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The notions of almost periodicity in the sense of Weyl and Besicovitch
of the order p > 1 are extended to holomorphic functions on a strip. We
prove that the spaces of holomorphic almost periodic functions in the sense
of Weyl for various orders p are the same. These spaces are considerably
wider than the space of holomorphic uniformly almost periodic functions
and considerably narrower than the spaces of holomorphic almost periodic
functions in the sense of Besicovitch. Besides we construct examples showing
that the spaces of holomorphic almost periodic functions in the sense of
Besicovitch for various orders p are all different.

A continuous function f on a strip jgy = {z=z+iy € C:a <y <b} is
called almost periodic if for any € > 0 the set of e-almost periods

{reR:d] (/). (2 +7)) <&}

is relatively dense on R, i.e., its intersection with any segment of the length
L = L(e) is nonempty. Here
df, y(g:h) = sup |g(z) —h(2)] (1)
ZEH[a,b]
is the standard uniform metric on IIj, p.
We denote by Ul the space of almost periodic functions on IIj, 5. By the

Approximation Theorem, Uy, ;) is equal to the closure of the set of all finite expo-
nential sums

N
Z Cn(y)ei)\nwa A €ER, cn(y) € C[a,b] (2)
n=1
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with respect to the metric dfé’b].

Note that any continuous periodic function on a strip IIf, 5 with real periods
is almost periodic since any period is an e-almost period for every € > 0, and the
set of periods forms a dual-sided arithmetical progression.

We can replace the uniform metric dﬁ;,b] by either the Stepanov metric

dﬁ:b]( = sup /|g (z+1t)—h(z+t)Pdt ]| , p>1, (3)

or the Weyl metric

dWioh) = fim sw | o [laer) - hGPit) L pz1 @)

T—oo Zen[a,b]

or the Besicovitch metric

(S

— 1
dlo.t) = Jim swp (o [latt+iv) ~heripar) L px1 @
T—o00 a<y<b 2T
= T
We suppose that the functions g(z) and h(z) are measurable and |g(z + iy)|P and
|h(z + iy)|P are locally integrable with respect to the variable z for fixed y.

The closure of the set of sums (2) in metrics (3)—(5)will be called the space of
almost periodic functions in the sense of Stepanov of order p, the space of almost
periodic functions in the sense of Weyl of order p, the space of almost periodic
functions in the sense of Besicovitch of order p, and , respectively, will be denote
by

D P vy
S[a,b]’ W[a,b] and B[a,b]' (6)

In the case a = b =0, i.e., for functions defined on the real axis, these spaces
are well-known (see [2, 3, 6, p. 189-247].) Note that we can also define the spaces
(6) by using the concept of e-almost period. But for the space of B,y this
definition is much more complicated (see [2, p. 91-104]).

It is clear that every sum (2) is uniformly bounded on IIj,4), and therefore
an almost periodic function f(z) from the space Uy (or from spaces (6)) is
bounded in the corresponding metric, i.e., dg,b](f’ 0) < oo (or dS (f, 0) <
de ( f,0) < o0, dBp ( f,0) < 00). Observe that in the definitions of spaces (6) we
can replace sums ( ) by functions from Ul p.

It is easy to see that the elements of metric spaces (6) are equivalent classes of
functions with the corresponding zero distances. For example, the equivalent class
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for the space Sf; b consists of the functions which coincide a.e. on every horizontal
straight line. Note that every two functions with the difference e_($+iy)z always
belong to the same class in the spaces W[Z 4 and B[I; ) since dE/X’Z] (e-@t)” 0) =0
for all p < oo and a < b. Nevertheless we will use the notation f € W[I; b (or
fe Bf; ,b])3 this means that the equivalent class of the function f belongs to the
corresponding space.

The Holder inequality implies that for all p < p’

diyy(g,h) < diy (g, ), dlyy(g,h) < dfyy (9,h), dfy(g,h) < dfyy(g,h).

