Matematicheskaya fizika, analiz, geometriya 2004, v. 11, No. 2, p. 243–248

A remark to the construction of canonical products of minimal growth

M.M. Sheremeta

Department of Mechanics and Mathematics, Ivan Franko Lviv National University 1 University Str., Lviv, 79000, Ukraine E-mail:tftj@uli2.franko.lviv.ua

> Received April 23, 2003 Communicated by I.V. Ostrovskii

For a sequence (a_n) of complex numbers, $|a_n| \nearrow +\infty$, we construct an entire function f of minimal growth such that $f(a_n) = 0$. Similar result is obtained for analytic functions in the unit disk.

1. Let $A = (a_n)$ be a sequence of complex numbers, $0 < |a_n| \le |a_{n+1}| \nearrow +\infty (n \to \infty)$, and let $n(r, A) = \sum_{|a_n| \le r} 1$ be the counting function of A. By G(A) we denote a class of entire functions whose zero set coincides with A. By L we denote the class of all subsets of $[1, +\infty)$, which have a finite logarithmic measure.

denote the class of all subsets of $[1, +\infty)$, which have a finite logarithmic measure. A.A. Gol'dberg [1] proved that if $\varepsilon > 0$ is an arbitrary number and

$$\underline{\lim}_{\to +\infty} \frac{\ln n(r, A)}{\ln r} > 0, \tag{1}$$

then there exists a function $f \in G(A)$ such that

r

$$\ln \ln M_f(r) = O((\ln n(r, A))^{2+\varepsilon}), \quad r \to +\infty \quad (r \notin E \in L),$$
(2)

where $M_f(r) = \max\{|f(z)| : |z| = r\}$. W. Bergweiler [2] showed in particular that the number $2 + \varepsilon$ cannot be replaced by 2.

The following problem is natural: find a counterpart of Gol'dberg's result when condition (1) does not hold. The following theorem is true.

Theorem 1. For any sequence A and any $\varepsilon > 0$ there exists a function $f \in G(A)$ such that

$$\ln \ln M_f(r) = O\left(\int_{1}^{r(1+\varepsilon)} \frac{\ln n(t,A)}{t} dt\right), \quad r \to +\infty.$$
(3)

Mathematics Subject Classification 2000: 30D50, 30D99.

© M.M. Sheremeta, 2004

We remark that $1 + \varepsilon$ cannot be replaced by 1. Indeed, otherwise, we have $\ln \ln M_f(r) = O(\ln n(r, A) \ln r), r \to +\infty$, and we obtain contradiction to the mentioned result of W. Bergweiler.

2. We need a lemma from the Dirichlet series theory.

Let $0 \leq \lambda_n \nearrow +\infty (n \to \infty)$, $b_n \geq 0 (n \geq 1)$ and let

$$F(\sigma) = \sum_{n=1}^{\infty} b_n \exp\{\sigma\lambda_n\}$$
(4)

be a Dirichlet series absolutely convergent for all $\sigma \in \mathbb{R}$.

Let $\mu(\sigma, F) = \max\{b_n \exp\{\sigma\lambda_n\} : n \ge 1\}$ be the maximal term and $\nu(\sigma, F) = \max\{n : b_n \exp\{\sigma\lambda_n\} = \mu(\sigma, F)\}$ be the central index of series (4). Functions $\nu(\sigma, F)$ and $\lambda_{\nu(\sigma, F)}$ are piecewise constant and right continuous.

Lemma 1 [3, p. 16–17]. For $-\infty < \sigma_0 \le \sigma < +\infty$, the following formula holds

$$\ln \mu(\sigma, F) = \ln \mu(\sigma_0, F) + \int_{\sigma_0}^{\sigma} \lambda_{\nu(t,F)} dt.$$
(5)

