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In this announcement we report on a recent characterization of the
spectrum of one-dimensional Schrédinger operators H = —d?/dz? + V in
L?(R; dr) with quasi-periodic complex-valued algebro-geometric potentials V
(i.e., potentials V' which satisfy one (and hence infinitely many) equation(s)
of the stationary Korteweg—de Vries (KdV) hierarchy) associated with non-
singular hyperelliptic curves in [1]. It turns out the spectrum of H coincides
with the conditional stability set of H and that it can explicitly be described
in terms of the mean value of the inverse of the diagonal Green’s function
of H. As a result, the spectrum of H consists of finitely many simple an-
alytic arcs and one semi-infinite simple analytic arc in the complex plane.
Crossings as well as confluences of spectral arcs are possible and discussed
as well. These results extend to the LP(RR; dz)-setting for p € [1,00).

Dedicated with great pleasure to Viadimir A. Marchenko
on the occasion of his 80th birthday

1. Introduction

It is well-known since the work of Novikov [34], Marchenko [29, 30|, Dubrovin
[9], Dubrovin, Matveev, and Novikov [10], Flaschka [14], Its and Matveev [22],
Lax [28], McKean and van Moerbeke [33] (see also [4, Sects. 3.4, 3.5], [17, p.
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111-112, App. J], [31, Sect. 4.4], [35, Sects. I1.6-11.10] and the references therein)
that the self-adjoint Schrodinger operator

d2

H=-2
dz?

+V, dom(H)= H*>*(R) (1.1)
in L?(R;dz) with a real-valued periodic, or more generally, quasi-periodic and
real-valued potential V', that satisfies one (and hence infinitely many) equation(s)
of the stationary Korteweg—de Vries (KdV) equations, leads to a finite-gap, or
perhaps more appropriately, to a finite-band spectrum o(H) of the form

n—1

o(H) = | [Bom, Bam41] U [Ban, 00). (1.2)

m=0

It is also well-known, due to work of Serov [39] and Rofe-Beketov [38] in 1960 and
1963, respectively (see also [40]), that if V' is periodic and complez-valued then
the spectrum of the non-self-adjoint Schrodinger operator H defined as in (1.1)
consists either of infinitely many simple analytic arcs, or else, of a finite number of
simple analytic arcs and one semi-infinite simple analytic arc tending to infinity.
It seems plausible that the latter case is again connected with (complex-valued)
stationary solutions of equations of the KdV hierarchy, but to the best of our
knowledge, this has not been studied in the literature. In particular, the next
scenario in line, the determination of the spectrum of H in the case of quasi-
periodic and complez-valued solutions of the stationary KdV equation apparently
has never been clarified. The latter problem is open since the mid-seventies and
it is the purpose of this announcement to provide a comprehensive solution of it.

Dedication. It is with great pleasure that we dedicate this paper to Vladi-
mir A. Marchenko on the occasion of his 80th birthday. His enormous influence
on the subject at hand is universally admired. In particular, he has been a most
influental source of inspiration for this investigation.

2. The KdV hierarchy, hyperelliptic curves,
and the Its—Matveev formula

In this section we briefly review the recursive construction of the KdV hierar-
chy and associated Lax pairs following [18] and especially [17, Ch. 1]. Moreover,
we discuss the class of algebro-geometric solutions of the KdV hierarchy corre-
sponding to the underlying hyperelliptic curve and recall the Its—Matveev formula
for such solutions. The material in this preparatory section is known and detailed
accounts with proofs can be found, for instance, in [17, Ch. 1].

Throughout this section we suppose the hypothesis

V € C®(R) (2.1)
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and consider the one-dimensional Schrédinger differential expression

d2

L=-2_
dz?

+ V. (2.2)
To construct the KdV hierarchy we need a second differential expression Py, 1 of
order 2n + 1, n € Ny, defined recursively as follows.

Define {fs}een, recursively by

fO = ]-a fﬁ,w = _(1/4)fﬁfl,www + Vfﬁfl,a: + (1/2)V$fg,1, Le N, (23)

where {¢ }ren C C denote integration constants which naturally arise when solv-
ing (2.3). The differential expressions Popy1 of order 2n + 1 are then defined
by

n
d 1
Py = ;} (fn—ﬁ% - Efn—e,z)Lea n € Np. (2'4)
Using the recursion (2.3), the commutator of Pa,1; and L can be explicitly com-
puted and one obtains

[P2n+17 L] = 2fn+1,wa n € Np. (25)

In particular, (L, Py, +1) represents the celebrated Laz pair of the KAV hierarchy.
Varying n € Ny, the stationary KdV hierarchy is then defined in terms of the
vanishing of the commutator of Py, and L in (2.5) by*,

_[P2n+17 L] = _2fn—|—1,w(V) = s—Kan(V) =0, neN. (26)

By definition, the set of solutions of (2.6), with n ranging in Ny and ¢, in C,
k € N, represents the class of algebro-geometric KdV solutions. At times it will
be convenient to abbreviate algebro-geometric stationary KdV solutions V' simply
as KdV potentials.

