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By the definition, an entire absolutely monotonic function f is an entire
function representable in the form f(z) = fooo e**P(du), where P is a non-
negative finite Borel measure on R' and the integral converges absolutely
for each z € C. This paper is devoted to the problem of characterization
of the sets which can serve as zero sets of entire absolutely monotonic func-
tions. We give the solution to the problem for the sets that do not intersect
some angle {z : |argz — 7| < a} for a > 0.

Introduction

This paper is devoted to the problem of characterization of the sets which
can serve as zero sets of entire absolutely monotonic functions. This problem was
posed in [1] and has been solved for finite sets there. Here we give the solution
to the problem for the sets that do not intersect some angle {z : |arg z — 7| < a}
for a > 0.

By the definition, an entire absolutely monotonic function f is an entire func-
tion representable in the form

flz) = 70 e** P (du),
0

where P is a nonnegative finite Borel measure on R™ and the integral converges
absolutely for each z € C. By the well-known S. Bernstein’s theorem [2], the class
of such functions can be defined as the class of entire functions f such that

f®@) >0, vkeN|J{0}, vz € R.
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Entire absolutely monotonic functions form a proper subclass of the class of
entire functions representable in the form

o0

f(z) = / ¢ P(du), (1)

—0o0

where P is a finite nonnegative Borel measure on R and the integral converges
absolutely on C. The zero sets corresponding to the class described by (1) were
completely characterized in [3]. This characterization is the following:

Theorem A ([3]). A set E C C without finite accumulation points is the zero
set of a function of the form (1) iff the following conditions are satisfied:

(a)
E(\R=0, acEsackE (2)
(multiplicities of a and a are equal);

(b) for every H >0
logn(r,H) = o(r), r — oo, (3)

holds, where
n(r,H) :=#{z:2€ E,|Im z| <r,|Re z| < H} (4)
(points of E are counted with their multiplicities).

Sure, zero sets of entire absolutely monotonic functions form a subclass of
sets described in the above theorem. On the other hand, it is evident that entire
absolutely monotonic functions form a subclass of the class of entire functions
bounded in each half-plane of the kind

C,={2:Rez<w}, we€R.

Therefore the characterization of the zero sets of entire functions bounded in each
half-plane C|, is of interest. The following theorem from ([4]) gives the complete
characterization of these sets:

Theorem B ([4]). A set E = {a};2, C C without finite accumulation points
is the zero set of an entire function bounded in C,, Yw € R, iff

|Re ag| +1
Z W < 00, Yw € R. (5)
akEEﬂCw
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Note that the necessity of the condition (5) is an easy consequence of the
well-known Blaschke condition for a half-plane. It can be easily shown that the
condition (5) implies (b) in Theorem A.

It turned out that, if we add (5) to the conditions of Theorem A, we do not
obtain the complete characterization of zero sets of entire absolutely monotonic
functions. In [1] it was mentioned the following necessary condition not depending
on all previous ones:

dist(z, E) = +00, z — —o0. (6)

I.V. Ostrovskii showed (oral communication) that the following independent con-
dition is also necessary:

1
Ja € (0,7/2) : R —0 — —o00. 7
0,7/2) > e 50, s ()
ar€E N{z:|argz—7|<a}
In [5] we obtained one more independent condition for a set E to be the zero set
of entire absolutely monotonic function:

1
da € (0,7!'/2) : Z Re m € Ll(—OO, —].] (8)
ap€E ({z:| arg z—7|<a}

At the moment we do not know whether or not the set of conditions: (2), (5)—
(8) gives a complete characterization of zero sets of entire absolutely monotonic
functions.

In [4] we obtained the complete characterization of zero sets of entire absolutely
monotonic functions situated in the right half-plane. It was proved that for a set
E = {ax}2, C {# : Re z > 0} without finite accumulation points conditions
(2) and (5) are necessary and sufficient to be the zero set of an entire absolutely
monotonic function .

The main result of the paper is the following characterization of zero sets
of entire absolutely monotonic functions that do not intersect some angle {z :
|arg z — w| < a} for a > 0.

Theorem 1. Let E = {ax};>, be a set without finite accumulation points.
Suppose Ja € (0,7/2] such that EN{z: |argz — 7| < a} = 0. The set E is the
zero set of an entire absolutely monotonic function iff the conditions (2) and (5)
are satisfied.