Proof of Theorem 1. Let $\varepsilon > 0$ be an arbitrary number, $\eta = \ln(1 + \varepsilon), \ m = [1/\eta] + 1$ and $p_n = m([\ln n] + 1) - 1$. We consider canonical product

$$f(z) = \prod_{n=1}^{\infty} E(z/a_n, p_n), \quad |z| = r,$$
(6)

where E(z, p) is the Weierstrass primary factor. It is well known that f is an entire function. O. Blumenthal [4, p. 131] proved that $\ln |E(z, p)| \leq |z|^{p+1}$ for any $p \geq 0$ and $z \in \mathbb{C}$. Therefore, for $r = e^{\sigma}$

$$\ln M_f(e^{\sigma}) \le \sum_{n=1}^{\infty} \left(\frac{e^{\sigma}}{|a_n|}\right)^{p_n+1} = \sum_{n=1}^{\infty} \left(\frac{e^{\sigma+\eta}}{|a_n|}\right)^{m([\ln n]+1)} e^{-\eta m([\ln n]+1)}$$
$$\le \mu(\sigma+\eta) \sum_{n=1}^{\infty} e^{-\eta m \ln n} = K(\varepsilon)\mu(\sigma+\eta), \quad K(\varepsilon) = \text{const} > 0,$$

where $\mu(\sigma)$ is the maximal term of Dirichlet series (4) with $b_n = (1/|a_n|)^{m([\ln n]+1)}$ and $\lambda_n = m([\ln n]+1)$. Since $\mu(\sigma) \to +\infty$, $\sigma \to +\infty$, we have $e^{\sigma}/|a_{\nu(\sigma)}| > 1$, that is $\nu(\sigma) \leq n(e^{\sigma}, A)$. Hence $\lambda_{\nu(\sigma)} = m([\ln \nu(\sigma)]+1) \leq m(\ln n(e^{\sigma}, A)+1), \sigma > \sigma_0$. Thus, in view of (5),

$$\ln \mu(\sigma) \le \ln \mu(\sigma_0) + m \int_{\sigma_0}^{\sigma} (\ln n(e^t, A) + 1) dt = \ln \mu(\sigma_0) + m \int_{\sigma_0}^{e^\sigma} \frac{\ln n(t, A) + 1}{t} dt$$

Matematicheskaya fizika, analiz, geometriya, 2004, v. 11, No. 2

244

and

$$\begin{split} \ln \ln M_f(r) &\leq \ln K(\varepsilon) + \ln \mu (\ln r + \eta) \\ &\leq \ln K(\varepsilon) + \ln \mu (\sigma_0) + m \int_{\sigma_0}^{re^\eta} \frac{\ln n(t, A) + 1}{t} dt, \end{split}$$

whence we obtain (3). Theorem 1 is proved.

3. Let $A = (a_n)$ be a sequence in $\mathbb{D} = \{z : |z| < 1\}$ such that $0 < |a_n| \nearrow 1 \ (n \to \infty)$, and let G(A) be the class of analytic functions in \mathbb{D} whose zero set coincides with A. The following counterpart of Theorem 1 is true.

Theorem 2. For any sequence $A \subset \mathbb{D}$ and any $\varepsilon > 0$ there exists a function $f \in G(A)$ such that

$$\ln \ln M_f(r) = O\left(\int_{0}^{\sqrt{1-(1-r)/(1+\varepsilon)}} \frac{\ln n(t,A)}{1-t} dt\right), \quad r \to 1.$$
(7)

P r o o f. Let $\varepsilon > 0$ be an arbitrary number, $\eta = \ln (1 + \varepsilon)$, $m = [1/\eta] + 1$ and $p_n = m([\ln n] + 1) - 1$. Consider the infinite product

$$f(z) = \prod_{n=1}^{\infty} E\left(\frac{1 - |a_n|^2}{1 - \overline{a}_n z}, p_n\right), \quad |z| = r \in [0, 1).$$
(8)

(Products of form (8) with $p_n \equiv \text{const}$ are known as Naftalevich–Tsuji products [5–7].)

In view of Blumenthal inequality we have

$$\ln M_f(r) \le \sum_{n=1}^{\infty} \left(\frac{1 - |a_n|^2}{|1 - \overline{a}_n z|} \right)^{p_n + 1} \le \sum_{n=1}^{\infty} \left(\frac{1 - |a_n|^2}{1 - r} \right)^{p_n + 1}.$$
(9)

Put $\sigma = \ln \frac{1}{1-r}$, $b_n = (1-|a_n|^2)^{m([\ln n]+1)}$ and $\lambda_n = m([\ln n]+1)$. Then the last series in (9) becomes Dirichlet series of form (4). Therefore, as above, $(1-|a_{\nu(\sigma)}|^2)e^{\sigma} > 1$, $\nu(\sigma) \le n(\sqrt{1-e^{-\sigma}}, A)$, $\lambda_{\nu(\sigma)} \le m(\ln n(\sqrt{1-e^{-\sigma}}, A)+1)$