In the following we will frequently assume that V satisfies the nth statio-
nary KdV equation. By this we mean it satisfies one of the nth stationary KdV
equations after a particular choice of integration constants ¢, € C, k= 1,...,n,
n € N, has been made.

Next, we introduce a polynomial F;, of degree n with respect to the spectral
parameter z € C by

Fo(2,2) = 3 fo-e(2)s" (27)
=0

*In a slight abuse of notation we will occasionally stress the functional dependence of f;
on V, writing fi (V).
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The recursion relation (2.3) and equation (2.6) imply that
Frpes — 4V — 2)Fp o — 2V, F,, = 0. (2.8)
Multiplying (2.8) by Fj,, a subsequent integration with respect to z results in
(1/2)FpzoFr — (1/4)F , — (V — 2)F = Rony1, (2.9)

where Ro,y1 is a monic polynomial of degree 2n + 1. We denote its roots by
{En}2" ,, and hence write

2n
Ron1(2) = [[ (z = Em), {BEm}iocCC. (2.10)

m=0

One can show that equation (2.9) leads to an explicit determination of the inte-
gration constants ci,...,c, in

s-KdV, (V) = =2fn12(V) =0 (2.11)
in terms of the zeros Ey,..., Fa, of the associated polynomial Ro,11 in (2.10).
In fact, one can prove
ck =cp(E), k=1,...,n, (2.12)
where
CplLy) = — " - - - ‘e
om0 22 (jo!)2 - - - (jan!)? (250 — 1) -~ (2520 — 1) ° e
Jot¥jan=k
k=1,...,n. (2.13)

Remark 21. Suppose V € C?t1(R) satisfies the nth stationary KdV
equation s-KdV, (V) = —=2f,414(V) = 0 for a given set of integration constants
¢k, k =1,...,n. Introducing F, as in (2.7) then yields equation (2.8) and hence
(2.9). The latter equation in turn, as shown inductively in [20, Prop. 2.1], yields

V € C®R) and f, € C°(R), £=0,...,n. (2.14)

Thus, without loss of generality, we may assume in the following that solutions of
s-KdV, (V) = 0 satisfy V € C*(R).

Next, we study the restriction of the differential expression Pop41 to the two-
dimensional kernel (i.e., the formal null space in an algebraic sense as opposed to
the functional analytic one) of (L — z). More precisely, let

ker(L — z) = {¢: R = Cy meromorphic | (L — z)yp =0}, ze€C. (2.15)
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Then (2.4) implies

d 1
P2”+1|ker(L—z) = (F"(z)% - §Fn,ac(z))

. 2.16
ker(L—z) ( )
We emphasize that the result (2.16) is valid independently of whether or not
Pop 1 and L commute. However, if one makes the additional assumption that
Py 41 and L commute, one can prove that this implies an algebraic relationship
between P51 and L.

Theorem 2.2. Fix n € Ny and assume that Po,y1 and L commute,
[Pont1,L] =0, or equivalently, suppose s-KdV, (V) = —2fn412(V) =0. Then L
and Pon 11 satisfy an algebraic relationship of the type (cf. (2.10))

fn(La _Z.P2n+1) = _P22n—|—1 — Ront1 (L) =0,
2n (2.17)
Ropt1(z) = H (z— En), z€C

m=0

The expression Fy, (L, —iPy,+1) is called the Burchnall-Chaundy polynomial
of the pair (L, Pyp+1). Equation (2.17) naturally leads to the hyperelliptic curve
K, of (arithmetic) genus n € Ny (possibly with a singular affine part), where

Kn: Fa(z,y) = y* — Ront1(2) =0,
2n
(2.18)
R2n—|—1(z) = H (Z - Em)a {Em ?7?:0 cC

m=0

The curve K, is compactified by joining the point Py, but for notational simplicity
the compactification is also denoted by K,,. Points P on K, \{Px } are represented
as pairs P = (z,y), where y(-) is the meromorphic function on K, satisfying
Fa(z,y) = 0. The complex structure on K, is then defined in the usual way,
see Appendix B in [17]. Hence, K,, becomes a two-sheeted hyperelliptic Riemann
surface of (arithmetic) genus n € Ny (possibly with a singular affine part) in
a standard manner.
In the special case where the affine part of K}, is nonsingular, that is,

E,# E, form#m', mm' =0,1,...,2n, (2.19)
we introduce an appropriate set of (nonintersecting) cuts C; joining E,. ;) and
Ew@), 3 =1,...,n, and Cp41, joining Ey, and oo and we denote

n+1
c=Jc, ¢cine=0, j#k. (2.20)
=1
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For subsequent purposes, the corresponding cut plane II is defined by II = C\C
and one introduces the holomorphic function

2n 1/2
Roni1()/2: I C, 2z ( - Em)> (2.21)

m=0

on IT with an appropriate choice of the square root branch in (2.21).

