Matematicheskaya fizika, analiz, geometriya Short Notes
2004, v. 11, No. 1, p. 107-113

On the growth of a subharmonic function
with Riesz' measure on a ray

A.A. Gol'dberg

Department of Mathematics, Bar-Ilan University
Ramat-Gan, 52900, Israel

|.V. Ostrovskii

Mathematical Division, B. Verkin Institute for Low Temperature Physics and Engineering
National Academy of Sciences of Ukraine
47 Lenin Ave., Kharkov, 61108, Ukraine

E-mail:ostrovskii@ilt.kharkov.ua
Department of Mathematics, Bilkent University
06800 Bilkent, Ankara, Turkey
E-mail:iossif@fen.bilkent.edu.tr

Received June 25, 2003

We consider functions v subharmonic in R™, n > 2, which are natural
counterparts of Weierstrass canonical products (so-called Weierstrass cano-
nical integrals). Under assumptions that the order of v is a noninteger
number and the Riesz measure of v is supported by a ray we obtain sharp
estimates of asymptotical behavior of v at infinity along rays.

Let f be a Weierstrass canonical product of noninteger order p. Assume that
zeros of f are situated on the negative ray and denote by n(r) the number of the
zeros in the disc {z : |z| < r}. In [3] it had been shown that

1 160
lim sup > lim inf m

log | f (re'?)] 5, Tcos Op
r—00 n(r) ~ sinmp T rooo n(r)

and both inequalities are sharp.

This paper is devoted to extension of this result to functions subharmonic in
R, n>2.

We denote by |z| the euclidian norm of a vector z = (z1, z2,...,z,) € R", by
(Z,y) the angle between vectors z,y € R", by S, the unit sphere of R", by I
the ray {z : 21 > 0,0,...,0}. Each vector z can be written in the form z = r¢,
r>0&€8,.
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We will follow terminology of the subharmonic function theory accepted in
[2]. Let us remind the definition of Weierstrass canonical products of genus ¢ =
0,1,2,... in R®, n > 2.

Following [2, Ch. 4], up to notations, we set forn =2, ¢=0,1,2,...,

E (mei(@),q) ‘ :
|

where E(w,q) is the Weierstrass primary factor of genus ¢, and set for n > 3,
qg=20,1,2,...,

2 _

KM (2,y) = — (a2 + y* = 2la|ly| cos (@ 7)|* "
(2] Am)
Y (1) 60 eost@n),
= \lyl

where Gg-n) (w)’s are Gegenbauer polynomials with the generating function (1 +
22 — 2zw)—")/2,
Let u be a locally finite measure in R™ and let

n(r)=r>"u({z: |z| <r}), r>0.

It is known ([2, Ch. 4]) that if

then the integral
vi@)= | K{(,y)du(y) (2)

converges and v(z) is a subharmonic function in R™ whose order coincides with
that of the function n(r). A function of form (2) is called Weierstrass canoni-
cal integral of genus ¢q. It is a counterpart of Weierstrass canonical product for
R",n > 2.

R em ar k. By the Hadamard theorem (cf.[2, p. 146]) each function u
subharmonic in R™,n > 2, and of finite order p can be represented in the form u =
v + h where v is a Weierstrass canonical integral and h is a harmonic polynomial
of degree not greater than g := [p]. Hence, if p is noninteger, then u(z) =
v(z) +o(|z]?), |z| = oo.
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Now we introduce a function I(p,n,0), p > 0, n = 2,3,4,...,0 < 0 < m,
which will play a role similar to that of (7 cosfp)/(sinmp) in (1). For n =2 it is

the same as in (1) that is
7 cos Bp

I(p,n,0) =

If n > 3, then we firstly define I(p,n,0) for 0 < p < 1 as follows:

(3)

sinmp

) du

(4)

[e o]
I(p,n,0) = —(p+n—2) / %(1 + u? + 2u cos §) 3~/ i
0
The integral in the right hand side absolutely converges even in the strip {p :
2 —n < Rp < 1} and is an analytic function there. It is easy to show that this
function can be analytically continued into the half-plane {p : Rp > 2 — n} as
a meromorphic function with polesin {p =1,2,...}. Indeed, taking an arbitrary
g € {0,1,2,...} and integrating by parts g times, we get

I(p,n,0)
_ ptn—2 [0\ 2 (2-n)/2 _du
oo e | (G) G raesnen S
0

The integral in the right hand side absolutely converges and is analytic in the
strip {p: 2 —n < RNp < ¢+ 1}. In this way we define I(p,n, d) for all noninteger
p>0.

R em ar k. The function I(p,n,0) was introduced in |2, p. 160]|, by the
following way:

o

I(p,n,0) = /[yQ" — (14 4?4 2y cos 9)(27")/2]y"+"’3dy, 0<p<l.
0

Changing variable y = 1/u and integrating by parts, we see that this definition
coincides with (4). In [2, p. 160], it was shown that I(p,n,0) can be analytically
extended into whole complex plane as a meromorphic function of p with poles in
{0,£1,+2,...}.

Now we are ready to state the main result of the paper.

Theorem. Let i be a locally finite measure in R™, n > 2, supported by [_

and such that the function n(r) has noninteger order p. Let v be a Weierstrass
canonical integral in R™, n > 2, of genus q = [p|. Then the inequality holds

lim sup v(ré)

r—00 n(r)

> oo, (1) 2 imint VS ce s\ (0)

Both inequalities in (6) are sharp.
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Corollary 1. For n =2 we have

v(re?f)

v(re®?) ., Tcos 0p

lim sup > lim inf - <0 <.

r—oo n(r) T sinmp T rooo  n(r) ’

If v is a logarithm of modulus of a Weierstrass canonical product, then it is
a Weierstrass canonical integral, therefore corollary 1 contains the result of [3]
mentioned before.