Matematicheskaya fizika, analiz, geometriya, 2004, v. 11, No. 2

245

and for $\sigma > \sigma_0$ we obtain

$$\ln \ln M_f(r) \leq \ln K(\varepsilon) + \ln \mu \left(\ln \frac{1}{1-r} + \eta \right)$$

$$\leq \ln K(\varepsilon) + \ln \mu(\sigma_0) + m \int_{\sigma_0}^{\ln(1/(1-r))+\eta} (\ln n(\sqrt{1-e^{-t}}, A) + 1) dt$$

$$\leq \ln K(\varepsilon) + \ln \mu(\sigma_0) + m \int_{0}^{\sqrt{1-(1-r)/(1+\varepsilon)}} \frac{\ln n(t, A) + 1}{1-t} \frac{2tdt}{1+t},$$

whence (7) follows.

4. Let Ω be the class of positive unbounded functions Φ on $(-\infty, \infty)$ with positive continuous derivative $\Phi' \nearrow +\infty$. Let φ be the inverse function of Φ' and $\Psi(\sigma) = \sigma - \Phi(\sigma)/\Phi'(\sigma)$ be the function associated with Φ in the sense of Newton. Then [8] Ψ is continuous and increasing to $+\infty$ function on $(-\infty, +\infty)$ and φ is continuous and increasing to $+\infty$ function on $(0, +\infty)$.

Theorem 3. If a sequence A satisfies

$$\overline{\lim_{n \to \infty}} \frac{1}{\ln |a_n|} \Psi\left(\varphi\left(\frac{\ln n}{\ln |a_n|}\right)\right) \le \gamma < 1,\tag{10}$$

then there exists $f \in G(A)$ such that

$$\overline{\lim_{r \to \infty} \frac{\ln \ln M_f(r)}{\Phi(\ln r)}} \le \frac{1}{1 - \gamma}.$$
(11)

We need some lemmas from the Dirichlet series theory.

Lemma 2 [9]. Let (4) be a Dirichlet series such that

$$\overline{\lim_{n \to \infty} \frac{\ln n}{-\ln b_n}} \le h < 1.$$
(12)

Then for any $\varepsilon \in (0, 1-h)$ there exists $A_0(\varepsilon) > 0$ such that

$$F(\sigma) \le A_0(\varepsilon)\mu(\sigma/(1-h-\varepsilon), F)^{1-h-\varepsilon}, \ \sigma \ge 0.$$
(13)

Lemma 3 [8]. Let $\Phi \in \Omega$. In order that $\ln \mu(\sigma, F) \leq \Phi(\sigma)$ for $\sigma \geq \sigma_0$, it is necessary and sufficient that $\ln b_n \leq -\lambda_n \Psi(\varphi(\lambda_n))$ for $n \geq n_0$.

The following lemma is an immediate corollary.

Matematicheskaya fizika, analiz, geometriya, 2004, v. 11, No. 2

246

Lemma 4. Let $\Phi \in \Omega$, 0 < A, $B < +\infty$. In order that $\ln \mu(\sigma, F) \leq A\Phi(B\sigma)$, $\sigma \geq \sigma_0$, it is necessary and sufficient that $\ln b_n \leq -\frac{\lambda_n}{B}\Psi\left(\varphi\left(\frac{\lambda_n}{AB}\right)\right)$, $n \geq n_0$.

Proof of Theorem 3. Let
$$\varepsilon \in (0, (1-\gamma)/2),$$

 $\left[\Phi'(\Psi^{-1}((\gamma + \varepsilon) \ln |a_{\pi}|)) \right]$

 $p_n = \left[\frac{\Phi'(\Psi''((\gamma + \varepsilon) \ln |a_n|))}{1 - \gamma - 2\varepsilon}\right] - 1 \text{ and let } f \text{ be represented by (6). Then, as in the proof of Theorem 1, we have}$

$$\ln M_f(e^{\sigma}) \le F(\sigma) = \sum_{n=1}^{\infty} \left(\frac{e^{\sigma}}{|a_n|}\right)^{\lambda_n}, \quad \lambda_n = \left[\frac{\Phi'(\Psi^{-1}((\gamma + \varepsilon)\ln |a_n|))}{1 - \gamma - 2\varepsilon}\right]$$