[a’ [a ) [aa [a, [a

Besides for all p > 1
dpr} (ga h) < dWZ] (97 h’) < dﬁ:b] (ga h) < df{;,b] (ga h)a

[a, [a,

the inequality between dwz} (g,h) and df:b] (g, h) follows from the relation

[a,

) L ) (L] Jj+1
I _ p [ _ p
o [ et —garori < oo >[I0 -gropa
.y j=—[L]-1 5
L+1 D
< Exle it

Hence we have

Stas) € Stas Wiae) © Wiawr Blag) © Blay (7)
and
74 P y4
Ula) © Stas) © Wian © Blap- (8)

Here all the inclusions mean that each equivalent class in a "narrower" space is
contained in some equivalent class in a "wider" space. All the inclusions are strict
even in the case a = b = 0: there exists the equivalent class in a "wider" space
containing no class from a "narrower" space (see [4]).

Note that there exists the mean value

T
(i) ) = Jim o [ 7ty Q
G

uniformly in y € [a, b] for the before mentioned functions. Indeed, the mean value
of finite exponential sums (2) equals the coefficient at €’%; in the general case,
the existence of limits (9) follows easily from the definition of almost periodicity.

By the same way, we can prove the relation

T
1
tim | sup oo [ o+ tg)dt — (Mif)(w)| =0 (10)
T—o00 z€R™, 2T
a<y<b -T

Matematicheskaya fizika, analiz, geometriya , 2004, v. 11, No. 1 89



S.Yu. Favorov and O.I. Udodova

for the space W' and for all "narrower" spaces.

Let a4 = {z =z +iy € C: —00 < a <y < b< oo} be an open strip, may
be infinite width. A function f(z) is uniformly almost periodic on I, 4y (or almost
periodic in the sense of Stepanov, Weyl, and Besicovitch), if the restriction f(z)
to every strip IIj, g for @ < @ < B < b is almost periodic in metrics (1), (3)-
(5). We denote by HU(,4), H S‘Z’a,b), H W(’; w H B(pa,b) the corresponding spaces
of holomorphic almost periodic functions on Il . The inclusions similar to
(7) and (8) hold for these spaces. The spaces H Bfa,b) were studied earlier in [7].
These spaces were also defined in [1] as sets of holomorphic functions on a strip
with the following property: the restrictions to each straight line in the strip are
almost periodic functions in the sense of Besicovitch of order p. However as it

e\z|N)

follows from [1, Theorem 3.4], for functions growing as O(e on a strip these

definitions coincide.
The following Linfoot’s theorem is well-known:

Theorem L (see [2, p. 146]). Spaces HU(,yp) and HSf’a p cotncide for all
p=>1.

Here we obtain the similar result:
Theorem 1. The spaces HW(’; b) coincide for all p > 1.
The proof of this theorem is based on the following proposition.

Proposition 1. Each function f € HW(la b) is uniformly bounded on every
substrip I, g, a < a < B <b.

Next, we prove that inclusions HU,, ;) C HW(la,b), HW(la,b) C HBfa’b), HB:E’;’b) -
H Bfa’b), p' > p > 1, are strict in the same sense as inclusions (7) and (8).

Theorem 2. There exists a function f € H W(l_ 50,00) such that every function
g equivalent to f in any space W[l_H H) does not belong to Uj_g g) for all H > 0.

Theorem 3. There ezists a function f € [ HB%LOO o0) such that every func-
p>1 ’
tion g equivalent to f in any space B;["_H,H], p > 1, does not belong to W[I_H,H]
for all H > 0.

Theorem 4. For all p' > p > 1 there exists a function f € HB?_ such
00,00)

that every function g equivalent to f in any space Bf’_H Hp does not belong to

Bf’:H H] for all H > 0.
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The proof of Proposition1l. Supposea<d <a<pf<pf <b.
Since drg,lﬂ,](f, 0) < oo, we have

Ty
1
— <
o7 / |f(z+u)|du < C

— TO

for some C < 0o, Ty < oo and all z € [y gr.
Fix r < min{Ty, a — o, ' — B}.

Since the function f(z) is holomorphic, we have for all 2y € II|, g

F0)] < — / £ (2)|dady

r
|z—zo| <
and
o)l < — / [ 1£Ga+ut iv)jduds
™r
—To |Jv|<r
TC
< —5 sup /|f z+u)
T z€l[a,p) -

Proposition 1 is proved.