The necessity of these conditions is obvious. Note that in our case the condi-
tions (6), (7) and (8) are satisfied automatically.
In [4] we have proved that Theorem 1 is a consequence of the following fact.
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Theorem 2. Let E = {ay}32, be a set without finite accumulation points
satisfying conditions (2) and (5). Suppose Ja € (0,7/2] such that E N {z :
|argz — w| < a} = 0. There ezists an entire function 1(z) with zero set E
representable by the absolutely convergent in C integral

i) = / ¢ pr () dz, (9)
0

where p; is a real continuous on RT function positive on an interval (0,z1),
x1 > 0.

In the proof of Theorem 2 we will use an entire function bounded in each
half-plane C,, with zero set E.

1. Construction of an entire function bounded
in each half-plane C, with zero set F

The construction below is based on an idea of 1.V. Ostrovskii.
Let E be a set satisfying the conditions of Theorem B. Note that £ = E;UE_,
where
E_:=E({z:Rez<0}, By :=E[ {z:Rez>0}.

In [4] we have proved that there exists an entire absolutely monotonic function
with zero set E . Since the class of entire absolutely monotonic functions is closed
under multiplication it remains to prove that there exists an entire absolutely
monotonic function with zero set £_. Further we will suppose that

E = {ay}3p=1, Reay <0.

There exists a sequence of positive dg T +00, k 1 +00, such that

Z|Reak|'5k+‘5k (10)
=l +1
Note that (10) implies
0k = o(|ak|), Kk — oo. (11)
Set - ,
5@ =11 oy (12
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By (10) the infinite product (12) converges and is a meromorphic function. We
shall show that B(z) is bounded in C, \ K,, Yw € R, where K, is a compact
subset of {z : Re z > 0}. We have

[e') 00 2
02 — 2Re ay, - 0y, ap — 2 ek —Z
B(z)|* = 14 £ | =C
1B) H( i |a|? 11 Ok — @k — 2 H Ok —ak—2
k=1 k=1
Here and further we will denote by C' not necessary equal positive constants.
For 6, > 2w
_G T <1, VzeC,. (13)
Op —ay — 2

In particular, for w = 0 (13) holds for any & € N, hence
|B(2)]* <C, Vze€{Rez<0}.

Since dy T 400, (13) holds for all w > 0 and all sufficiently large k& > ko(w). So,
B(z) is bounded in Cy, \ K, Vw > 0, where K, C {z: Re z > 0} is a compact
set including points —ag + 0, k = 1,... ko(w) —

Let V(z) be an entire function with zero set coinciding with the set of all poles
of B(z). Let us consider the entire function

fo(2) := B(2)V (2).

The zero set of fo(z) coincides with E. But fo(z) is not necessary bounded in
C,, VweE R.

Further we shall need the following theorem being a simple particular case of
the well-known theorem of M.V. Keldysh (see [6]).

Theorem C. Let 7(z) > 0 be a continuous nondecreasing function on RT
such that 7(xz) 1 +oo, = 1 +0o. Let g(z) be a function analytic in the closed
domain

G=C\{z:Rez>0, |Imz| <7(Re z)}.

Then there exists an entire function ®(z) such that
lg(z) — ®(2)| <1, Vzed.

Evidently, there exists a function 7(z) satisfying the conditions of Theorem C
and such that the corresponding domain G is free of zeros of V(z). Applying
Theorem C to g(z) = log V(z), we get the entire function ®(z) such that

|[logV(z) —®(2)| <1, Vzed. (14)
So,
f(2) = fo(2) exp(—=2(2)) = B(2)V(z) exp(—®(2))
is an entire function bounded in C|,, Yw, with zero set E. [
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2. Proof of Theorem 2

Let E be a set satisfying conditions of Theorem 2. Let us construct an entire
function f(z) bounded in C,,, Yw € R using the method of Sect. 1:

f(z) = B(2)V (2) exp(=2(2)), (15)

where the zeros of B(z) lie outside the angle {z : |argz — 7| < a}, a € (0,7/2].
Since E is symmetric with respect to R, then by (12)

T 2|Re ay| - 0 + 02 ' S (ar — 2)(ag — 2)
Bz = kl;[l (1 i |ax|? ) kl;[l (—ak + 0k — 2)(—Gk + 0 — 2) 16)

