Matematicheskaya fizika, analiz, geometriya 2004, v. 11, No. 4, p. 375–379

A sharp inequality for the order of the minimal positive harmonic function in T-homogeneous domain

V. Azarin and A. Gol'dberg

Department of Mathematics, Bar-Ilan University, Ramat-Gan, 52900, Israel E-mail:azarin@macs.biu.ac.il

Received February 2, 2004

Let G be a simply connected domain in \mathbb{C} which is T-homoheneous, i.e., TG = G for some T > 0. Let $\rho(G)$ be the order of the minimal positive harmonic function in G. We prove that a kind of symmetrization of G and prove that it does not increase $\rho(G)$. This implies a sharp lower bound for $\rho(G)$ in terms of conformal modulus of a quadrilateral naturally connected with G.

To Iossif Vladimirovich Ostrovskii on the occasion of his 70-th birthday

1. Introduction and main result

A domain $G \subset \mathbb{C}$ is called *T*-homogeneous if $TG := \{Tz : z \in G\} = G$ for some T > 0. A circle $C_R := \{|z| = R, R > 0\}$ is called *separating* for *G* if $C_R \cap G$ is one nonempty arc. Let *G* be a *T*-homogeneous, simply connected domain, having the separating circle C_1 . Then every circle C_{T^n} , $n \in \mathbb{Z}$, is separating.

Consider the following construction: set $G_n := G \cap \{T^n < |z| < T^{n+1}\}, n \in \mathbb{Z}$. They are simply connected. Replace every $G_{2k-1}, k \in \mathbb{Z}$, by G_{2k}^* that is symmetric to G_{2k} with respect to the circle $\{|z| = T^{2k}\}$. Thus obtained domain G^S is also *T*-homogeneous, simply connected and has a separating circle. It is a kind of symmetrization of *G*.

Let $H(z) \neq 0$ be a positive harmonic function in G, satisfying the condition $H(z_0) = 1$, that is locally bounded and equal to zero at every regular point of the boundary ∂G . We also suppose that H is equal to zero outside \overline{G} . Set $M(r, H) = \sup_{|z|=r} H(z)$.

As it is proved in [1, Theorem 0.5] for every T-homogeneous domain there exists an H of the form

$$H(e^z) = q(z)e^{\rho(G)x}, \ z = x + iy,$$

© V. Azarin and A. Gol'dberg, 2004

Mathematics Subject Classification 2000: 31A05, 30C75.

where q(z) is bounded.

Thus

$$\rho(G) = \lim_{r \to +\infty} \frac{\log M(r, H)}{\log r}.$$
(1)

It is called *order of minimal positive function* H, but actually it depends only on G.

Let us also note that the property of G to be connected and T-homogeneous, and the value of $\rho(G)$ are preserved under homotheties of G and rotations, i.e., replacing G for $te^{i\phi}G$, $t > 0, \phi \in [0; 2\pi)$. So we have $\rho(te^{i\phi}G) = \rho(G)$. Thus in all the assertions, concerning $\rho(G)$, we can replace the separating circle C_1 by arbitrary circle C_R .

Recall that if a quadrilateral ABCD is conformally mapped onto a rectangle $\{z : 0 < x < 1, 0 < y < M\}$ such that $A \mapsto 0, B \mapsto 1, C \mapsto 1 + iM, D \mapsto iM$ then mod ABCD(AB, CD) := M is the *conformal modulus* of quadrilateral ABCD with marked sides AB and CD.

In [1, Theorem 4.7, Corollary 4.9] the following assertion was proved

Theorem ADP. Let G be a T-homogeneous domain with a separating circle then -

$$\rho(G^S) = \frac{\pi}{\log T} \mod G_0(J_0, J_1),$$
(2)

where $J_0 = G \cap \{|z| = 1\}$, $J_1 = TJ_0$, and $\text{mod } G_0(J_0, J_1)$ is the conformal modulus of quadrilateral G_0 with marked sides J_0, J_1 .

If G is symmetric with respect to a separating circle then G^S can be replaced by G.

We recall the proof of Theorem ADP because we need some details from it. We are going to prove

Theorem 1. The following inequality holds

$$\rho(G) \ge \rho(G^S).$$

Equality is attained on G's that are symmetric with respect to C_1 .

Theorem ADP and Theorem 1 immediately imply

Corollary. The following sharp inequality holds

$$\rho(G) \ge \frac{\pi}{\log T} \mod G_0(J_0, J_1).$$

We are grateful to Prof. I.V. Ostrovskii for very valuable discussion and suggestions.

Matematicheskaya fizika, analiz, geometriya, 2004, v. 11, No. 4

376

2. Proofs

Set $P := \log T$ and make the transformation of $\mathbb{C}\setminus 0$ by $z \mapsto \log z$. Since G does not include zero and is simply connected it is possible to select a single-valued branch of logarithm that maps G onto a P-periodic domain D. Then $G_n \mapsto D_n$ such that $D_n \subset \{nP < \Re z < (n+1)P\}$ and $G_{2k}^* \mapsto D_{2k}^*$, where D_{2k}^* is symmetric to D_{2k} with respect to $\{\Re z = 2kP\}$. Thus the image of G^S is the domain D^S which is obtained from D by replacing D_{2k-1} for D_{2k}^* .