Corollary 2. Forn > 3 we have

: v(réy) _ mplp+1)(p+2)...(p+n—2) . . v(r{y)
h:«gsogp n(r) 2 (n—1)! sinmp = hrH—l>£f n(r) ’ Q

where &, = (1,0,0,...,0).

To derive the latter corollary from the theorem it suffices to calculate I(p,n,0).
Let ¢ < p < g+ 1. Using (5) with 8 = 0, we obtain

n = — p+n_2 [ 'ul27n(+1)d—u
Tom ) <p_1)<p_z)...<p_q)0/[(1+) o
()i —2)(n—1).. n—l—q 27
B (p=1)(p—2)... 1+U”+‘1 tup=a’

0

Calculating the integral, we obtain the desired result.
Before starting with proof of the theorem we get a representation for I(p,n,0)
different of previous ones. Set

ha(u,0,q) = log |E(ue”, q)],
and, for n > 3,
q . .
P (1, 0,q) = —(1 + u? + 2ucos 9)2~™)/2 4 Z(—I)JuJGg-") (cos9),
=0

where G;n) (w)’s are Gegenbauer polynomials with generating function

(1 4 u? — 2uw)®™/2. 1t is easy to see that for § € [0,7) and all n > 2, ¢ =
0,1,2,..., except the case n = 2, ¢ = 0, the following estimate holds

|Pn (2, 0,q)| < Cmin(u?,u?™), u >0,
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and
|ha(u, d,0)| < Cmin(|logu|,u), u >0,
where C > 0 is a constant not depending on wu.
We will need the representation

7T hn(u, 0
I(p,n,0) = p+n—2/ uh,,q du, qg<p<g+1. (8)

0

To prove it denote for the expression in the right hand side of (8) by J for a mo-
ment. Integrating by parts ¢ + 1 times, we obtain for n > 3

__ p+n=2 [ (2™ du
J_p(p—l)(p—2)---(p—Q)O/(BU> nl1:0,4) =3

=D —-2)...(p q)/<8U> (1+ " +Zeoad) )

Comparing with (5), we see that J = I(p,n,0). If n = 2, then integrating in (8)
q + 1 times, we get

_ p it 2 q+1 o du
J_(p—l)(p—2)...(p_q)0/<au> logu+¢"| =

_ (- 1)qq' %70
(p=1D(p-2) u+e“’ q+1u” 7

0
Calculating the integral and comparing with (3), we see that J = I(p, 2,6).
Let us start with proof of the theorem.
Since p is supported by [, (2) can be rewritten in the form

v(ré) = / K{M(re,te_)d(t"*n(t)), &€ Sp, >0, (9)

where ¢ = [p], (&~ = (—1,0,0,...,0). The function v has order p and is harmonic
in R®\ I_. Let us fix £ € S, \ [_ and take o € (p,q + 1). Dividing both sides
of (9) over r'*7 integrating from 0 to oo and changing order of integration, we

obtain 00 (n)
[ 5= | {/ W‘”}dwn(t»- (10
0 1

Matematicheskaya fizika, analiz, geometriya , 2004, v. 11, No. 1 111



A.A. Gol’dberg and 1.V. Ostrovskii

It is easy to see that

M(rg,t6-) = " ha(r/t,0,q), for 6= (€,1). (11)
Using (8), we obtain
/an (ré, te) dr :tz_n_a/ hn(u,ﬂ,q)du _ p2-n—o I(o,n,0)

ulto n+o—2
0

Substituting this into (10), we get

/ v(rg) ;. _ 1lo,n,0) / * d(t"*n(t))
7.1—|—a n+o— 2 1 tn—|—a—2 .
0

Let us extend n(t) to [0,00) by putting n(¢) = 0 for 0 < ¢ < 1. Then integration

by parts implies
[ ore) i
v(r
/T1+a anﬁ/ T4 (12)
0

0

Further we will use the following result from [1] which is a version of a theorem
of Pélya [4] and can be found in an implicit form in [5, Sect. 8.74].

Lemma. Let 1, w9 be two functions on [0,00) and pa(r) > 0. Let p > 0, € >
0 be two numbers such that both integrals

I(0) == ‘pl(’;)dr, I(o) == ‘”@dr

converge for p < o < p+ ¢, meanwhile I5(c) diverges for o < p. Assume that the
function

U(o) := I1(0)/I2(0)

can be extended to an analytic function in the disc {z : |z — p| < €}. Then

lim sup o1(r) > U(p) > liminf L (r)
r—oo P2 (7") T (PZ(T)
Taking i1(r) = v(rf), wa(r) = n(r), V(o) = I(o,n,0), we see that all
conditions of the lemma are satisfied for 0 < ¢ < min(p — ¢,q+ 1 — p). Therefore
(13) implies (6).
To prove the sharpness of (6) consider the Weierstrass canonical integral (2)
with u supported by [ and such that

(13)

n(r)=r, r>1 (14)
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Evidently,
v(r§) = vo(r§) + O(r?), 71— oo, (15)

where

w(r€) = /0 K (re, t6_)d(17+7).

Using (11), we obtain
[e.e]
w(€) = (p+n=2) [ halr/t,0,07
0

where 6 = (51\4_) Changing variable ¢t = r/u and taking into account (8), we get
w(rg) = r1(o,n,0), 0= (§11).

The equations (14) and (15) imply that the equality sign takes place for the
function v in both inequalities in (2). |
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