In what follows we shall need estimations of log B(—r) and its derivatives. To
write them, we introduce some notations.
Let us fix 0 < 8 < 1 and set
1 i(Zr(Zme ak| +0k)  2|Re ag|dy + 62 1

1=+ 2T oy ol Tl

). (17)

By (10), (11) series in the right-hand side of (17) converge uniformly with respect
to r on each compact subset of R* and ¢(r) — 0, as r — oco. Let

1
7B

o
2|R 1) 2|R Ok + 02
+Z(‘ © ag| + by [Re ax |0 + k<z—arctanL>>, r > 1.
k=1

™| =

|lag|? + 2 lax|? 2 |ax| -

Note that Q(r) ] 0, as r 1 oco.

Lemma 1. The following estimations hold:

|(log B(z) l:=—r < CQ(r), r>1; (18)
\(%mgw)) DU AR R
log(|B(—r +iy)|/B(-r)) < Cq(r)y2, yeER, r>1; (20)
log(|B(—r +iy)|/B(-r)) < Ca(y)y’, yeR", 1<r<y/2. (1)

The proof of the lemma will be given in Sect. 3.
Theorem 2 is an immediate corollary of the following result.
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Theorem. Let f(z) be the function defined by (15). There exists an entire
function p(z) without zeros such that the product 1¥1(z) := f(2)p(z) is repre-
sentable in the form

Pi(z) = /e”pl(x)dx,
0

where p1 is a real continuous function on RT positive on some interval (0,z1),
z; > 0.

Let
AW = (—12) = 35
8(2|Re ay|+8;)t3 |, 2/Re agx|+9d 1 2| Re ag|+4 242
+ 2k ( P T TwlEHar T Jal @ Fa)?)
£> 1.

Lemma 2. The function A(t) possess the following properties:
(a) A(t) >0, t>1;
(b) [ A(t)dt < oo;
(c) A(t)t — 0, as t — +oo;
(d) A(t)t? 1 +oo, as t 1 +oo;

(e) A(t) <4q(t), t>1.

Lemma 2 can be proved by easy estimations. Set

A
h(z) == /(e” — 1)A(t13/t) dt, 0<A<I. (22)
0

Since Lemma 2 (b), the integral in the right-hand side of (22) is absolutely con-
vergent and h(z) is an entire function. Since

h¥(z) >0, VkeN|J{0}, vz € R,
the function h(z) is entire absolutely monotonic. It is easy to see that

Re h(z + iy) < h(z), Vz,y € R. (23)
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Let @qo(2), a € (0,1), be the entire function defined by

1
= exp/ Dt~ 1=dt.
0

Note that log ¢, (2) is a particular case of (22) corresponding to A = A, = 1272,
A=1.
We need the following Lemma from ([4]).

Lemma 3. For a fized w, the following asymptotic equality holds in the half-
plane C,: .
log pa(z) = —C’a\z|°‘em(arg%”) + 0(1), (24)

/2 < argz < 3m/2, |z| = oo,
where Cy > 0 does not depend on z.
Set
Pi(z) = f(z)exp[M(h(z) — h(0))lpa(2)
—  B)V(2)e~ exp[M(h(z) — h(0))]pa(2),

where the constant M > 0 will be chosen later. Let

¢(2) := exp[M (h(2) — h(0))]¢a(2)-
Evidently, ¢(z) is an entire absolutely monotonic function. Let

o0

/ e "y (in)dn, n € R. (25)

—0oQ

1

pi(z) == Py

Taking into account boundedness of f(z) in C,, Vw € R, and (23), (24), we see
that the integral in the right-hand side of (25) converges absolutely and uniformly
with respect to z € R. Using ( 23), (24), we can transfer the integration in (25)
to the line {z : Im z = ¢}, V€ € R. Noting that

($1(2) € R, Vo € R) = (1(€ +1in) = ¢1(E —in), &1 € R),

we get
,xg 00
pi(z) = ¢1 /Re ( ~ian Y1 61(2)“7)) dn, V¢e€R. (26)
0
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Hence pi(z) € R for z € R and

sign p1(z) = sign /Re (ei‘m%) dn, V&€ R. (27)
0

Using (23) and (24) and putting & — —oo in (26), we conclude that pi(z) =0
for z < 0. Taking sufficiently large positive £ in (26), we get

pi(x) = 0(e %), z — +o0, VC > 0.