Consider the sums
D(t) = Zkge_i)‘"t,
n

which are called Bochner—Fejer kernels (see, for example, [6, p. 66-71]). Here A,
runs over the linear envelope of the countable set A C R over the field Q. The
following properties of Bochner—Fejer kernels are fulfilled:
1) 0< Kkl <1;
2) there is only a finite number of nonzero coefficients &, for every fixed g;
3) kq —) 1 as ¢ — oo for every fixed n;
) K01 = KO();
5) @(¢) > 0 for all t € R;
6) My {KD1)} =1.

Clearly, M, {e_i)‘tei“t} = 0 for A # p. Hence for any finite sum Q(z,y) of

type (2) with all exponents A, € A, we have

N
(Q+ KD)(z,9) = M { Qs + ) KD } = 3 enly)hie™.
n=1
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It follows from condition 3) that this sum converges to Q(z,y) as ¢ — oo uniformly
on the strip Iy
Take a function f € W[t b)- Fix € > 0 and take any sum Q(z,y) of type (2)

such that dEZ,I)]( f,Q) < e. Then choose g such that

sup
(2,y) €T q ]

Q(z,y) — (Q * K@)(m,y)\ <e

Put (f*K@)(z,y) = My {f(z +t,9) KD (t)}. It follows from (10) that the mean
value does not change under shift on £ € R. Since

M@+ ty)e ™ = M { (o +ty)eHEHD ) e

we see that {f x K(q)} (z,y) is a finite sum of type (2). Next, we have

I(f * K@) (z,9)] < lim — / @+ t,y)| KD (@)dt
T

for all z € R, y € K. By Fatou’s lemma, we obtain

T X

1 1 1

— (q) < i (a)

2X/|(f*K (z 4+ T1,y)|dz < Tlgr;o2T/2X/|f(w—I—t+T,y)|K (t)dtdz
- -X

1 r 1 1
< lim —/K(q)t sup —/ flx+ty)|de pdt
7500 2T | AT 2X | I )

for every T € R and X < oo. The expression in the curly brackets does not
exceed d ( f,0) + ¢ for large X. Consequently, passing to the limit as X — oo,
and then 6 —) 0, gives the inequality

T
AL+ KO,0) <y (£,0) Jim oo [ KO @)t = diYy(1,0)
-

Replace f by f — Q to get
AV (fK9, f) < Y ((f = Q)+ KD, 0)+df} 5 (Q+ KD, Q) +dfY  (F—Q,0) < 3¢,

thus the exponential sums f * K (9 approximate the function f with respect to
the metric d[vgz] as well.
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The proof of Theorem 1. LethHW(lab),[a,ﬁ]C(a,b).

According with Proposition 1 we have sup |f(z)| = C < oo, therefore for any
zel'l[a,ﬂ]

K@
(£ K@) (2] = |m {1+ KO0} < oM {KOW | = €.

Hence for any p > 1

T

we @ 1) = Tm 1 _ (@ p
(s =6 0.0) = Jm_ sw o [ 10— (e KO)e + o

G
T

< Jim s o [ 1540~ (F <KDYz +0)
70 zEMa g 75 T

x| f(z+1) = (f  KD)(z + )P~ 1dt < 2C) ™" dfY gy (f + K@, f).

[a,
Thus the exponential sums f*K (9 approximate f in the metric d&”’ﬂ], as claimed.

The proof of Theorem 2 Consider the function f(z) =
> e )" where T = {n=3"18k+1), k€ Z, 1€ N}. For any z = = +
nel
iy € C we have |f(z)] < e’ S e M) < W T 4=’ The series

nel neZ

2

o
> e~4@—n)? converges for every x € R and is a periodic function with the
n=—00
period 1, therefore f(z) is bounded in every strip {z =z +iy: z € R, |y| < H}
and f(z) is an entire function. In particular, f(z) is uniformly continuous on each
strip.
Let us check that f(z) € HW(I_OO,OO). Put

o (z) — Z 674(z7n)2 '

n=3"1(3k+1),
kez

The function f(z) = Y. ¢y(2) is the sum of the functions with periods 3!, I <
1<I<m

m, therefore f,,(z) is a periodic function with the real period 3™, and belongs to

the space HU(_,00)- It is sufficient to prove that

A% 1y (F Fim) = 0 (11)
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as m — oo for each H < co. We have

