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Geometric Backlund transformations of pseudospherical surfaces in four-
dimensional Euclidean space are studied. An analog of the classical theorems
by Béacklund, Tenenblat and Terng is proved.

Let F2, F2 be regular two-dimensional surfaces in four-dimensional Euclidean
space E*. A line congruence v : F? — F? is a diffeomorphism which possesses
the following bitangency property: for each point P € F? the straight line joining
P with ¢(P) = P € F? is a common tangent line for 2 and F?2.

The line congruence v : F? — F? is said to be pseudospherical if it satisfies
two additional conditions:

B1) the distance between corresponding points P € F? and P e F?is equal
to a non-zero constant independent of P, |P]3| =1y #0;

B2) the angle between planes tangent to F2 and F? at corresponding points
is equal to a non-zero constant independent of P, L(TPFQ,TPFQ) = wp # 0.

The constants Iy and wy are called the parameters of the pseudospherical
congruence 1.

This definiton corresponds to the classical definition of pseudospherical con-
gruencies of n-dimensional submanifolds in (2n — 1)-dimensional Euclidean space
[2]. Generalising classical results by L. Bianchi and A.V. Bécklund, K. Tenen-
blat and C.-L. Terng proved that if two n-dimensional submanifolds M, M* in
E?"~1 are connected by a pseudospherical congruence, then both M and M* are of
sin? wy

3
manifold M™ C E*~! with constant negative Gauss curvature (usually reffered
to as a pseudospherical submanifold) admits a large family of different pseudo-
spherical congruencies. Using the classical terminology, M* is called a Bécklund

constant negative Gauss curvature K = — [1]. Moreover, an arbitrary sub-
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transformation of M. This geometric construction is of greate importance for the
soliton theory, where it initiated the development of some fundamental ideas and
principles. Nowdays the pseudospherical submanifolds M™ in E?"~! represent
one of the most illustrative classical examples of integrable systems.

For two-dimensional surfaces in E* the situation with pseudospherical congru-
encies seems to be somewhat different from the classical one, although a number
of results remain valid. In order to exclude the three-dimensional case, we will
always assume that F2 C E* is in the general position, i.e., the dimension of its
first normal space is equal 2, so F? does not belong (even locally) to any affine
hyperplane E3 C E*.

First of all, if F2 in E* admits a line congruence 9 : F? — F~'2, then it
necessarily has some specific properties. Namely, in the generic case F? carries
a regular net of conjugate curves and the straight lines of the congruence i are
tangent to one family of conjugate curves. The surface F2 has the same property,
so 1 may be viewed as a congruence of conjugate nets.

On the other hand, at each point P of F? C E* there exist at most two
different conjugate directions in the tangent plane TpF2. Moreover, there is the
following classification: P € F? is said to be hyperbolic (parabolic, elliptic) if
there are 2 (1 and 0 respectively) different conjugate directions in TpF? (cf. |2,
§8.6]). A surface which consists of hyperbolic points carries a unique net of
conjugate curves, it is usually referred to as a Cartan surface in E*. Evidently
it admits at most two different line congruencies [3]. Every surface in E* which
consists of elliptic points, a E-surface, doesn’t carry conjugate nets, so it doesn’t
admit line congruencies. Every surface in E* which consists of parabolic points
is foliated by asymptotic lines, so it admits at most one line congruence. Recall
that an arbitrary surface in E3 admits infinitely many different line congruencies.

Our main result is the proof of the following statement.

Theorem. Let F2, F2 be reqular Cartan surfaces in E*. Let v : F2 — F?
be a pseudospherical congruence with parameters ly > 0, wg € (0,7/2]. Then F?
sin? wy

f

and F? are pseudospherical surfaces of Gauss curvature K = —

The assumption that F2 and F? are Cartan surfaces is not restrictive. It’s
not difficult to demonstrate that if a pseudospherical surface in E* admits a
pseudospherical congruence, then, in the general case, it is a Cartan surface. For
example, exactly for this reason K. Teneblat in [3] considered only Cartan surfaces
in B

Note that a pseudospherical surface in E* admits at most two different pseudo-
spherical congruencies, contrary to the classical three-dimensional case. Besides,
there is no reason to assume that a pseudospherical surface in E* has to be a
Cartan surface. Therefore, contrary to the classical case, it seems to be true that
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some pseudospherical surfaces in E* do not admit pseudospherical congruencies,
whereas another ones admits either one or two different pseudospherical congru-
encies, but this is an open question. In order to solve it we have to construct
a pseudospherical surface in E* which consists of elliptic and parabolic points.
Some other open problems will be formulated at the end of the article.

