both T and T_
have the same singularities in these points. Now we discuss the behavior of the
transformation coefficients at the points of the auxiliary spectrum . Consider,
for example the point d; € [v™", u]. There are two possibilities. If §, is the pole
of the Weyl function m_ ()), then the Weyl solution ¢;f(\) and corresponding
Jost solution f;F()) has a singularity of the order O((A — &,)~/2). If the Weyl
function has no pole at this point, then fn (M) is continuous in this point and
has a behavior as O((A — 6;)'/2). From(2.2)-(2.4), (2.6), (2.7), (2.9), (2.1) and
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(1.16) we conclude, that the function U, T, 6, have the properties, described in
C . Due condition (1.10) the discrete spectrum of operator L coincides with the
set of zeros of function W (). These zeros are simple, it can be proved by the
approach of [7]. Property C is proved. Property D is a simple corollary of the
formula % < fo ft>= :io_oo fAn_ f,;" that we obtain proceeding as in [6]. In
the points of the discrete spectrum we have ff()\k) = cf: frf()\k), where ¢ ¢, =1
and therefore, 7% = i (\) = ¢f (aff) =2, from which D follows.

n=—00
Now we study the behavior of the transformation coefficients as A — oo.

Namely,

m=—1 §=—00

400 0
< f+’f7 >=a- < Z K-I—(_lam)’(p;'r; Z K_(O,S)’Q/);

S§=—00

+00 —1
= K (0,m)y, Y K_(—1,8)1/§>
m=0

= a1 K (—1,—-1)K_(0,0)9T, 45 + O(1). (2.10)
Here we use formulas (2.2)-(2.4) and an asymptotic behavior & (4F) " (a*,)~! =

14+ 0(A\"1) as A — co. By formula (2.2) and (2.3) ¢, =1, ’QZ(:)E = my. Using the

identity séccfE — s{ccéc =1, we see that

my(N) =af ()T HOMNT), mo(N) = (A =b2)(aZ) O, (211)

Since ([3])

_|._ —
Kimn)=[[%, K-(nn)= [ =, (2.12)
s§=n as m=—0oQ am
then (2.10)—(2.11) imply
-2 a_ o a_|_
<fHfr>= 1] - 11 A+ 0(1) = K4 (-1, -1)K_(~1,~1)A+ O(1).
m=—oco ™ g=—1 %

But (i6+)"" = 2(u% —1)Y/2(a4)~" = A+ O(1). From (1.17) and above consider-
ations property E follows.

Proof of Lemma 1.1. Consider the "+" half axis case. Let C, be closed
contour inside the domain P, at a short distance to its boundary. The image
of this contour under the map A(w;) is two contours around the sets [y, V]
and [u_,v_]. Consider the function T f; 4w, where m > n. According to
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Lemma 2.1, formula (2.5) and property E this function is bounded as w — 0
when m > n and has as simple pole as m = n. Besides, according to property C
this function is meromorphic in the domain enclosed by the contour C,. Since the
Lyapunov function has the asymptotic behavior ut(\) = (2K%)71A\2 + O(\) =
1/2(w? + wy?), therefore, limy,, yo(wy/w_)"*1 = (K4 /K_)"1. We see that

_ —2 +00
IC"+ * a’ a a
+ p—. 1+ a_1---Qp_ s s
Resy, —oT™ f, zpmw = 6nm I | T — | I — —
as IC”+ a a ay
s=—00 -1 s=—00 5 g=—1"9

n—1 + +00

= Jim o= T 5 T1 =

’UJ+—>0 w—
s=—1

The function T f- b = 0, f-pt < f=, f+ >~ considered as a function of A
has no singularities at the points y_, §;,d_ due to normalizing conditions (2.2)-
(2.4) and due to property of functions f to inherit properties of functions ;-
Therefore, f, 4+ < f,f* >"! has no pole at J; as well as in §_ and _. Let
wly and w'y ;. be the images of the of the eigenvalues A\g, k = 1,... ,s. Let o,
and w'| be the images of points 74, i.e., the vertexes of cuts ﬁ’( ) and £"(+).
The functlon T f, 1 has singularities in all this points as well as in the points
wip = wi(Ag) € (=1,1), k = s+ 1,...,p. Since wi(A) = exp(if4(N)), then
wy = iw+9+. When the part C¢(1) of the contour C, that goes around the cuts
B'(+) and B"(—) shrinks to these cuts as € — 0, then the values of the function
T f-4 outside of small neighbor of singularities tends to real values, that are
equal in the symmetric points of cuts. Therefore, by (1.17) as ¢ — 0

1 o : g g
o T frphw dwy — > Resy iT" f74hh 04 + Resy iT" f 4hh0,

S S
= — Z Res), fn_d);;W_l — Res,, fn_wf,LIW_l = — Z ResAkfn_i/);LLW_l,
k=1 k=1
(2.13)

because the function f;, 1, W~! has no singularity at the points v,. By D and
(1.8)

Resy, [ 0mW ™1 = f )m )W (M) ™1 = ¢ fif Q)i () (@) () ™!