We also emphasize that by fixing the curve K, (i.e., by fixing Ey,..., Eay,),
the integration constants ci,...,¢, in fpi1, (and hence in the corresponding
stationary KdV,, equation) are uniquely determined as is clear from (2.12) and
(2.13), which establish the integration constants cj as symmetric functions of
Ey, ..., Eop.

For notational simplicity we will usually tacitly assume that n € N. The
trivial case n = 0 which leads to V' (z) = Ej is of no interest to us in this paper.

In the following, the zeros of the polynomial F, (-, z) (cf. (2.7)) will play a spe-
cial role. We denote them by {;(z)}7_; and hence write

Fo(z,7) = H[z — pj(2)]- (2.22)

From (2.9) we see that
Ront1 + (1/4)F3,m = FnHpy, (2.23)

where
Hy1(z,2) = (1/2)Fy g (2,2) + (2 = V(2)) Fr(2, x) (2.24)

is a monic polynomial of degree n + 1. We introduce the corresponding roots
{Vé(x)}?:() of Hpy1(+,7) by

n

Hypi(2,3) = [ [ 1z — ve(@)]. (2.25)

=0

The next step is crucial; it permits us to “lift” the zeros p; and v, of F;, and
H, 1 from C to the curve K. From (2.23) one infers

R2n+1(z) + (1/4)Fn,:c(z)2 = 07 VS {Nja VZ}j:l,...,n,@:O,...,n- (2-26)
We now introduce {fj(z)}j=1,..n C Kyn and {#(z)}s=o,....n C Ky by

pi(z) = (pi(z), —(1/2) Fpo(pj(z),z), i=1,...,n,z€R (2.27)
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and

Up(z) = (velx), (1/2) Fp 5 (ve(z),z)), £=0,...,n,z €R (2.28)

Due to the C*°(R) assumption (2.1) on V, F,(z,) € C*°(R) by (2.3) and (2.7),
and hence also Hy11(z,-) € C*°(R) by (2.24). Thus, one concludes

pj,ve € CR), j=1,...,n, £=0,...,n, (2.29)

taking multiplicities (and appropriate renumbering) of the zeros of F,, and Hy, 1
into account. (Away from collisions of zeros, y1; and v, are of course C'°.)
Next, we define the fundamental meromorphic function ¢(-,z) on K,
) 1/2)F,
p(P,z) = LT 1/2) s (7 7) (2.30)
Fr(z,x)
- n—l—l(z; .’IJ)
= 2.31
v~ (/2 Fya(z:0)’ (231
P=(z,y) €eKn, z€R

with divisor (¢(-,z)) of ¢(-,z) given by

(0(, 7)) = Day(@)i) — PPoi(a)s (2.32)
using (2.22), (2.25), and (2.29). Here we abbreviated
p=A{p1,-.. fin}, 2 ={i1,..., 00} € Sym™(K,) (2.33)

and used the following (additive) notation for divisors D: K, — Z on Ky:
DQOQ = DQO + DQ, DQ = DQ1 + -+ DQm, (2.34)
Q:{Qla--'an}esymm}Cna QOEKn7m€N7

where for any Q € K,

1 for P=Q,

(2.35)
0 for P e K,\{Q},

Dg: Kn =Ny, P—Dg(P)= {
and Sym™ K,, denotes the mth symmetric product of K,,. In particular, Sym™ I,
can be identified with the set of nonnegative divisors 0 < D € Div(K,,) of degree
m € N.
The stationary Baker—Akhiezer function (-, z,z¢) on Kp\{Px} is then de-
fined in terms of ¢(-,z) by

Y(P,z,xy) = exp (/d:v'<]5(P, x')), P € K\{Px}, (z,z0) € R?. (2.36)
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From this point on we assume that the affine part of K, is nonsingular (cf.
(2.19)).

Since nonspecial divisors play a fundamental role in this context we also recall
the following fact.