The studying of Backlund transformations of pseudospherical surfaces in E*
was initiated by Yu. Aminov and A. Sym in [4].

I am grateful to Prof. Yuriy Aminov and to Prof. Antoni Sym for numerous
helpful discussions.

Proof The Cartan surface in question, F?, carries a net of conjugate
lines. It is easy to see that F? can be locally parameterised in such a way that
the coordinate curves are conjugate. If r = r(u,v) is the corresponding position-
vector, then the conjugacy of coordinate lines just means that 02,r is a linear
combination of the tangent vectors d,r and 0,r.

Let n1, ng denote vector fields normal to F2 which at every point P € F? form
an orthonormal frame in the normal plane NpF?. Let g;; stand for the coefficients
of the first fundamental form of F? and let L}j and L% be the coefficients of
the second fundamental forms of F? with respect to n; and no. Finally, let
n1 =< Bunl,ng >, uo =< 8,,n1,n2 >.

The conjugacy of coordinate lines means that the second fundamental forms
are diagonal, L, =0, L2, = 0.

Introduce new functions A(u,v), B(u,v), a(u,v), b(u,v) to rewrite the matri-
ces of coefficients L¢; as follows [2]:

Acosa 0 Asina 0
1 _ 2 __
L= ( 0 Bcosb)’ "= ( 0 Bsinb)' )

The dimension of the first normal space of F? is equal to the rank of the matrix

L, L, LY\  (Acosa 0 Bcosb
L3 I3, IL%,) ~ \Asina 0 Bsinb/"

Hence
ABsin(b—a) #0

since F? is assumed to be in the general position.
The fundamental Gauss-Codazzi-Ricci equations for F? have the following
form |2, §6.3]:
AB cos(a —b)
det g
g11

= Rig12 = (avr%l — 0uT%y + T} T3y + 5115, — oI5, — P%zr%z) , (2.1)
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Oy A — AT, 4+ BT, cos(a — b) = 0, (2.2)

OuB — BT2, + AT}, cos(a — b) = 0, (2.3)

A(Bya + p2) + T2, Bsin(b —a) = 0, (2.4)

B(0yb+ p1) + '3y Asin(a — b) =0, (2.5)
ABsin(a — b

Oyupr2 — Oyppi1 + #912 =0. (2.6)

Here Fj-k denote the Christoffel symbols of the Levi-Civita connection on F?,
Ri919 is the Riemannian curvature of F2. The system of equations (2) admits
some simplifications. For example, one can solve (2.4)—(2.5) with respect to pu1
and po and substitute the result into (2.6). As well, one can solve (2.1) with
respect to cos(a — b), etc. In any case, the system of equations (2) provides
a simple and useful description for the Cartan surface F2 in E*.

For future purposes, multiply (2.2) by A and replace ABcos(a — b) by the
right side of the Gauss equation (2.1). The resulting equation reads:

1
561,A2 — A}y + T2 Rig12 = 0. (2.2a)

Now consider the line congruence 9 : F2 — F2. The position vector of F2
can be represented as

1
r=7(u,v) =1 — =50yt (3)
7y
or as )
r=7(u,v) =1 — =7 0T; (4)
ISP

see, for example, [3]. The surface F? is usually called a Laplace transformation of
F?. In the general situation, it is a Cartan surface, and the line congruence 1 may
be viewed as a line congruence between two conjugate nets (cf. [1]). Without loss
of generality, we suppose that F2 is presented by (3). Note that (3) is invariant
with respect to scale transformations 4 = 4(u), o = 9(v).

Let us find the distance between corresponding points of F2 and F2. It easy
follows from (3) that

Vo (5)

l(u,v) = |r(u,v) — #(u,v)| = Tz

Next, for each pair of points P € F?, P € F? connected by 1, the angle
between the tangent planes TpF? and TI-,F2 is expressed as follows:

2
Fll

911 o2
\/(F%)2 + detg Z(Ln)2

(6)

cosw(u,v) =

g
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this formula can be obtained from (3) by trivial calculations.

Note that for two two-dimensional subspaces E?, E2 in E* there are two
well-defined angles that determine how E? is placed with respect to E2. If the
intersection ¢ = E? U E2 is a straight line, then one of two angles is zero. So,
the relative position of E? and F2 is determined by one angle, just like in the
three-dimensional case. This angle is calculated as the angle between straight
lines in EZ, EZ orthogonal to the line of intersection .

