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We give estimates concerning the regularity of the Backlund image of
regular regions of L2 C E® and L2 C S3.

1. Introduction

A large class of integrable systems is of geometric origin. In fact one can see
a growing overlapping of the classical differential geometry of immersions with
the modern theory of integrable equations.

In this paper we consider the Bécklund transformation for isometric immer-
sions of L2 into E® and S3. We derive corresponding differential equations (re-
constructing an old result of Bianchi) and show that the angles between normal
planes at a point and at its Backlund image are constant. We propose to study
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the regularity of the image of a region of L™ in the Backlund transformation. We
estimate the range of the regular image in terms of the geometry (e.g., curvatures)
of the considered region.

2. The Bicklund transformation for pseudospherical surfaces

The Bianchi transformation for isometric immersions of L™ into E**~! has
been constructed by Aminov [1]. Terng and Tenenblat proved an existence of the
Biicklund transformation for immersions of L™ into E?"~! [14], and Tenenblat
obtained the Bicklund transformation for immersions of L™ into space forms
[12]. In this section we present a short and straightforward derivation of the
system of differential equations describing the Bécklund transformation in the
case of immersions of L? into S3. In the next section we are going to study
some interesting properties of this system. The system has been first written
by Bianchi (compare [6, 7, p. 378, formula(A)|, where these equations are given
without proof).

Theorem 1. Let F? be a reqular surface with Gaussian curvature K = —1 in
a sphere S® of radius 1. F? is described by the radius vector r = r(u,v). In the
curvature coordinates u,v the metric of F? can be written as

ds? = cos® wdu? + sin® wdv? . (1)

Define T := cospm + sinpTe, where 71 and 7o are unit vectors along principal
directions. Let @ satisfy the following system of equations:

0 ) . .
o+ 52 = acoswsinp + fsinwcos ¢
(2)

3 T 55 = —asinwcos p — fcoswsiny ,

where o and B are constants such that o®> — 8% = 1. Then the transformation
¥ r — 7, where

7 =rsino +7coso , o =arctana , (3)
transforms F? into a surface F? with K = —1.

Therefore, 1 is the Béacklund transformation for pseudospherical surfaces in
a sphere. The point of F2 given by the radius vector r is mapped into the point 7.
The length of the great circle arc v between r and 7 is constant, and 7 is tangent
to 7.

Remark 1. We note that if w belongs to the regularity class C*~1 then ¢
belongs to the class C*~1 as well.
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Proof Letb= —7siny+ 1 cosyp be unit tangent vector orthogonal to
7. Taking into account the Gauss decomposition for second derivatives of r, we

obtain
Fou = Ty sino + coso(Ab + Alny + A%ny) ,

Ty =Ty sino + cos o(Bb+ B'ng + B%ny) ,

where 5 5 5 5
_ 99 | dw _ 9 | dw
A_6u+6v’ B_av+6u’ (4)
AB — o8 oL BH — sin LY,

cosw ? sin w

Here n, are normal vectors to F? and L are coefficients of its second quadratic
forms. From general theory of surfaces:

L}, = —L}, =sinwcosw; L% =cos’w, L3 =sinw.

Let ¢ = (—rcoso + Tsino) be the unit vector tangent to the arc v in the
point 7. We assume (3) and (4). To construct the Bécklund transformation we
impose two additional conditions:

1. Vector c is tangent to F2.
2. The integrability conditions for the system (2) are given by K = —1.

Consider the first condition. We easily see that 7 and unit vector £ := A[F,y, 7,y 7]
(where X := 1/|[#,, 7, 7]|) are normal vectors to F2. The vector c is by definition
orthogonal to 7. Hence the first conditions means that (£¢) = 0. Substituting ¢
and 7, we have

0= (éc) = )\(Fau Ty 7:7') = (7‘17‘2n1n2) cosoA ,
where
A = sino(sin B! \/g11 + cos pA'\/gas) + cos o (A' B — B A) .

Therefore A = 0. Taking into account (4) we substitute A’ = sinwcos ¢, B! =
—coswsiny, /911 = COSw, /goz = sinw. Then the equation A = 0 assumes the
form

cos o(A coswsing 4+ Bsinw cos @) + sino(cos? psin® w — sin? p cos® w) = 0.

Finally, using (2), we substitute A = acoswsing + fsinwcosy and B =
—asinw cos ¢ — [ cos w sin :

(acoso —sino)(cos? w — cos? ) =0 .