+oo
= ()7 D Ky (n, D) (M)t (M- (2.14)

l=n
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Let C¢(2) be the part of the contour C¢ that shrinks to the unit circle Ty as e — 0.
The function T f, 4}, is bounded and continuous on the set T4\ {wy : w} = 1}.

By use of the representation [3] Ky(n,m) = 1/(2m) fT+(w+)*1fﬁ' +dw, we
obtain from (1.11) that as e — 0

- / T fit e 5 [ RS+ RS

€ T+
X + d’LU_|_
= ZK+(” o— R+¢l ¢m + Ky (n,m).
I=n

Now consider the part C,(3), correspondlng to the contour going around the
interval A3 . Since Im 1/);;@0;1 =0 and (T4 f,; ) (w4 +10) = (T4 fn ) (w4 —i0) as
w4 € (—1,1), then

d d
St rentt =m0 2

2—7I"i 06(3) w4 ™

Using (1.11) and (1.17), we see that on the set A3 a formula holds T4 (T) ™! =
W /W = —R_, and, therefore

2Lm[Ty fi)vo = Tofry — Tifr = T (T4 /T5 o — fa)
= —Ty(R_fy + fa) = T4 T_f;.

From (1.17) it follows also that
Ty = (040 [W2)™" = [Ty 20, ()" (2.16)

The limit from the upper half disk to the points of Ag’ with respect to the variable
w4 corresponds to the limit from the lower half plane to the points of band
[1~,v~]. On this set we have i, = iy (ud — 1)='/2 > 0 and 6_ > 0, therefore
the function hy (w4 ), defined by formula (1.21) is positive. By (2.16) and (2.15)
we have

Lo L g D INS ey [ ) ) () 2.17
i T = L KD [ b @) @17
n= +

27
Ce(3)

From the other hand, the Cauchy theorem implies

1

dw P PO _ _
5 ¢ Tefuim :z— D" Resy, fy W' = Resuw—ofy Ty -

Ce k:S+1
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Combining together formulas (2.11), (2.13), (2.14) and (2.17), we obtain the
Marchenko equation (1.19)—(1.21) for the "+" half axis. The same is valid for
"—" half axis. Lemma 1.1 is proved.

Put Fy(n,m) = Fy(n,m) — Ri(n,m). From the properties of the Weyl
solutions %:-()\) on their resolvent sets it follows immediately that the proper-
ties (1.23) are valid for the function P(n,m) = F.(n,m). Since Fi(n,m) can
be considered as a solution of the Marchenko equation (1.19), with the kernel
K (n,m), satisfying (1.9) and (1.4), then the estimates (1.23) are valid also for
P(n,m) = Fy(n,m) (see [3]). Therefore, conditions (1.23) are fulfilled for the
function E;(n,m) The direct scattering problem is solved.

3. The inverse scattering problem

We proceed according to the scheme of solution, described in the introduc-
tion. In the framework of the Marchenko approach we have to prove following
statements, given in Lemmas 3.1-3.3.

Lemma 3.1. Let the functions Fy(m,l) be defined by formula (1.20)-(1.21),
where the data (1.24) satisfy conditions A-D. Then the equation y(m)+ 370,
xFy(m,)y(l) = 0 has no trivial solutions for any n € 7Z fized in the class
NZ(n, +0)).

The result of this Lemma is completely analogous to the result of Lemma
3.5.3 in [8], and we omit the prove. The compactness of corresponding operator
is established in Theorem 10.10 of [5]. We conclude that the Marchenko equation
(1.19)—(1.21) has a unique solution K pm(n,m), and we can reconstruct &; b

n»'n
by formulas (1.25)—(1.26).
Lemma 3.2. Let F(l,m) be as in Lemma 3.1. Put
(a)?

yt(m) = a}_ ki(n—1,m)+ o +at ki (n,m—1)
n

—ah (nm 4+ 1) + (B — bk (n,m), (3.1)

ki_(n—1,m)+a;k_(n+1,m) + (b — b )k_(n,m)

_a’r_n—IK’-F(na m— 1) — Opk (n,m + 1)1 (32)

where k+(n,m) = K+ (n,m)(Kx(n,n))~" and &=, b are defined by (1.25)—(1.26).