Lemma 2.3. Suppose that the affine part of K, is nonsingular and assume
that V € C*°(R)NL>*(R; dz) satisfies the nth stationary KdV equation (2.6). Let
Dy, o = (fi1, ..., fin) be the Dirichlet divisor of degree n associated with V defined

according to (2.27), that is,

pi(z) = (pj(x), —(2/2)Fp e (pi(z),z)), j=1,...,n, z€R (2.37)

Then Dy (z) is nonspecial for all z € R. Moreover, there exists a constant C' > 0
such that
lpi(z)| <C, j=1,...,n, z €R (2.38)

Remark 24. Assume that V € C®(R) N L*°(R; dr) satisfies the nth
stationary KdV equation (2.6). We recall that f, € C®(R), £ € Ny, by (2.14)
since fy are differential polynomials in V. Moreover, we note that (2.38) implies
that f, € L*®(R;dz), £ = 0,...,n, employing the fact that f,, £ = 0,...,n,
are elementary symmetric functions of p1,...,u, (cf. (2.7) and (2.22)). Since
fnt+1, = 0, one can use the recursion relation (2.3) to reduce fi for k > n + 2 to
a linear combination of fi,..., f,. Thus,

fo € C®(R) N L™®(R;dz), L€ Ny. (2.39)

Using the fact that for fixed 1 < p < o0,
h,h%) € LP(R; dz) imply h'Y € LP(Rydz), £=1,...,k—1 (2.40)

(cf., e.g., [3, p. 168-170]), one then infers
VO e L®(R;dr), £e N, (2.41)

applying (2.40) with p = oo.

We continue with the theta function representation for 1) and V but first we
need to introduce some notation.

Using the local chart near Py, one verifies that dz/y is a holomorphic diffe-
rential on X, with zeros of order 2(n — 1) at P, and hence

i—14
nj=" j=1,...n, (2.42)
y
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form a basis for the space of holomorphic differentials on K,. Normalized diffe-

rentials w; for j = 1,...,n, are then of the form
n
wj = ch(e)m, /wj =6k Jk=1,...,n (2.43)
=1 o
Next, define the matrix 7 = (Tj,g)?ezl by
Tjl = /w€7 ],E = ]-a SRR (244)

bj
Associated with 7 one introduces the period lattice
Ly={2€C" | z=m+n1, m,n € Z"} (2.45)

and the Riemann theta function associated with K,, and the given homology basis
{aj;bj}j=1,..n,

0(z) = Z exp (2mi(n, z) + mi(n,n7)), 2z€C", (2.46)
nez"
where (u,v) = Tu' = YJ_, Ujv; denotes the scalar product in C". Choosing

a base point Qo € Kn\{Pw}, one denotes by J(K,) = C"/Ly, the Jacobi variety
of Kp, and defines the Abel map Ag, by

P P
Agy: Kn = J(Kn),  Agy(P) = (/wl/wn> (mod L), P € Ky.
Qo 0
(2.47)
Similarly, we introduce
ag,: Div(Kn) = J(Kn), D ag (D)= > D(P)Ag,(P), (2.48)

Pek,

where Div(K,,) denotes the set of divisors on K,. The vector of Riemann con-
stants, Eg, = (EQoas---1=Qo,) 18 then given by

P
_ 1 - .
2Qo; = 5(1 -|-’Tj,j) — Z/wg(P) /wj, j=1,...,n. (2.49)

=1
o5 @o
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Next, let wgol’o denote the normalized differential of the second kind defined
by

1 n
wpoo’ 2—]1:11 z—A (§ + 0O(1))d¢ as P — P, (2.50)

¢ = o/zl/z, o€ {1,-1},

where the constants A\; € C, j = 1,...,n, are determined by employing the
normalization

/wgo)o,o =0, j=1...,n (2.51)
a;
One then infers
P
/‘*’gol,o o —¢ e (Qo) + 0(C) as P - P (2.52)
Qo

for some constant e0 (QO) € C. The vector of b-periods of w( ) . o/ (2mt) is denoted

1 )
v =W, v, v = /wg;,o,jzl,...,n. (2.53)
bj

In the following it will be convenient to introduce the abbreviation

2(P,Q) =Eq, — Ag,(P) + ag,(Dq), P € Kyn, @ ={Q1,...,Qn} € Sym" (k).
(2.54)
We note that z(-, Q) is independent of the choice of base point Q.

Theorem 2.5. Suppose that V. € C®°(R) N L*(R;dz) satisfies the nth sta-
tionary KdV equation (2.6) on R. In addition, assume the affine part of K, to
be nonsingular and let P € Ky \{Px} and z,z0 € R. Then Dy(yy and Dy, are
nonspecial for x € R. Moreover,

_ fi(o f
VP 70) = G Py (@) 0P, 0))
P
X exp [ —i(z — zp) (/wgo)o — e0 (QO))] (2.55)
Qo

with the linearizing property of the Abel map,

00,(Paw) = (20 (Piagao)) +iUS (&~ 20))  (mod Ly). (2.56)
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The Its—Matveev formula for V reads

V(z) = Eg+ ) (Eaj 1+ Eaj —2)j) — 203 n (0(Zq, — Ag,(Pao) + g, (D))
j=1
(2.57)

Combining (2.56) and (2.57) shows the remarkable linearity of the theta func-
tion with respect to z in the Its—Matveev formula for V. In fact, one can rewrite
(2.57) as

V(z) = Ag — 202 1n(8(A + Bx)), (2.58)
where
A =Eq, — Agy(Pso) — iU 0 + agy (Dicao)), (2.59)
B=iUY, (2.60)
Ay =Eo+ > (Byj1+ Eyj — 2)). (2.61)
7j=1

Hence the constants Ag € C and B € C" are uniquely determined by K, (and its
homology basis), and the constant A € C" is in one-to-one correspondence with
the Dirichlet data fi(xo) = (f1(0),- .., fin(zo)) € Sym™(K,) at the point zo.