Matematicheskaya fizika, analiz, geometriya , 2003, v. 10, No. 4 471



Yuriy A. Aminov and Jan L. Ciesliriski

Hence: o = tano, 8 arbitrary (note that the case w = % is not possible because
then from (2) we have ¢ = 0 which is excluded by the assumption of regularity).

Let us proceed to the second condition. The compatibility conditions for
equations (2) are given by

Wow —Wyuu = (B2 — a?) sinw cosw .

If (according to our asumption) a? — 32 = 1, then this condition is equivalent to
the sine-Gordon equation, i.e., K = —1. Note that it implies [a| > 1 or tano > 1.
Let us compute the metric of F2. The tangent vectors are given by:

Ty = €08 {71 (cos w cos psino — [ coso sinwsin @)
+7y cos o(acoswsinp + Bsinwcos )} + cosaA’n, ,
Ty = sing {11 cos o(asinw cos ¢ + [ coswsin p)

+7o(sinwsinysino — fcoso cos pcosw)} + cosoBYn,, .

Now, we will find E r

E = cos® p(cos® wsin? o + (2 cos? osin? w) + cos? o ((A1)? + (42)?) ,

2

and, because (Al) +(4 ) = cos? p(sin® w + cos®w), we have E = cos® . Simi-

larly, F = 0 and G = sin® ¢. Finally,
d3? = cos? pdu? + sin? pdv?

To find the Gaussian curvature of this metric it is necessary to consider (2).
The compatibility conditions (now for the existence of a solution w) read

Pruu —Pwv = (a2 - 52) COs ‘PSin(P )

which means, because of o — 82 = 1, that the Gaussian curvature of F? equals
K = —1. The proof is completed.

Remark 2. Because the regularity classes of ¢ and w are the same, we con-
struct by the above procedure an infinite sequence of metrics of the class CF~1
(provided that we start from the immersion F? of the class C*).

Remark 3. The above theorem is valid for pseudospherical immersions in E>

as well. In this case .
1 sino

o= . B= : (5)

coso coso
where cos o is the length of the segment joining the points corresponding under
the Bdacklund transformation. The differential equations defining the Bdacklund

transformation in the Euclidean case are the same as the equations in S3-case.
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3. Normal planes

It is well known that in the case of local isometric immersions of L™ into E*?~1
the angles 61, ..., 0,_1 between the normal space Nx at a point X € L" C E?*~1
and the normal space at its Backlund transform N ¢ are all equal: 61 = 6 =
... = 0,1 [14]. Now, we are going to consider this problem in the case of local
isometric immersions of L? into S® C E*.

Lemma 1 (Compare [5, Sect. 6]). Let T, E C E* be two planes, and suppose
that we choose orthonormal bases e1,ea C T and f1, fo C E in such a way that
e1, ey are projected onto E along f1, fo, respectively. Then the angles 6; between
e; and f; are ezactly (principal) angles between T and E.

Let Nx be the normal plane at the point X € E* described by the radius
vector r (we assume |r| = 1) and N; be the normal plane at its Bécklund image
X € E* described by 7 (and |#| = 1). Consider the orthogonal basis 7,n; € Nx,

where 1y := p[r,, 7] (p is the normalizing factor, i.e., [n1| = 1). Similarly,
in the space N; we have orthogonal basis 7,&, where ¢ := v[f,, 7,, 7] (where v
normalizes &, i.e., |{] = 1, we assume v > 0). Therefore r L ny and 7 L &.

Moreover, because of 7 = rsino + 7 cos o, we have also 7 L n;. Thus the angles
between r and 7 and between n; and & are exactly the (principal) angles between
Nx and N ¢~ In the sequel we denote them by 6, and 6.

The first angle can be computed immediately:

(r) =sino.

IrllFl

cosf; =

Thus 61 = § — 0. Similarly

cos 92 — (§ nl) = l/(‘ﬂu Ty Tnl) .

A straightforward (although cumbersome) calculation yields

(Fou Ty ™n1) = Bcososinpcos p,

moreover,

v= =

1
[Fou T 7] singpcose
Hence:

Corollary 1. The principal angles between Nx and N < are constant (do not
depend on X ) but 61 # 0:

cosfy =sino = acoso ,

B

cosfy = Lsino = Bceoso.
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4. The regularity of the Bicklund transformation image

Given a pseudosherical immersion F? in curvature coordinates with the metric
(1) let us consider (2) as a system of equations for the unknown ¢. Let T'(¢) be
a geodesic disc on F? with the radius t and ¢ be an initial value of ¢ taken in
the center O of T'(t). We assume 0 < @y < 7/2. The surface F? is regular at the
point corresponding to O. Let us formulate the following problem:

What is an estimate for the radius t, such that the Bdacklund transform of
T(t) is a regular surface ?