|f(Z) Z Z‘ 4(2—3!n—31-1) Z e 4(z—3™n 4H2

l=m+1n€Z n=-—00

T
and dFj}{ H] (fs fm) < cAH® hm sup 2T Z [ e Az+t-3"n)® gy
’ T

X zreR n=—00 —

Put

1
Elz{nEZ:nS?)mx—?)mT—E}, n1 = sup F1,

1 1
Egz{nEZ:3_mx—3_mT—§<n<3_mx+3_mT+§},

1
Ey = {ne Z:n23_mz+3_mT+§}, no = inf Fj
for any fixed x € R, T > 0. Denote by card E the number of elements of the set

E. Note that card By < 2-37™T + 2.
Forn € E; and t € [-T,T]

1
(x+t—3"n) >3™ (n1+§—n)

and
e—4($+t—3mn)2 < 6—32m(2(n1—n)+1)2.
Similarly,
1
@B"n—z—1t)>3" (n—n2+§)
and

e—4(m+t—3mn)2 < 6—32m(2(n—n2)+1)2

for n € E3, t € [-T,T]. Consequently,

(o tt—3mn o _(3™n @mu)? , _ VT
> 2T/ 2_: < /e =5 3w
_ = 0

nek;

and the same estimate holds for the sum

3 2T/ 4o tt-3mn)? gy

neks
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Next, we have
T o0

/64($+t3m”)2dt < / e dy = \/77?
-7 —00
and
T
1 m 1 1
Z . e~ Mz+1-3 ")zdt < —. ﬁcard Ey < —. ﬁ (3—m2T + 2)
2T 2T 2 2T 2
neks T

for n € FEy. Thus drzl ] (f, fm) < ¥ . 3=meH” and we obtain (11).

Choose H < oo. Let us check that d[”_’}{ H](f, g) = 0 for no function g €
U(—u,n)- We will prove the stronger result: there are no almost periodic functions

g(z) in the sense of Stepanov on R with the property d%; (f,9) =0.
We need some auxiliary lemmas

Lemma 1.

sup f(z) < i <1< inf f(z). (12)
z€Z\I 2 zel

The proof of Lemma 1. We have

o0

f@) =2 ) < 3 < / 6_4t2dt:g

leN neZ\{0} o0
for any z € Z\I, and f(z) > e=4#10) =1 for z = ng € I.

Lemma 2. For all g € Z\ {0} there ezists a two-sided arithmetical progression
I(q) C I such that (I(q)+q)NI=0.

The proof of Lemm a 2. Every positive integer ¢ has the form
g=3"1B3m+1) orqg=3"13m~—1),r € N, m € Z. In the first case take
n; =3""1(3j + 1), j € Z, because

I 'Bm+1)+3"'Bi+1)=3""B(m+j+1)—-1)¢ I

In the second case take n; = 3""}(3(35 —m — 1) + 1), j € Z, because n; + q =
3"(35—1) ¢ I for any j € Z.
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Lemma 3. There ezists v > 0 such that for each 7 € R, || > 1 there is a
relatively dense set I(1) C R, with the property

inf |f(z+7)— f(z)| > 7. (13)
z€I(T)

The proof of Lemma 3. Since f(z) is uniformly continuous on R,

there exists NV < oo such that
@ - 1wl <5 (1- %) (1)
whenever |z — | < +.

Let 7 be an arbitrary real number, |7| > 1. We show that inequality (13)
takes place with v = ﬁ ( — 4) for all points from some relatively dense set
in R.

Since the fractional parts of numbers 0, 7, 27,..., N7 belong to the half-open
interval [0,1), there are two numbers k7 and k'7, 0 < k < k' < N, such that the
distance between their fractional parts is at most %, i.e., for some g € Z\ {0} the
inequality

1
!
_ _al < =
‘k’T k't q|_N
holds. For M = k' — k we obtain
‘M — |< 1 (15)
T4l <5

Let L be the difference of the arithmetic progression I(g) from Lemma 2. Fix
a real number @ € R, and n € I(g) N [a,a + L). Taking into account Lemma 1
and 2, we see that

F) — St ) =1 - Y. (16)
On the other hand,
M-1
[f(n+q) = f(0)| <|f(n+q) = Fln+M7)|[+ > |f(n+kr) = f(n+ (k+1)7)|.

k=0
(17)
By (14) and (15), we have |f(n+¢q) — f(n+ M7)| < (1— ﬁ) Hence

inequalities (16) and (17) imply that

N[

2

" " 1 VT
4 K'7) = flo+ (8 + 1)7)] > (1_7)
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for some k", 0 < K" < M < N.