Theorem 2.6. Assume V in (2.57) (or (2.58)) to be quasi-periodic (cf. (3.10)

and (3.11)). Then there exists a homology basis {a;,b;}7_; on K, such that

~  ~(2
B = iQ(() ) satisfies the constraint

B=il ere. (2.62)

This is a key result. It follows from a careful study of (vector) periods of
meromorphic functions F': C* — CU {oo} (i.e., the ratio of two entire functions
of n variables, n € N) to be found, for instance in [32, Ch. 2|, and its proper
application to the Its-Matveev formula (2.58).

3. The diagonal Green’s function of H

In this section we focus on the diagonal Green’s function of H and derive
a variety of results to be used in our principal Section 4.
We denote by

W(f,9)(z) = f(2)gz(z) — fo(2)g(z) for ae z€R (3.1)
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the Wronskian of f,g € AC)o(R) (with ACjo(R) the set of locally absolutely
continuous functions on R).

Assume g € L (R), define 7 = —d?/dz? + ¢, and let u;j(2), j = 1,2 be two
(not necessarily distinct) distributional solutions of 7u = zu for some z € C.
Introducing

9(z,z) = ui(z,z)ua(z, ) /W (u1(2),u2(z)), z€C, z€R, (3.2)

one can proof the following result.

Lemma 3.1. Assume that ¢ € L (R) and (z,z) € C x R. Then,

loc

20020 — 92 — 4(q — 2)g” = -1, (3.3)

B (gil)z =20 — gzzz + [gflgwgz]w

If in addition g, € L. (R), then

loc
Hrzr — 4(q - Z)gw —2q,9=0. (3-5)

Equation (3.4) is known and can be found, for instance, in [15].
Next, we turn to the analog of g in connection with the algebro-geometric
potential V in (2.57). Introducing

’([)(P,I,IEO)’Q/)(P*,I',.’L‘O)
W(,L/)(Pa 'axO)aw(P*a '3'7;0)) ’

where P = (z,y), P* = (z,—y), one can show that

g(P,z) = P e K,\{Px}, z,20 €ER, (3.6)

iFp(z,x
o) = BN PGy e\ PRl seR ()
Together with g(P,z) we also introduce its two branches g4 (z,z) defined on the
upper and lower sheets II1 of K,

iFp(z, )

W, ZEH, .’EER, (38)

g+(z,2) =%

with IT = C\C the cut plane introduced after (2.20). A comparison of (3.2),
(3.6)—(3.8), then shows that g (z,-) satisfy (3.3)—(3.5).

For convenience we will subsequently focus on g4 whenever possible and then
use the simplified notation

g9(z,z) =g4+(z,z), zell,zeR (3.9)
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Next, we assume that V is quasi-periodic and compute the mean value of
g(z,-)~! using (3.4). Before embarking on this task we briefly review a few pro-
perties of quasi-periodic functions.

We denote by CP(R) and QP(R), the sets of continuous periodic and quasi-
periodic functions on R, respectively. In particular, f is called quasi-periodic with
fundamental periods (21,...,Qx) € (0,00)" if the frequencies 27/Q1, ..., 27/Qy
are linearly independent over Q and if there exists a continuous function F &€
C(RYM), periodic of period 1 in each of its arguments

F(.’Bl,...,l'j—i—l,...,.’EN):F(ml,...,l'N), :IijER,j:l,...,N, (310)

such that
flz)=F@Q'z,...,Q3'z), zeR (3.11)

For any quasi-periodic (in fact, Bohr (uniformly) almost periodic) function f,
the mean value (f) of f, defined by

ro+R
1
(= tim oo [ des(o) (312)
zo—R

exists and is independent of zy € R.
For the rest of this section and the next it will be convenient to introduce the
following hypothesis:

Hypothesis 3.2. Assume the affine part of X,, to be nonsingular. Moreover,
suppose that V € C®(R)NQP(R) satisfies the nth stationary KdV equation (2.6)
on R

Next, we note the following result.

Lemma 3.3. Assume Hypothesis 3.2. Then V) k €N, and fy, £ € N, and
hence all x and z-derivatives of Fy,(z,-), z € C, and g(z,-), z € I, are quasi-
periodic. Moreover, taking limits to points on C, the last result extends to either
side of the cuts in the set C\{Ey }?™_ o (cf. (2.20)) by continuity with respect to z.