Since $b_n = |a_n|^{-1/n}$ and, by (10), $\ln n \leq \Phi'(\Psi^{-1}((\gamma + \varepsilon) \ln |a_n|)) \ln |a_n|$ for $n \geq n_0(\varepsilon)$, we have

$$\overline{\lim_{n \to \infty}} \, \frac{\ln n}{-\ln b_n} = \overline{\lim_{n \to \infty}} \, \frac{\ln n}{\lambda_n \ln |a_n|} \le 1 - \gamma - 2\varepsilon.$$

Therefore, by Lemma 2 with $h = 1 - \gamma - 2\varepsilon$,

$$\ln \ln M_f(e^{\sigma}) \le (\gamma + \varepsilon) \ln \mu \left(\frac{\sigma}{\gamma + \varepsilon}\right) + \ln A_0(\varepsilon), \quad \sigma \ge \sigma_0.$$
(14)

We put $A = 1/((\gamma + \varepsilon)(1 - \gamma - 2\varepsilon))$ and $B = \gamma + \varepsilon$. Then

$$\ln b_n = -\lambda_n \ln |a_n| \le -\frac{\lambda_n}{\gamma + \varepsilon} \Psi(\varphi((1 - \gamma - 2\varepsilon)\lambda_n))$$
$$= -\frac{\lambda_n}{B} \Psi\left(\varphi\left(\frac{\lambda_n}{AB}\right)\right), \quad n \ge n_0,$$

and by Lemma 4

$$\ln \mu\left(\frac{\sigma}{\gamma+\varepsilon}\right) \le A\Phi\left(\frac{B\sigma}{\gamma+\varepsilon}\right) = \frac{1}{(\gamma+\varepsilon)(1-\gamma-2\varepsilon)}\Phi(\sigma), \quad \sigma \ge \sigma_0.$$

Therefore (14) implies

$$\ln \ln M_f(e^{\sigma}) \le \frac{1}{(1 - \gamma - 2\varepsilon)} \Phi(\sigma) + \ln A_0(\varepsilon), \quad \sigma \ge \sigma_0,$$

whence inequality (11) follows. Theorem 3 is proved.

5. The proof of the following result is based on the same ideas as proofs of Theorems 2 and 3.

Matematicheskaya fizika, analiz, geometriya, 2004, v. 11, No. 2 247

Theorem 4. If a sequence A satisfies condition

$$\overline{\lim_{n \to \infty}} \frac{1}{-\ln(1-|a_n|)} \Psi\left(\varphi\left(\frac{\ln n}{-\ln(1-|a_n|)}\right)\right) \le \gamma < 1,$$

then there exists a function $f \in G(A)$ such that

$$\lim_{n \to \infty} \frac{\ln \ln M_f(r)}{\Phi(-\ln (1-r))} \le \frac{1}{1-\gamma}$$

R e m a r k. The author cannot show that estimate (11) is sharp.

References

- А.А. Гольдберг, О представлении мероморфной функции в виде частного целых функций. — Изв. вузов. Математика (1972), №. 10(125), с. 13–17.
- [2] W. Bergweiler, A question of Gol'dberg concerning entire function with prescribed zeros. - J. d'Analyse Math. (1994), v. 63, p. 121-129.
- [3] М.М. Шеремета, Цілі ряди Діріхле. ІСДО, Київ (1993).
- [4] O. Blumenthal, Principes de la théorie des fonctions entières d'ordre infini. Gauthier-Villars, Paris (1910).
- [5] А.Г. Нафталевич, Об интерполяции функций, мероморфных в единичном круге. Докл. АН СССР (1953), т. 63, №. 2, р. 205–208.
- [6] А.Г. Нафталевич, Об интерполяции функций, мероморфных в единичном круге. Литовск. мат. сб. (1961), т. 1, №. 1–2, р. 159–180.
- [7] M. Tsuji, Canonical products for a meromorphic function in a unit disk. J. Math. Soc. Jap. (1956), v. 8, №. 1, p. 7-21.
- [8] М.Н. Шеремета, С.И. Федыняк, О производной ряда Дирихле. Сиб. мат. журн. (1998), т. 39, №. 1, с. 206–223.
- [9] О.М. Мулява, Я.Я. Притула, Оцінки максимуму модуля цілого ряду Діріхле. — Вісн. Львів. ун-ту., сер. мех.-мат. (1998), вип. 49, с. 65–70.