Thus there exists the point z = n + k"7, £ € [a,a + L + N7| such that
|f(z+7) — f(z)| > ~. The lemma is proved.

We continue the proof of Theorem 2. Let v be the constant from Lemma 3.
Take d > 0 such that the inequality

@) - f0)] <3 (18)

holds whenever z, t € R, |z —t| < §. Let us check that an arbitrary function
g(z) from the equivalent class of the function f(z) in the space W{lo} satisfies the
inequality

+1
&%y alt+),90) =swp [ gt +7) —glolar > Ty (19)

for arbitrary 7 € R, |7| > 1. Then the set of e-almost periods for the function
g in the Stepanov metric for ¢ < 1’—3 is contained in the segment [—1,1], and so

g(z) ¢ S{lo}'
In order to prove (19) for fixed 7 € R put

Fl:{$€R;|g(g;)—f(.’L')|21}’

Fzz{mER:|g(x+7)—f(:c+7)|2%}.

Take L < oo such that the set I(7) from Lemma 3 has nonempty intersection
with every interval of the length L. Since

1 5
S— F —nL, nL < —
2anes( 1N [—nL, nL]) < Ly / |f(z) — g(z)| dz
FiN[—nL, nL]
nL
< oo [ 1) - g@)ld
S only T IENE,
—nL

and f, g belong to the same equivalent class in the space W{lo}, we get
— 1 1
im —— — <d¥ =0.
nli)nolo 5,7 Tes (FiN[-nL, nL]) <dg, {f,gt =0
The same equality holds for the set F». Hence

1 "Zl mes {(F1 UFy) N [kL, (k + 1)L]}

L

1
= lim 3.7 mes {(Fi UFy)N[-nL,nL]} = 0.

n—o00 2N
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Therefore for n sufficiently large there exists an interval [koL, (ko + 1) L] such that

)
mes {(Fl U F2) N [k}oL, (ko + 1)L]} < 5 . (20)
Take a real number z € [koL, (ko + 1)L] N I(7), where I(7) is defined in
Lemma 3. By (18) we get the inequality

lFE+7) = f@OI 2 |f@+7) = f@)| = [fl@+7) - fE+7)| = |f(z) - fF(O)] =2

for each point t € (z — §,z + 6).

Note that the length of the interval (z—d,z+ )N (ko L, (ko+1)L) is at least 4.
It follows from (20) that the measure of the set (z — d,z + )\ [F1 U Fy] is at least
$. Next, for t € (z — 6,z + 6)\ [F1 U Fy] we have

9lt4+7) — 90 = 11+ 7) — S0 ~ £+ 7) — g+ )|~ £(0) —gt)] > L.
Thus,
T+0 6
/|gt+7’ ()] dt > ot +7) — g(0)| 6 > 1.

[z—68,z+8]\(F1UF3)

The last inequality implies (19). The theorem is proved.

For the proof of other theorems we need following lemmas:

—4(:5 3n)?

Lemma 4. Any collection of functions se,(x) = satisfy the inequal-

ity
(Sonio) <2 (Sant).
k=1 k=1

The proof of Lemm a 4. Fix:vERandputno—[§+ ] Since
3ng — 5 < z < 3ng — %, we obtain

no—1 ( )2 no—1 ( ) )2 00 ( )2 \/—
—4(x—3n —(6(no—1—n)+3 —(3n T
e < e 0 < e < —

Z = E = nz:l = 6

n=—oo n=—oo

and
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o0
hence ), e 4z—3n)? < 4 < 1. The statement of the lemma follows from
n€Z\{no}
the inequality