For future purposes we introduce the set

e = H\{{z €Clls] SC+1}U{z €C|Re(z) > min_[Re(Ep)] -1,

=0,...,2n

min  [Im(E,)] —1<Im(z) < max n[Im(Em)] + 1}}, (3.13)

m=0,...,2n m=0,...,2

where C' > 0 is the constant in (2.38). Moreover, without loss of generality, we
may assume Il contains no cuts, that is,

TleNC =0. (3.14)
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Lemma 3.4. Assume Hypothesis 3.2 and let z,z9 € II. Then
4
(9e,)™) = =2 [ 42 (g, ) + {aaa, ), (3.15)

where the path connecting zg and z is assumed to lie in the cut plane I1. Moreover,
by taking limits to points on C in (3.15), the result (3.15) extends to either side
of the cuts in the set C by continuity with respect to z.

Remark 3.5 For z € Ilg, g(z,-)~! is quasi-periodic and hence (g(z, -)_1>
is well-defined. If one analytically continues g(z,z) with respect to z, g(z,z) will
acquire zeros for some z € R and hence g(z,-)~! ¢ QP(R). Nevertheless, as shown
by the right-hand side of (3.15), (g(z,-)™') admits an analytic continuation in z
from I¢ to all of II, and from now on, (g(z,-) '), z € II, always denotes that
analytic continuation (cf. also (3.17)).

Next, invoking the Baker—Akhiezer function (P, z,xy), permits one to ana-
lyze the expression (g(z,-)™"') in more detail:

Theorem 3.6. Assume Hypothesis 3.2, let P = (z,y) € Iy, and z,z9 € R.

Moreover, select a homology basis {&j,i)-}? 1 on Ky such that l~3 = iﬁ((f), with

U(() ) the vector of b-periods of the normalized differential of the second kind, wg) 0

satisfies the constraint

~-(2)

B=ilU, €R" (3.16)

(cf. Theorem 2.6). Then,
Re((g(P,")™")) = —2Im(y(Fn(2,-)" ")) = 21m</wp 0 — &’ Q0)> (3.17)

4. Spectra of Schrédinger operators with quasi-periodic
algebro-geometric KdV potentials

In this section we describe the connection between the algebro-geometric for-
malism of Section 2 and the spectral theoretic description of Schrodinger operators
H in L?(R;dz) with quasi-periodic algebro-geometric KdV potentials. In parti-
cular, we introduce the conditional stability set of H and state the principal result
of [1], the characterization of the spectrum of H. We conclude with a qualitative
description of the spectrum of H in terms of analytic spectral arcs.
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Suppose that V € C®(R) N QP(R) satisfies the nth stationary KdV equa-
tion (2.6) on R. The corresponding Schrédinger operator H in L?(R; dz) is then
introduced by ,

H= —% +V, dom(H)= H*?(R). (4.1)
Thus, H is a densely defined closed operator in L?(R;dx).
Assuming Hypothesis 3.2 we now introduce the set ¥ C C by

% ={xeC|Re({g(x,")"")) =0}. (4.2)

Below we will show that ¥ plays the role of the conditional stability set of H, fa-
miliar from the spectral theory of one-dimensional periodic Schrodinger operators
(cf. [12, Sect. 5.3], [38, 41, 42]).

Lemma 4.1. Assume Hypothesis 3.2. Then X coincides with the conditional
stability set of H, that s,

Y = {X € C| there exists at least one bounded distributional solution

0+# v e L*°(R;dzx) of HY = M.} (4.3)

This is an elementary consequence of (2.55) (in the special homology basis
discussed in Theorem 3.6) and (3.17).

Remark 4.2. At first sight our a priori choice of cuts C for Ropy1(-)/? might
seem unnatural as they completely ignore the actual spectrum of H. However, the
spectrum of H is not known from the outset, and in the case of complex-valued
periodic potentials, spectral arcs of H may actually cross each other (cf. [19, 36],
and Theorem 4.6 (iv)) which renders them unsuitable for cuts of Ron1(-)Y/2.

Before we state our first principal result on the spectrum of H, we find it
convenient to recall a number of basic facts in connection with the spectral theory
of non-self-adjoint operators (we refer to [13, Chs. I, III, IX], [21, Sects. 1, 21—
23|, |23, Sects. IV.5.6, V.3.2|, and [37, p. 178-179] for more details). Let S be
a densely defined closed operator in a complex separable Hilbert space H. We
denote by ker(7T') the kernel (null space) of a linear operator T' in H. Moreover,
we introduce the following abbreviations associated with S: the spectrum, o(5),
the point spectrum (i.e., the set of eigenvalues), op(.S), the continuous spectrum,
0¢(S), the residual spectrum, o.(S), the approximate point spectrum, o,,(5), and
the numerical range ©(S). Moreover, two kinds of essential spectra, o.(S), and
5+(S), and the sets A(S) and A(S) are defined as follows:

A(S) = {z € C|dim(ker(S — zI)) < co and ran(S — zI) is closed}, (4.4)
ae(S) = C\A(S), (4.5)
A(S) = {z € C|dim(ker(S — zI)) < oo or dim(ker(S* — zI)) < oo},  (4.6)
5o(S) = C\A(S), (4.7)
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We start with the following elementary result.