Hence, by the Fourier inversion formula,

o0

P1(z) = /ewzpl(w)dw, Vz e C.
0

We are going to show that pi(z) > 0 on some interval (0,z1), ;1 > 0. For
this, we represent the integral in the right-hand side of (27) in the form

/ / / ( _mwlfi(z)m)>dn —L+L+D,  (28)

where €1 = €1(€), €2 = €2(&) will be chosen later.
We shall estimate I; from below, |Iz| and |I3]| from above and are going to
show that I1 > 0 and I1 > |I| + |I3] for |¢| being large enough.

Lemma 4. Let

0(r) := q(r)-l—/#du. (29)
The following estimations hold: '

HE© > Qe (30)

W@ > Saléh; (31)

B < / A(w)du + CA(EDIEL (32)

€]

0<hi(E) < \sv S0, 5 =2,3,...; (33)

(logpa(€)) > Cl¢*h (34)

(logpa(é)) > ClEI*% (35)

0< L rogoale) < CilelT, j=12,..., (36)

déi
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where £ < &y < 0.

Proof of Lemma 4 repeats the proof of Lemma 4 from [4].
Since the function log(V (€ +z)e~®(¢+2)) is analytic in the disc {z : |2| < |£]/2}
for £ < 0 and (14) holds, Caushy’s inequality implies

47 9J
a5 log(V (€ + z)e™®EF9)| < j!@. (37)

Set

b(€) := log 11 (&) = log B(€) + log pa(€) + M (R(E) — h(0)) + log(V (£)e *©).

Since f(€+ z) # 0 for |z| < |€|, € <0, we have for || < |€|/2

S A P S GV
1og{ g } "+; 2400, (38)

By (18),(30), (34) and (37),

b = <logB(é))’+(logsoa<£))’+Mh’(g)+[1og(v<g)e—¢<£>)]'

2M 2
> —CQ(E) +ClEl T + — QD) - e

Further we shall assume that M is sufficiently large. Then, for || > 1
b(&) > CQUEN +Clgl* > 0. (39)

On the other hand, (18), (32), (36) and (37) imply

! ? 2
b (&) < CQEN) + Clel*" + / A(u)du + CA(J€]) €] + ik
€]
Taking into account Lemma 2 (b) and (c), we conclude that
b(€) =0, as &— —oc. (40)

Moreover, (19), (31), (35) and (37) imply
B'(6) = (logB(©) + togeal€))’ +MA"(€) + [iog (V(e)e )]
8

~204(€)) + CIET + ~all) = g5

Y
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Assuming M being large enough, we shall have

b (€) > 20q(|¢]) + ClE1*2, ¢ > 1. (41)

From (39), (40), (41) we conclude that b'(¢) | 0 as & | —co. Therefore the
equation

’

b(§) ==

has a unique solution &(z) for every z, 0 < z < zg, such that

&(z) | —o0, as z 0. (42)
Substituting & = &(x) into (38), we get

log {6_”" Lﬁé)@ } = _bzﬁﬁ +7(&m), (43)
where -
Z b(y
j=3 '

By (19), (36), (33) and (37),

b9)(¢)] < (10 B())] + (s soa( )@
+MAOD(E) + |[log(V (€)e*©)]Y|

< Cjlq(|€)(CIEN*T + Cjllele— + CilleP—0(¢]) + ! 5 »
whence, using the definition of (r), we get
. ) cy
B9 (€)] < Caeie? +1e) () s d=23..... (44

For |n] < |¢]/4, (44) implies

0 a—2
ie(€,m)] < COUENIER + [€1%) Z(C"") wIED TR s g s,

2\ €
We choose /3
m €]
= = _— . 45
=20 = (5% gyt @) )
Then, for |n| < €1, the inequality holds
Vis
< —.
(&)l < 3
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Using this and (43), we obtain

€1

I = /eXP {—bT(f)TIQ + Re T(f,n)} cos(Im 7(&,n))dn

0

€1 n
26 /exp ( 9 n > d’l].