Then
+oo

yEm) + Y yEQ)FL(l,m) =0.
I=n+1
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This lemma can be proved by direct computation with the use of equal-
ity aX Fi(n —1,m) + bXFy(n,m) + afFi(n + 1,m) = o _ Fi(n,m — 1) +
bt Fyi(n,m) + af Fi(n,m + 1). As a result of these two lemmas we have that
y=(m) =0 as +£m > n. By formulas (3.1) and (3.2) the equality holds L+ K. =
K. Ly, where Ly is the operator with the coefficients (1.25)—(1.26). As it is men-
tioned at the end of Section 2, the condition F imply the same property F for the
kernel Fy(n,m) of the Marchenko equation. From this equation we can see, that
property F is valid for K (n,m) = P(n,m) . By use of (1.25), (1.26) and (1.23)
with P(n,m) = K(n,m) we have (1.27) for the coefficients of operators L.
The proof of the following lemma is analogous to the proof of Lemma 3.5.3 [8].

Lemma 3.3. Let conditions A-F be satisfied. Then for all A € C the func-
tions f£(\) = Ziozon K (n,m)yE()\) satisfies the equations (Li f)F = M\fE.

Lemma 3.4. Let ff(ws) = fE(ws()\) be as in Lemma 3.3. Then they
satisfy the scattering relations (1.11) with the scattering data (1.24).

Proof. Let 7,5%(/\) be the solutions of equations (1.5), normalized by for-
mulas (2.2)-(2.4) and let ¢ (\) be solutions of equation (1.5) such that ¢ (\) =

PiE(N) as A € o(Ly). Put ¢F(ws) = ¢E(AMws)). By (1.6) we have ¢y +
11 =2, Vn € Z.
Let Ry (n, m) be defined as in (1.22). According to condition F the functions

Ri(n,-) and
+oo

®i(n,-) = Ki(n,)Re(l,")

l=n

belong to the space ¢2(Z) for any fixed n. Moreover, Y., .7 ®+(n,m)¢E =
Ryi(wy)fF(ws), we € Ti. On the other hand, by equation (1.19) for +m > +n
and wy € T we have

Z D (n’ m)¢;tn (w:l:)

meZ
Foo _
= Y b () (ws) + (K () "L (ws) — [ ()
m=nF1
P +o0 +o0
SS 2 FE00) S (wa)dE () — = / he(OFEQ) Y 6 (wa)d ()dc.
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Thus we obtain the equalities as w4 € T4

Refi + fif = Tugy, (3.4)
where
w1 ¥ (w)
)= 7 ) (Kﬂn m " mzr;f* " 5k )
@A) @5 ) )
1 [ @QEOE ) R G ) (35
i
+oo
I (v,w) = Y ¢m@)gn(w), veAy UUwi ),w € Tx.

For the Floquet solutions the representation holds @bm( ) = wrmpk (w), ¢t (w) =
wFm gk (w), where pi (w) = prinw(w) and ¢t (w) = qm+2( w) are periodic func-

tions. Therefore
w
Z ¢m Si(” w) Z’Uﬂkw:ﬂk = Sr:::(vaw)ma (3.6)

where SE(v,w) = ¥ (v)dE(w ) Y=, (v)¢EL, (w). Remind, that according to
the normalizing conditions ST (v,w) — 2 as w — v. We see, the function
¢ (we)) " E (v,ws) as a function of parameter wy can be continued into the
domain P4 |JOW4 with the singularities in the images of points Ai,... , A, with
respect to mapping wy (A). By property C the function g (w4 ) also can be contin-
ued in this domain. Therefore, being considered as a function of A with no-
tation g7 (A) it can be continued in the domain C\ o(Ly ) Jo (L) U{ 1,--- ,Ap}
Jd— Uy Determine the character of singularities of this function in the points
Ay eeny Ap. Since Sp(w+(Aj),w+(A;)) = 2 then by (3.5) and (3.6)

lim gy (V) = 2/ (A)(@5)?w (A7) lim (2T (we (X)) (ws (A) —wi (A7)

A=A A=A
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Therefore, the functions §;- have removable singularities at the points Aj. Besides,
it takes real valuesas A € R\(o(L4+)Uo(L-) U{A1,--- ;A U= U 'y_) From A,
(3.4), and (1.12) it follows that g (w+)—gF (wi') = () as wy € AT and, therefore,
the function g} has no a jump on the band [p4,v+]. Thus, the function g is a
single valued function of parameter w as wyx € W=. Property F implies that
SUD.4 50 an‘:ﬂl |®(n,m)| < co and, therefore g7 € £2(ZF) as wy € P*\ {0}.
From equality (3.4) it follows that (1 — |R+|?)fF¥ = Tigi — RiTyg], and by
(1 14) as wy € AF one has |Tw|2fE0+(6F) ' = Tigi — RiTygT. Therefore, due
to (1.14) and (1. 17)