Lemma 4.3. Let H be defined as in (4.1). Then,
oe(H) = 0.(H) C O(H). (4.8)

This follows from the fact that dim(ker(H — zI)) < 2, dim(ker(H* —ZI)) < 2,
equations (4.4)—(4.7), and [23, p. 269].

Theorem 4.4. Assume Hypothesis 3.2. Then the point spectrum and residual
spectrum of H are empty and hence the spectrum of H is purely continuous,

g,

p(H) = or(H) =0, (4.9)
o(H) = oc(H) = 0o(H) = oap(H). (4.10)

The first part of (4.9) follows from (2.55) and some Wronski determinant con-
siderations, and the part on o, (H) follows from the fact that the point spectrum
of H* is also empty by the same arguments. This proves that the spectrum of H
is purely continuous. The remaining equalities in (4.10) then are clear.

The following result is a fundamental one:

Theorem 4.5. Assume Hypothesis 8.2. Then the spectrum of H coincides
with X and hence equals the conditional stability set of H,

o(H) = {A € €| Re((g(r,) ™)) = 0} (@11
= {\ € C| there ezists at least one bounded distributional solution
0# v € L°(R;dx) of HYp = \p}. (4.12)

In particular,
{Em Y=o C o(H), (4.13)

and o(H) contains no isolated points.

The proof of
o(H)CX (4.14)

is obtained by adapting a method due to Chisholm and Everitt [8]. The proof of
o(H) D % (4.15)

is obtained by adapting a strategy of proof applied by Eastham in the case of
(real-valued) periodic potentials [11] (reproduced in the proof of Theorem 5.3.2
of [12]) to the (complex-valued) quasi-periodic case at hand.
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In the special self-adjoint case where V is real-valued, the result (4.11) is
equivalent to the vanishing of the Lyapunov exponent of H which characterizes
the (purely absolutely continous) spectrum of H as discussed by Kotani [24-27]
(see also [7, p. 372]). In the case where V is periodic and complex-valued, this
has also been studied by Kotani [27].

The explicit formula for ¥ in (4.2) permits a qualitative description of the
spectrum of H as follows. We recall (3.15) and write

d _ [T= (2 — XJ)
%<g(z7 ) 1> =—2(g(z,")) = —1 (Hf,?io(z B Em))l/Z’ z €1l (4.16)
for some constants ~
), cc (4.17)

As in similar situations before, (4.16) extends to either side of the cuts in C by
continuity with respect to z.

Theorem 4.6. Assume Hypothesis 3.2. Then the spectrum o(H) of H has
the following properties:
(1) o(H) is contained in the semi-strip

o(H) C {z € C|Im(z) € [My, Ms], Re(z) > M3}, (4.18)
where

M = inf[Im(V(z))], Mz =sup[Im(V(z))], Ms= inf[Re(V(z))]. (4.19)
zeR z€R z€R

(i1) o(H) consists of finitely many simple analytic arcs and one simple semi-

infinite arc. These analytic arcs may only end at the points A1, ..., A\, Fo,--.,

FEs,, and at infinity. The semi-infinite arc, 0, asymptotically approaches the

half-line Ly = {z € C|z = (V) + z, z > 0} in the following sense: asymptoti-

cally, oo can be parameterized by

Ooo = {zE(C‘z:R+iIm((V))+O(R_1/2) as R 1 oo}. (4.20)

(#91) Each E,, m =0,...,2n, is met by at least one of these arcs. More precisely,
a particular Ep, is hit by precisely 2Ny + 1 analytic arcs, where Ny € {0,...,n}
denotes the number of \; that coincide with E,,. Adjacent arcs meet at an angle
27 /(2No+1) at Ep,,. (Thus, generically, Nog = 0 and precisely one arc hits En,.)
(iv) Crossings of spectral arcs are permitted. This phenomenon takes place pre-
cisely when for a particular jo € {1,...,n}, Ajy € 0(H) such that
Re((g(xjo,-fl)) =0 for some jo € {1,...,n} with on ¢ {Ep,}2n (4.21)

m=0-
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In this case 2My+2 analytic arcs are converging toward on, where My € {1,...,n}
denotes the number of \; that coincide with \j,. Adjacent arcs meet at an angle

w/(My + 1) at on. (Thus, generically, My = 1 and two arcs cross at a right
angle.)
(v) The resolvent set C\o(H) of H is path-connected.