0

Y

Hence, by (44),

(0(|€])+[€]*=2)1/ 26,

0 (l€]) + |¢[e) 12 / exp(—Cu?)du.  (46)

0

I >

l\DIb—t

Note that (45) implies
(O(EN+(€1%7%) 2er = CleI(B(1€N)+1¢[**)/® > CE|*/® — 0, as € = —o0.
Thus, (46) implies

I > CO(E) + €177 /? 00, as &= —oo, (47)

Set
eg = £2(&) = 2[¢|.
Evidently,
e1(€) = 0(1€]' /%) < e(¢)

for sufficiently large |£|. We have

< [P

V(& 4 in)e ®Etm)
V(€)e ®©

va(€ +in) ‘
va()

exp{ M (Re h(£ + in) — h(¢)) }dn.

For sufficiently large ||,

A
Ren(e+in) —h(e) = -2 [ ¢S LA
0
1/l¢] ,tn 1. dt
—t n
< —2/0 € sin? A(t)t?’
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Since tn/2 < n/(2|¢]) <1 < /2 for n < 2|¢|, we have

1/€l

2 d
Re W€ +in) —h(e) < 5 [ AGT (19)
0
Integrating by parts, we get
Re h(€ + in) — h(€) < ——570((€]). (49)

Substituting A = A, = u*~2 into (48), we obtain

1/¢]
2 2
log [0 (€ + in)| — log pa (€ S—Tnz/tl *dt = @ —a)" n?1€[*7%. (50)
0

From (20), (49), (50), we derive
log |41 (£ + in)| — log 41 (€)
= (10g | B(¢ +in)| — log B(&)) + (log |pa(€ + in)
—10¢a(€)) + M(Re h(¢ +in) = h(&)) + [log [V (€ + in)e €+

~1og (V(©)e™9)] < Calle)r® - 53—

Assuming M being large enough, we get
log [¢1 (€ + in)| —log¢h1(£) < —C(B(|€]) + €] *)n* + C.

Since n > €1, (45) implies

log |1 (& + in)| — log 1 (€) < —C(O(|¢]) + [£]*72)et + C
< —CIEPPO(E]) + [€]*72)2 + C = —C(O(J€]) € + €]*) /3 + C.

2
2jg10=2 _ 2 _prp2 :
1€l = 5 MrPo(ig)) + C

Hence
|I| < Cl¢|exp[-COENIEN +1¢1*)/*] =0, as &——oc0.  (51)
We have
)< |20 - |t (52)

V(€+in)e— 2E+in)

T Ve @

exp{M (Re h(¢ + in) — h(£))}dn.
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For [£| > 1/(2A), we have n > 2|¢| > 1/A, therefore

A 1/n
Re h(é+in)—h(&) = —2/ —Hél gin? tnA(t)% < -2 / —t¢l gin? tnA(t> ;l?f
0 0
(53)
Since tn/2 <1/2 < w/2 for 0 <t <1/2,
o2 YoNa P T
) — _L—m/n/ ___’7/ du
< A < .
Re h(& +1in) — h(§) < 3¢ ) A(u)u
0 7
Integrating by parts, we obtain
2
h in) —h(€) < —————=0 2, 4
Re h(§ +in) — h(§) < e (m)n (54)
Since €| < /2, we derive from (21)
log|B(¢ +in)| — log B(€) < Ca(n) < CO)r?, 1< el < 3.
Using 53), (54), (14) and the inequality
lpa (€ +in)| < walf)
(which is a particular case of (23)), we get
¢1(€+in)‘ _ ‘B(§+in) ‘ | ealetin | ‘V(Hin)e‘q’“*"")
¥i(€) | | B(E) ©a(£) V(€)e=3©)
x exp{M (Re h(£ +1in) — h(£))}
< Cexp {COmn® - FL0mnP}, 20¢ <n < oo
Assuming M being large enough and using (29), (17), we obtain
t -
DL < exp(-CO?) < Cexpl~Catih?) < Cexp(~Ci' )
Thus,
|I3| < C / exp(=CntP)dn =0, as [€] = occ. (55)

2[¢|
Substituting (47), (51), (55) into (28), we conclude that

/Re (_”"&é;n))dn>0, for € <& <0.