Let us return to the proof. The line congruence 1 is assumed to be pseudo-
spherical, i.e., the conditions B1) and B2) are satisfied, I(u,v) = ly, w(u,v) = wp.
Applying (5)—(6) and taking into account (1), we write

1
I, = Vo (7)
I‘\2
coswy = 1 5 . (8)
%))2 + A
\/ (Tf)? + det g
The last equality can be rewritten in the following form:

det
A? = =3 (1%)? tg’wo. 9)

g11

Now we shall analyse the equations (2.1) and (2.2a) together with (7), (9).
Replace A2 in (2.2a) by the expression from (9):

1 det det
50 (—9 (T3)” thwo) — Tl 2 (03)? tg%wo + T Rizy = 0. (10)
2 g11 g11
There are simple formulae for the derivatives involved in (10):
Awg11 = 2 (Tiog11 + TTag12) s Ougoz = 2 (Toeg12 + [55922)
Bug12 = Tiag1a + TTag22 + Toogn1 + Toog12,
dy(det g) = 2 (I'fy +T3,) detg.

Applying these formulae, find Rj919 from (10):

det g gi12
Rig19 = —thwogT <8UI‘%1 +T3,I%, — T, T — P%J%g: . (11)

Thus, if B2) is assumed, then (2.2a) is equivalent to (11).
Write (11) in another form. By the definition of the Riemann curvature tensor,

det g
gii

Ri912 = (8uT3) + T30 — Tl — 0T, + T I3, — THTY,)
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Therefore

0,31 + T3,I'Y] —T[,T%) = Rioo dgt + 0,y —T1T%, + THI . (12)

Substitute (12) to (11)

det
Rz = —tg2wy —2 (R1212 I 5,02, — T, T2, + 2,02, — T2,T2 912)
g11 det g 911

and find R1212:

det
Ri212 = — sin? wo— (6 F I‘hf‘% _ F F2 912 + r 2r%2>

g11

_ 2, det 1 2 12

= —sinwyg—= [ 9,I'%, [l + Tl
g11 g11
det o

= —sinwy—" (aur§2 Lo Gugui | p 21“%2) . (13)
g11 g1

Apply (5) and replace I'?, in (13) by /gi1/l. Then (13) is rewritten as follows:

sin® wy Oyl
Ry212 = — B (1 — m) det g.

Therefore, the formula for the Gauss curvature of F? reads

. R1212 - _SiIl2 wo 1— 8ul
 detg 12 Vo)

As consequence, if B1) holds, [ = Iy, then

sin? wy

K=—
5

and F? is a pseudospherical surface.
Since the pseudospherical congruence 1) is a symmetric construction, F? is
. sin® wy
also a pseudospherical surface of Gauss curvature K = — T [

Let us formulate some open problems connected to the proven theorem.

1. Describe a generic pseudospherical Cartan surface in E* that admits a pseu-
dospherical congruence. The supposed answer would be a system of differential
equations, SDE, similar to the classical sine-Gordon equation or to its generali-
sations constructed by Yu. Aminov, K. Teneblat and C.-L. Terng [1-3]. Another
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problem is what are the transformations of solutions of SDE that correspond to
the pseudospherical congruencies viewed as transformations of surfaces? These
two problems are already solved in the particular case when wy = 7, i.e., for the
Bianchi transformations of pseudospherical surfaces in E*. Namely, it was demon-
strated by the author that the pseudospherical surfaces in E* that admit Bianchi
transformations are well-described by the solutions ¢(u,v), P(u,v), Q(u,v) of the
following system of partial differential equations:

02, - pe®® + 2(Dyp)2e® — B2, - pe 2 + 2(Byp)’e ¥ + PQ +1 =0,

Oy P — au(erlp =0, 0,Q+ av(PPeiz(p =0,

whereas the transformation is described as

{o(u,v), P(u,0), Q(u,0)} = {=9(v,u),Q(v,u), P(v,u)}.

2. Describe a generic pseudospherical Cartan surfaces in E* which admit two
pseudospherical congruencies. Do such surfaces exist? The supposed answer is
negative. So it would be correct to apply the notion "a pair of pseudospherical
Cartan surfaces in E* connected by a pseudospherical congruence". (Such sit-
uation is not unusual, recall the classical notion "a pair of isothermic surfaces
connected by a Christoffel transformation".)

One of the ways of solving these problems is to analyze the system of six partial
differential equations (2.1)—(2.6) together with an additional equation Rjg1o =
—kgdetg for nine functions gdi1, 912, 922, A, B, a, b, M1, M2.
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