Item (%) is clear from a numerical range consideration. To prove (ii) one
introduces the meromorphic differential of the second kind

i(Fa(z, )z i [T (2= A)dz

Q@ = (¢(P. )\dz = =
(9(P,-))dz 2y 2 Ropi1(2)1/?

, P = (z,y) € K:n\{Poo}'

(4.22)
Then, by Lemma 3.4,

P
(g(P,) 1) = —2 / 0 4 (9(Qo) 1), PeK\{Po}  (423)
Qo

for some fixed Qo € Kp\{Px}, is holomorphic on K,\{Px}. By (4.16), (4.17),
the characterization (4.11) of the spectrum,

o(H) = (A € C|Re((g(2,) 1)) =0}, (4.2

and the fact that Re((g(z,-)™1)) is a harmonic function on the cut plane II, the
spectrum o(H) of H consists of analytic arcs which may only end at the points
AL,y An, Eo, ..., Foy, and possibly tend to infinity. To study the behavior of
spectral arcs near infinity one computes

(g(z,) 1) = —2i2/2 4 L(V) +0(|2| 3/?), (4.25)

|z| =00 Z1/2

which readily yields (4.20). To prove (7i7) one first recalls that by Theorem
4.5 the spectrum of H contains no isolated points. On the other hand, since
{En}2" , C o(H) by (4.13), one concludes that at least one spectral arc meets
each E,,, m =0,...,2n. Choosing Qo = (Em,,0) in (4.23) one obtains

(oo™ = =2 [ )+ o))

= —i[No + (1/2)] 7} (z = Emg) T P[C + Oz — Emo)] + (9(Ermo, ) ™),

z—)EmO

zell (4.26)
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for some C = |Cle¥® € C\{0}. Using
Re((9(Bm,") ') =0, m=0,...,2n, (4.27)

then readily implies the assertions made in item (i3:). The proof of (iv) directly
follows from (4.16). Finally assume that the spectrum of H contains a simple
closed loop v, v C o(H). Then

Re({(g(P,-)7')) =0, PEeT, (4.28)

where the closed simple curve I' C K,, denotes the lift of v to K, yields the
contradiction

Re((g(P,-)"')) =0 for all P in the interior of T (4.29)

by Corollary 8.2.5 in [2]. Therefore, since there are no closed loops in o(H) and
precisely one semi-infinite arc tends to infinity, the resolvent set of H is connected
and hence path-connected, proving (v).

Remark 4.7. Here 0 C Cis called an arc if there exists a parameterization
v € C([0,1]) such that o = {y(¢)|t € [0,1]}. The arc o is called simple if there
exists a parameterization 7y such that 7: [0,1] — C is injective. The arc o is
called analytic if there is a parameterization 7 that is analytic at each ¢ € [0, 1].
Finally, o is called a semi-infinite arc if there exists a parameterization v €
C([0,00)) such that oo = {7y(t)|t € [0,00)} and 0 is an unbounded subset
of C. Analytic semi-infinite arcs are defined analogously and by a simple semi-
infinite arc we mean one that is without self-intersection (i.e., corresponds to
a injective parameterization) with the additional restriction that the unbounded
part of o4 consists of precisely one branch tending to infinity.

Rem ark 4.8 For simplicity we focused on L?(R;dx)-spectra thus far.
However, since V € L®(R;dz), H in L?(R; dz) is the generator of a Cy-semigroup
T(t)in L?(R; dx), t > 0, whose integral kernel T'(¢, z, z') satisfies a Gaussian upper
bound. Thus, T'(¢) in L?(R;dz) defines, for p € [1,00), consistent Cp-semigroups
Tp(t) in LP(R; dr) with generators denoted by H), (i.e., H = Hs, T(t) = Ta(t),
etc.). One then infers the p-independence of the spectrum,

o(Hp) =0o(H), pe€E]ll,00). (4.30)

We refer to [1] for more details.

Of course, these results apply to the special case of algebro-geometric complex-
valued periodic potentials (see [5, 6, 41, 42]) and we briefly pointed out the cor-
responding connections between the algebro-geometric approach and standard
Floquet theory in Appendix C of [1]. But even in this special case, items (iii) and
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(iv) of Theorem 4.6 provide additional new details on the nature of the spectrum
of H.

The methods of paper [1] extend to the case of algebro-geometric non-self-
adjoint second order finite difference (Jacobi) operators associated with the Toda
lattice hierarchy and to the case of Dirac-type operators related to the focusing
nonlinear Schrédinger hierarchy. Moreover, they extend to the infinite genus limit
n — oo using the approach in [16]. This will be studied elsewhere.
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