Hence (27) and (42) imply that pi(z) > 0 for 0 < z < xy.
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3. Proof of Lemma 1

First we are going to show the validity of (18) and (19).
By (16)

(;— log B(z)) (56)

R=—T

__ (s [ee} 1 1 1 1
= (7 - D5 {_(ak—H")f B T (—ak+5k+r)j}

_ . o0 1 1
= -1k 2Re ((—ak+7‘+5k)j B (ak+r)">

= 2.7' Z]ij“;l Ok,
where
Re ag |+ .
Ok = / Re o T itm et (57)
—|Re a

Let us prove (18). We will estimate oy, for 7 = 1. Since points ay, lie outside
the angle {z : |r — arg z| < a} then for u € [—|Re ag|, |Re ax| + 6] we have

Ir +u+ilm a2 > (1 — cos @) (r* + u® + (Im ag)?) > Co(r? + |axl®).  (58)

Here and further by C, we will denote not necessary equal positive constants
depending only on «. Hence by (57)

2|Re ag| + 0
< —_—.
lok| < Cy PR (59)
Using (17), (56), (57) and (59), we get (18).
Let us prove (19). First we estimate oy, for j > 3. By (57) and (58)
2|Re ag|+9 j—3 Ky \J—2
94| < CoCritEm - moimr - ()
2|Re ag|+9 N2
S Ca_( ‘(‘ak|2aj_|,,.2)§)r . (KT) )
where K, > 1. Using (17), (10) and (56) we get (19) for j > 3.
Now we consider j = 2. From (57) we obtain
— 1 1
or = Re (i — ) (60)

_ 1 1 _ 2 1 1
- (|*ﬁk+7+5k\2 \ak+T|2) 2(Im ay) (|*ak+7+5k‘4 \ak+T\4)
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Hence from (60) we obtain

2 1 1
(]. + 2(Im a/k;) (|_ak+r+6k‘2 + |ak+’l"‘2))

<6 (2|Re ak|+(5k)r 2|R,e ak|6k+6,2c
= Vl-ag+r+ox 2 lag+r[? |=ak+r+0k|*-lag+r]?”

< _ 1 _ 1
|0k| — ‘|—ak+r+5k\2 lag+r|?

+3

1 1
<3 ‘ [—ap+r+op?  Jap+r[?

y (58)

(61)

2r(2|Re ax| + k)  2|Re ag|dr + (5,%
< C, .
o] < Ca ( (ax+22 T JagPr?

Using (17), (10) and (61), we get (19) for j = 2.

i 2r(2|Re ax| + &%)

<0(
(|lag|? + 72)2

) < Caalr), T21.

GogB()'| _ <0(5+

k=1

Let us prove (20) and (21). Substituting z = —r + 1y, ax, = —ag + 10k, (r > 0,
ar >0, B >0,y >0) into (16), we get

Ll (r—a )+ (y—Bx)’ (r—as)+ (Bs)
2log oy = Xk (IOg (ot 00 =B 198 (rray,16,)? (ﬂm)
()W HB)® 1o (r—a)®+(By)?
+ Zk:l (log (T+akf5k)2+(yfﬂk) log (7‘+0‘k‘i6k)2 kﬂk)2

o
)
=y, <log (r—ar)’+(y—Br)* _ log (r+ag+0k) +(y ﬂk )
)

(r—ax)?+(Br)? (r+og+05)2

—a)2 5 o \
5 (g A o ittt

= 5 () +o47).

(r4ax+0x)2+(Br)?

We shall obtain the estimates for 'y,(cj ), j = 1,2 with the help of the following
elementary inequalities:

log(1 — u) — log(1 — pu) < 7 “1(1—p), for 0<u, p<I; (62)
log(1+u) —log(1+pu) < E5(1—p), for u>0,0<p<1l.  (63)

Let us consider 'yk . If B> y/2, then

2y—y* _ B -Ww-B)? _ B2 )

S )+ B ol + P S ral i~

and we use (62) with

ly? — 2By o (r— o)+ (Br)?
et B P T T a @ O

Uulp =
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If B < y/2, then 42 — 2By > 0, and we use (63) with u; and p; defined by (64).
In both cases we obtain