We are going to express this estimate in terms of geometry of F? and the
initial value of .

Theorem 2. Let a pseudospherical immersion F? with principal curvatures
K1,k belongs to the class of regularity C* (k > 2) and let there ewist positive

constants kg and N such that
dlog /1 + K2
—r | <N

|ki| < Ko, o5 <N,

i=1,2,

for any curve T starting from a fized point O € F? (where s is the arc length
parameter along T'). Let us denote M1 (o) := min(pg, § — o) and define

M; (o)
a+By/1+KE+2N
Then the image of the geodesic disc T'(t,) (with the center O) under the Backlund

transformation is a reqular surface of the class C*~1. If F? is analytic, then its
image s analytic as well.

ty =

In the remark to his well-known article "On the surfaces of constant Gauss
curvature" D. Hilbert wrote that by his proposition G. Liitkemeyer proved the
fact of existence of nonanalitic surfaces of constant negative curvature.

If F2 € C*, then w € C*~! and the solution ¢ of the system (2) is also
from the class C*~!. Note that the moduli of ¢,, and ¢, given by (2) have
uniform estimates from above in the disc T'(t). These estimates do not depend
on . Therefore the solution ¢ of (2) exists in the whole disc T'(¢) and the vector
function 7 given by (3) belongs to the class C*~1. So, the surface F2 will be
regular if the coefficients of its metric d3? = cos® pdu? + sin? pdv? do not vanish.
In the sequel we estimate the region where this assertion is true.

If the principal curvatures, as in our case, are bounded from above (i.e., |x;| <
Ko), then the radius of the geodesic circle is bounded from above as well. It follows
from the following theorem
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Theorem 3 (Efimov [10]). Let the Gaussian curvature K satisfies (at any
point of the geodesic circle of the radius t) K < —1 and |k;| < ko. Then

t<my/1+k3. (6)

Our estimate obtained in the context of the Bécklund transform, bounds the
radius of the geodesic circle from below. Therefore both these results are, in
a sense, complementary.

The proof of Theorem 2 will be divided into a series of lemmas.

Lemma 2. Let T C F? be a geodesic curve with the beginning at the center
of T(t) and T C F? be its Bicklund image. Let 0(t) be the angle between T and
the first principal direction, and t be the arc length parameter on L. Then the
following estimate holds

lo — w0 — 0+ 0| < at+pt.

Remark 4. The angle ¢ — 0 has a clear geometric interpretation as the angle
between the vector T pointing to the Backlund image and the considered geodesic.

To prove Lemma 2 we add the first equation of (2) multiplied by du/ds and
the second equation multiplied by dv/ds. Thus

dp __ . du . dv
LT ="Q+« (coswsmgoﬁ — sinw cos wE)

(7)
+8 (sinw cos (pZ—;‘ — Ccos w sin (,0%) ,
where Q = g—:‘}"fi—g + ‘3—‘;‘;—’8’.' g’he system of equations for geodesic curves of the
metric ds? = cos® wdu? + sin® wdv? has the following form:
d? dwd d —
& —tanw (TG +HQ) =0, 5
8

d? d dv dw) _
Kg%—cotw(d—ZQ—l-d—Z%) =0.
The system (8) can be rewritten as

% (cosw‘é—’;) = sinw%Q ,

d s dvy _ _ du
15 (smwa) = —cosw Q.
We denote
U . v
A=cosw— , B =sinw— .
ds ds
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Because of A2 + B2 =1 there exists 0 such that
A =cosf , B =sinf (10)

and the system (9) transforms into the following single equation:

do
ds
By considering the infinithesimal rectangular triangle with the hypotenuse along
I" and other sides along principal directions we can see that 6 is the angle between
I’ and u-curve (i.e., v = const).
Let I' ¢ F? be the image of T’ under the Bécklund transformation and
be the angle between I' and u-curve on F2. The metric of F2 has the form
d3? = cos? pdu? + sin® pdv?. Hence

—Q . (11)

é du . é . v
cosf = cos p—, sinf =sinp—

(Pdg 7 (Pdg 7
and the equation (7) assumes the form

dlp—0) . _ . 548
— = asin(p — 6) + Bsin(w — 6) I (12)

Integrating this equation along I' starting from O and taking obvious estimates,
we obtain Lemma 2.