— Rie
CZ-':nyﬂLE = 97:zF _T:an —F

—gn +R:an7 wieAgi
1.0+

and eliminating the reflection coefficients from (3.4), we obtain the equalities

Te(ffi —onor) = (GLfF — figf),  wx € AF. (3-8)

The further considerations are identical for (+) and (-) equalities (3.8), and
we give them for (+)-case. Consider the function p,(wy) = TH(f,F f,7 — 95 9r)
which is equal to

Pn(w )—gnf+ fn gl asw, € A;’. (3.9)

With respect to variable A the function p,, can be continued as meromorphic func-
tion P, (A) on the upper sheet I' of the hyperelliptic Riemman surface, associated
with the function (A —p4)(A —v4)(A = p)(A =v)(A—p-) (A - v_))Y/2. To prove
it, we use non- normahzmg Weyl functions (X ) defined by formula (2.2) and
qﬁﬁ( ) = cn+ (55 — ¢f) +2(ud — 1)/2)(2s7) " 's,, that are meromorphic on T'.
The same is valid for non-normalizing Jost solutions f¥ = 3 K. (n,m)# . From
(3.5) and (3.7) we see, that g (w) = ¢ (w)(Tie(w)) 1 S+(n, \), where Si(n,))
is a meromorphic function on I' with the poles in the points Aq,...,A,. Put
T:(\) = (f+,f_)_1(fi,fi). Formulas (2.4), (3.7) and (3.9) then imply that the

function

Bn(N) = 1 () T T4 (5 b (T4 1) 'S4 (n) S—(n) — £ f) (3.10)

is meromorphic on I' with the pole at the point 74 and it has removable singu-
larities at the points A¢,...,Ap,7—,0_,d4. Consider the behavior of this func-
tion as A — oo, that is wy — 0. By (1.8), (2.12) and (2.5) we see, that
HO50 = Ky (n,n)K_(n,n)(at, - ai_)(az, -~ ap_,) "t and, by (L18),
3.5

9 (0)g5 (0) = (TT(0)T (0) K+ (n,n) K—(n,n)) " (aZy ---af )7 H(aZ, -+ apy)
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then p,(0) = 0. Compute the jump of the function p,(A) on the set [u_,v_], i.e.,
the jump of the function p,(w) on the set AF. Since the functions f, and g,
have no jumps on this set, we consider the functions 7'y f,; and Tt g, . According
to A, (1.12), (3.4) and(1.17) we have as w € AJ

I b —
Ty fy (w+i0) =Ty fp (w —i0) = é_(T—fn +T_fn)
+

N B
= _(Tffn + |T—| 9n _R—Tffn) = _|T—| 9n (w +ZO)

0 0+
From the other side, the only term for 7' g,; , having the jump due to represen-
tation (3.5), is the last term. Compute the jump of function

() = 3 [ B (OFFQO LG w)de),

AF

From formula (3.6) using the Plemelj formula, we have h,,(w +10) — h,, (w —i0) =
—04|T3|?(65) =" £ (w + i0). Therefore, p,(w +0) — py(w —i0) = fif gt (T T_ +
T T,)=0asw€ A;. Since the function z'9+ < 0 has no jump on this interval,
we conclude from (1.17), that the function Q, = 04 p, = 0Ty (f f—g g7 ) =
WO_T_(fFf —gtg,) considered as the function of A has no jumps on the bands
[#4,v4+] and [p—,v_]. Besides, from (1.15), (3.10) and (1.12) we see that this
function is holomorphic on the upper sheet of the Riemann surface of function
(A = p)(A = v))/2. Consider the Jukovski transformation z(\), z : [u,v] — T.
The function ) as a function of z is holomorphic in D and continuous up to the
boundary. Due to (3.9) this function is odd as z € T : Qn(z7') = —Qn(2) .
These properties allow us to continue the function @, in the domain C\ D. It is
holomorphic in C and @n(z) — 0 as z — oo. Thus by the Liouville theorem we
have equalities §; g, = fF /-, A€ Cand §i f;7 = fa g, X € o(Ly). Applying
now the arguments of [8, p. 279], we conclude that §= = f= and, therefore,
scattering relations (1.11) are fulfilled. Theorem 1.1 is proved.
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