(a+b)P <27 (a + 1)
with @ = &y (z) and b= ) &,(z).
n#ng

The proof of Theorem 3. Forz=z+1iy € C, [ € N put

o (z) — Z 674(z7n)2’

n=3""1(3k+1),
keZz

o
1(2) =) lo(2). (21)
=1
First of all, for |y| < H and any z € R we have

[u(2)] < 1?37 eI T AR < (P NP e ()
kEZ neZ

Hence each term of sum (21) is uniformly bounded on every horizontal strip. If
|z| < 3%~2 for some Iy € N, then for all k € Z, [ > Iy we have

z— 313k + 1)‘ > 317113k 4+ 1) — 312 > 3-2(4fk| + 1)

and for z =z + 4y, |z| < 3%72 |y| < H

o0
lp(z)] < €M 2674(31_2(4%‘“))2 < e4H22Ze’4(3l_2")2

k€EZ n=1
< AH?
2 1-2,2 e T
S 64H 2 6_4(3 u) d'U/ — 7\/_ ,
2-31-2
0

so all terms of series (21) with indices [ > [y are majorized by the terms of the
convergent series

i 9w’ |
2 3

=1

Thus series (21) uniformly converge on every compact set in C, and f(z) is an
entire function.
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m

Next, ¢;(z) is an entire function with the period 3!, and the sum 3 lp;(2) is
=1

a periodic function with the period 3™, therefore this sum belongs to the space

HU(_,00)- Hence if

T

1
1 00 P\ ? m
lim | — sup / lp(2)dz = dgHH} (Zl(pl(z),f(z)> —0 (23)
Tooo \ 2T WISH 9 |1=m+1 =1
as m — oo for all H > 0, then f(z) € HB? p>1

(—O0,00)’

Fix T' > 0 and consider the integral

T T
[tz = 3 [etestonra,
Zr

keZ 7y
Put )

Elz{nEZ:nS—?)l_lT—i},nlzsupEl,

1-1 1 1-1 1
Ey=<neZ:-3 T—§<n<3 T—I—§ \ {0},

1=t 1 .
Egz{nEZ:nZ3 T+§},n2:1nfE3.

Note that

T T
2/6_4($_3l_1(3k+1))2dl‘g > /6—4(m—3l_1n)2dw
_T T

keZ

T T

+ Y /e—z;(sc—:),l—ln)zakleL /6—4(w—3l_1n)2d$_

nEEsz neks T

Note also that the number card E5 is at most 27 - 31—
For n € E; and z € [-T,T] we have

1
(:1: — 3l_1n) > 3i-1 (m + 2~ n)

—4 _3[—1 2 _32(1—1) 2 _ 1)2
@I ¢ B (o m) 1)

and
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by the same way, for n € E3, z € [-T,T], we have

(3l’1n — a:) > 31 (n —no + %)

and
e~ Mz=3"1n)? - =320"1(2(n—nz)+1)*
Therefore
T . o)
% / @3 gy < § I o / (3 ) g ; \g_fl .
nek; -T n=1 0 .

The same estimate is true for the sum over n € E3. Next, for n € Ey we get

T 00
/6_4@_311”)2(13: < / e~ du = g
G —00

and .
1 -1, \/7_T \/_
Z 2T/e *dx 4TcardE2 AT ~—3 72T
neks, _r

T
Thus ﬁ f oi(z)dr = % i e—A(@—31"1(3k+1))? gy < 3\/@314 _
kEZ -T

Applymg Lemma 4 to the functions e 4(#37'Gk1)* 'k c Z_ we obtain

T T
1 1
o / P (z)dz < 2p_1ﬁ / o, (z)dz < 2P=29,/x37L. (24)
-T =T

The Holder inequality implies

< ( > z?psoﬂx))p ( > llq) ,
I=m+1 I=m+1

where % + % = 1. Therefore for sufficiently large m we have

Q=

> lp(z)

l=m+1

T T
1 = = 121’
ﬁ/ Z loi() da:< Z 12P2 /<p” )dz < 2°729/7 Z

S I=m+1 l=m+1 r I=m+1
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If we combine the letter with the inequality

Y la)| <N lpi(a)

l=m+1 I=m+1

sup
ly|<H

we get (23).
Let us check that an arbitrary function g(z) from the equivalent class of f(z)
in the space B?o} does not belong to the space W{po}. Then it follows that g does

not belong to the space W[’: H,H] for all H > 0.