Lemma 3. If the moduli of the principal curvatures k; of F? are limited from
above, i.e., |k;| < kg = const, then

t<t\/1+kKE. (13)

To prove Lemma 3 we take into account that
K1 =tanw , Ko = cotw ,

which implies

<14k,

— <1+kj, —
COS“ W s~ w

If L = ming»(cos? w,sin? w), then 1/L < 1 + 3. Finally, from

ds? _ cos? pdu? + sin? pdv? du? + dv? 1

ds®  cos?wdu? + sin wdv? ~ L(du® +dv?) L

we obtain (13).
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Lemma 4. Let

dlog \/1+ K2

N =
max O3

T(t)v ’

where 3/0s 1is the derivative with respect the arc length for arbitrary direction v.
Then
|9 — 00| < 2Nt.

Let 0/0s1 and 0/0sy are derivatives along the lines of curvature with respect
to the length of arcs. It is easy to find

max (
T(t)

Rewriting the equation (11), we have

Ologsinw| |0dlogcosw
<N.
951 ‘ ‘ s2 D -

dd Owcosw . dv Ow sinw du

— = ——sinw cosw— .
ds  0sysinw ds 0sycosw ds

Consequently,
t

dé
10— 6] < /—ds <Nt
ds
0
Let us return to the proof of Theorem 2. By Lemmas 2-4 we have

o — ol <l —po—0+6|+ 10 — 00| < (a+By/1+ K3+ 2N)t. (14)

Therefore by the assumption of the theorem we have
. T
|0 = ol <min(po, 5 — o) -

Hence, the function ¢ satisfies 0 < ¢ < 7/2. The coefficients of the metric
d3? = cos? pdu? + sin® pdv? are different from zero and, therefore, F2 is a regular
surface. In consequence of ¢ € C*¥~1 we have F2 € C*¥~1. The proof is completed.

The next problem is to estimate the radius of a geodesic disc on F? which
does not contain singular points.

Theorem 4. Let

1 dl . . ™
Ml((po) = mln(‘PO, 5 - QOO), MQ(Wo) = min (Sll’l %,COS(Z 4 %)) ]

Then the radius p of the geodesic disc on F? which does not contain singular
points satisfies the inequality

5> M (p0) M2 (o) _
" 2(a+ By/1+KE+2N)
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Indeed, let us consider the Béicklund transform T'(t,/2) of the geodesic disc
of radius #,/2 contained in the disc T'(t,). Let 4 be the shortest curve joining O
and the boundary of T(t,/2). We denote its length by 5. We are going to find
an estimate for p. Let 7 (of the length p) be the co-image of 4. Note that in
general v is not geodesic on F? but anyway t, < 2p. The arc length elements of
~v and 4 satisfy
ds®  cos?wdu? + sin® wdv? 1

- = < —,
d3?  cos? pdu? + sin? pdv? — A2

where A? := min(sin? @, cos? ). Therefore Ads < d3 and integrating this inequal-
ity along v and 4, we obtain

Ap<p.
Let us estimate A from below. Applying the estimate (14) to the disc T'(,/2),
we get

t
lo—wo| < (a+p 1+F6%+2N)§T.

We can fix
t M (o)

’r_
2 2a+By/1+K242N)’

which means that

©0 T 9o
— oyl < &0 _pl < L0
lo—pol <55 le—wol <y =7
Therefore
®o
¢ 290~ lp—pol 25
Obviously,
T _,=T_ + — >E_ _| — |>E_@
9 90—2 Yo T Yo (P_Q ©o 2 ‘P0_4 9
ie., o <% 4 % . Therefore A > Mj(ypo). Hence

1 N
trM2(po) < Ap < p.

The proof is finished.

Let us consider a special case of the Backlund transformation (2), namely
B = 0. In this case 0y, defined in the previous chapter, equals 7/2 and the
equation (12) for the derivative along a geodesic line assumes the form:

d(p —8)

Fr sin(p — 0) .
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Solving this equation, we obtain either

p — 60 =2arctane® % |

or ¢ = 6 (which can be treated as a limiting case of the general solution for
s9 — 00). Hence we have the following result.

Corollary 2. In the case B = 0 the integral curves of the vector field T (vectors
pointing to the Backlund images) are either geodesics (the case ¢ = 6) or the total
change (when s is changing from —oo to +00) of the angle between T and a given
geodesic equals .

In the conclusion let us remark that it would be interesting to estimate the

range of the regular Bécklund image after a sequence of transformations.
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