7(1) dagr + 20k + 20k + 61% ) Y2 — 2By (65)
k (r — o) + (Bk)? (r+og +0k)2 + (y — Br)?
To estimate 7,(62), we use (63) with
Uz = 2Py + y2 p2=p1
(r—ag)? + (B)?’
We obtain
7(2) < doyr + 2057 + 200, + 6]% ) y2 ~+ 208y (66)
g (r — k) + (Br)? (r+ ok +6k)% + (y + Be)?
Joining (66), (65) and (62), we get
| 2 40ék’l" + 2(5kr + 2(5kak + 6k
lo < D(ay, Br, 0k ), 67
where
r+a+v)?+y? — 342
D(a,ﬁ,u) = 2( 2) L ’82 57+
(r+a+v)?+(y—B)Pl(r+a+v) + (y+p)°]
Set

M:={keN:(r+ar+ ) +y*—3(8)* > 0}.

Then (67) can be rewritten in the form

|B( )| <2y2 Z 4akr+2(5kr+25kak+5

i
B(—r) r—an)? + (Br)? D(o, By, 0k).  (68)

log

We need also the following lemma.
Lemma 5. For each positive r,y, a, B,v the following estimation holds

1

D(a,B,v) < 2ol 2 (69)
moreover, if (r +a+v)2+14?>—382>0,1<r<y/2 andv < "a i , then
C
D(e, B,v) < m (70)
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Proof of Lemma 5. Evidently,

(r* + o+ B)[(r + a+v)* +y* — 357
(r+a+v)2+(y—0)Al(r+a+v)2+(y+6)?]

(r* + o + B*)D(a, B,v) =

Denoting x :=r + a + v, we get

2 2 2 (22 + B2) (2% + y* — 3%
(@™ DB v) < oy — B + (y + A7)

To get (69), it suffices to show that

(22 + ) (2 +y* —36%)
[z + (y = B)ll=> + (y+ B)*] —

This inequality is equivalent to

(y° +468%) + (v* — B’ — B (y° — B*) +2B* > 0.

The last inequality follows from the calculation:
z(y? +46%) + (y* — 6°)* - B*(y* — B°) + 2
> (y* - %) = B*(y* — B%) + 26
. 2
— g ((yzﬂf) - yzﬂgﬂQ +2) >0 for >0, y>0, 8>0.

This completes the proof of (69).
Let us prove (70). If a > /4,8 > y/2 then

3(r2 + a? 4+ v?) + 9% — 2
(r+a+v)? + (y— BRIl +a+v)2+ (y+ A
3 C
S

D(a,ﬂ,l/) S [

If > pB/4,8 <y/2 then

3(r2 + o2 4 v2) + 32 — 82
(r+a+v)2+(y—B)2r+a+v)?+(y+B)?
3 C
s a?+y?/4 = Y2+ a2+ B2’

D(a,B,v) < [

If o < /4 then

7 21
(r+a+v)?+y?—36% < 3(r*+a?+v?) +y*—3p% < Zyz—gﬁZ <0, 8>+/2/3y.
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Hence if (r + a +v)? + y2 — 382 > 0, then B < 1/2/3y. Therefore

(y—ﬂ)Z_l_M>1 2\/— K1>O

y:+p2 T (y/B)?+1 T 5/2
So
[(r+a+v)’+ (y+B)?] [(r+a+v)’+ (y—B)?
> [y* +0® + 7] [® + (y — B)*] > Ki(y* + o + 87)%.
We have
i« e B < O < v
This completes the proof of (70) and Lemma 5. n

To complete the proof of (20) we estimate (68) with the help of (69). Then
we get (20) from the following calculation:

2’[‘ Qak +5k)
lo < 92

3 ) Y ,CZM (2 + axP) ((r — ax)2 + (Br)?)

2ak5k+5

+ 2
Y ,962];[ (r? + |ag|*) ((r — ax)® + (B)?)

2|Re ag| + dp)r 1
< 2 ( — < 2q(r).
= (; CEYTOANCY R

It remains to prove (21). Note that by (11) we can assume that dg/|ag| <
1/4. Hence we can use (70) to estimate (68). We get (21) from the following
calculations:

]Og |B(Z Z 5]% + ‘Re ak|(5k . 1
B(—r ey 72 + |ag|? y? + |ag|?
Z r(2|Re ag|dx, + 62) 1
fyn P4l g+ gl
(o]
2|Re ag|dx + 5 1
< Cuy? < Cotq(y).

Lemma 1 is proved.
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