Assume the contrary. Then

lim —sup |g z+t)Pdt = (dV7(0,9) ' < 00,
{0}

J)—)OO J}ER

and for some Ty < 00, ¢ = ¢(Tp) and all z € R

/ l9(z + D)Pdt < c. (25)
“To

Take an integer [ such that

1
P
2 log 2T
[ > max n ¢ , (ig 30 (26)
[ e dt o8
—To
For each fixed z, = 3'n + 3/, n € Z, we have
To To To
/ |f(zn, +¢)|Pdt > 1P / ((374(‘”"“*3[_1(3"“))2)1) dt > 1P / e gt > 2c.
~Ty ~To ~Ty
(27)

Take T}, = x, + Ty, n € N. It follows from (26) that 2T, < 3!, hence the
intervals [z — Ty, =y + Tp| are mutually disjoint. By the Minkowski inequality

n
for E= | [zx — Ty, zk + To], (25) and (27), we get

k=—n
/ F(t) — g(t)P dt / ) — g dt
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/If(t)l”dt - /\g(t)v’dt
E E

1
p
Z /|ka+t|”dt — Z /|gack+t|pdt

Ic_—n_To k_—n_TO

> ((2n+1) ZC)T‘ —((2n+1) )P =(2n+1 )%6%(2%—1),

therefore
/ 1£(8) — g@)|P dt > (2n + 1)e(27 — 1)P. (28)
-T,

Since T, = Tp + 3! + n3!, we see that % — 37V as n — oo. Hence
inequality (28) contradicts to the equality

T
T@%/\f(t)—g(t)\pdt=< {0}(f, )) 0,
-T

which is true for each function g from the equivalent class of f. The theorem is
proved.

The proof of Theorem 4. Fix py € (p,p’) and take

Z 370 ) (29)

here the functions ¢;(z) are the same as in the proof of Theorem 3. As in that
proof we see that the terms of series (29) are majorized by the terms of series

00 9\/77@4H23l(%_1)
2 5

=1

on compact sets {|z| < 3072, |y| < H}. Therefore f(z) is an entire function on C.
As in the proof of Theorem 3, we have for any H < oo

d[B—pH,H] (Z 3%9”(2’)’ f(2)> —0as m— . (30)

=1
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Indeed, by the Holder equality

(T ) (Z) i

l=m+1 l=m+1

3 3ig(a)

l=m+1

Hence for m sufficiently large, for all 7' > 0 inequality (24) implies

. T/ o » ©  » T
9T ( Z 3P0<pl(:v)> dz Z 3Polpﬁ/golp(x)d:v
oy

l=m+1

IN

The convergence of the last series yields (30).
Let us show that an arbitrary function g from the equivalent class of f(x) in
the space Bfo} does not belong to B?o .
Assume the contrary. Then for sufficiently large T" we have
T

1

= / g dt < Oy < oo.

-T
Let z,, be the same as in the proof of Theorem 3, and T,, = z,, + %
Applying the Hoélder inequality for the set

n

1 1
E= U |:$k—§, $k+§:|,

k=—n

gives for sufficiently large n

5 1
p P
[1spar< | [low@a) | [a
E E E
T, » =0
<@n)y | L / lg(t)|P' dt /dt
S n 2T, g
—Thn E
P P 1_p

<c! @)Y @n+1)7v.
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As in the previous theorem, we have for all | € N

1
7 p
/|f Tp +1 |pdt > 3% <23_4($n+t—3l_1(3k+1))2> dt

kEZ

I\JI)—‘
o= NI

l 1
> 3£/e—4pt2dt=3p€02.

=

Now the Minkowski inequality yields

1
p
|pdt > |f (t)|P dt
> [ 1 orar| /\g |
E E
> Z/|ka+t|f’dt | [1swra
k:——n_l B
2
ip v L0 oT, \ ¥ Z
> (3wCy(2n+1)) —|CF n_)”
_(317002(n+ )) (Cl (2n+1) (2n+1)> ,

therefore

X / 76) — g0 de

-7,

Ip r% p » 1
S 3pCy(2n+1) ) o? 2T, \* 2n+1\"
= 2T, L \2n+1 2T,

Since T}, = % + 31 4+ n3', we obtain 22—T+ET — 3! as m — o0, hence

T—00
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For p' > pg, and [ sufficiently large the last inequality contradicts to the equality

T P
_ 1 »
i (57 [ 150 - gtPdt | —df(s.0) =0,
-7

T—oo

which is true for all g(x) from the equivalent class of f in the space B?o}' The
theorem is proved.
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