Proof of Theorem ADP. Let $f^S(z)$ be a function that maps conformally the quadrilateral D_0 with marked sides $I_0 := D \cap \{\Re z = 0\}$ and $I_1 := D \cap \{\Re z = P\}$ to the rectangle $R = (0, c) \times (0, \pi)$ such that the marked sides are mapped to the vertical sides of the rectangle. Then $c = \pi \mod D_0(I_0, I_1) = \pi \mod G_0(J_0, J_1)$.

The function f^S can be continued analytically to D_0^* and further to the D^S such that it maps D^S onto the strip $\{0 < \Im z < \pi\}$. Since D^S is 2*P*-periodic, we have $f^S(z + 2P) = f^S(z) + 2c$, and

$$\Re f^{S}(z+2P) = \Re f^{S}(z) + 2c.$$
(3)

Now consider the harmonic function

$$H(z) = \Im e^{f^S(\log z)} = e^{\Re f^S(\log z)} \sin \Im f^S(\log z).$$
(4)

This function is positive within G and is equal to zero at every regular point of boundary. It has a finite order. Actually, from (3) we have

$$\Re f^S(z+2Pn) \le C+2cn \tag{5}$$

and $C := \sup_{z \in D_0} |\Re f^S(z)| < \infty$, and we can replace *n* for $\Re z/2P$ by maximum principle. Thus

$$M(r, H) \le C_1 r^{\alpha},$$

where C_1 and α can be expressed in terms of C and c. Using (3), (4) and (1) for $r = e^{2nP}$, we obtain (2).

For the proof of Theorem 1 we need the following assertion (lemma of Grötzsch) (see [2, p. 142], also see [3, Ch. 2, §D, Th. 4])

Lemma G. Let a quadrilateral ABCD with the marked sides AB and CD be divided by a curve $EF \subset ABCD$, $E \in BC$, $F \in AD$ onto two quadrilaterals ABEF with the marked sides AB and EF, and FECD with the marked sides EF and CD. Then

$$\mod ABEF + \mod FECD \le \mod ABCD.$$
 (6)

Matematicheskaya fizika, analiz, geometriya, 2004, v. 11, No. 4 377

When ABCD is a rectangle the equality in (6) holds iff ABEF and FECD are rectangles.

One can see that if EF is an arc of a circle or a segment of a line and ABEFand FECD are symmetric with respect EF then mod $ABEF = \mod FECD$ and equality holds in (6).

We will also use [1, Prop. 4.10] that can be reformulated in the following form:

Theorem P. Let D be a domain corresponding to G by the mapping $z \mapsto \log z$. Set $D^{2n} := D \cap \{0 < \Re z < 2Pn\}$. Then following holds

$$\rho(G) = \frac{\pi}{P} \lim_{n \to \infty} \frac{\mod D^{2n}(I_0, I_{2n})}{2n}.$$

We give the proof for the sake of completeness.

P r o o f. We use the following assertion of A. Eremenko (see [4, Remark 3], see also [5, Lemma 6.4] that can be formulated in the same way).

Theorem E. Let f(z) conformally map D onto the strip $\{0 < \Im w < \pi\}$ such that $0 \mapsto -\infty$ and $\infty \mapsto +\infty$. Then

$$f(z+P) = f(z) + c_1,$$
 (7)

where $c_1 > 0$.

 Set

$$M_k:=f(I_k), \,\, m_k:=\min_{J_k} \Re \zeta, \,\, M_k:=\max_{J_k} \Re \zeta.$$

The numbers m_k, M_k depend on k in following way

$$m_k = m_0 + kc_1, \ M_k = M_0 + kc_1, \ k = 0, \pm 1, \dots$$

because of (7).

Denote by

$$R_{a,b} := \{ \zeta : 0 < \Im \zeta < \pi, \ a < \Re \zeta < b \}$$

a rectangle. Since

$$R_{m_0,M_{2n}} \subset f(D^{2n}) \subset R_{M_0,m_{2n}}$$

we obtain

$$2nc_1 + m_0 - M_0 < \pi \mod D^{2n}(I_0, I_{2n}) < 2nc_1 + M_0 - m_0$$

From this we obtain the equality

$$c_1 = \pi \lim_{n \to \infty} \frac{\mod D^{2n}(I_0, I_{2n})}{2n}$$

Using arguments from the proof of Theorem ADP with (7) instead of (3), we obtain that $c_1 = P\rho(G)$. This completes the proof of Theorem P.

Matematicheskaya fizika, analiz, geometriya, 2004, v. 11, No. 4

378

P r o o f o f T h e o r e m 1. We apply Lemma G to the quadrilateral $D^2 := D \cap \{-P < \Re z < P\}$ with the naturally marked sides and obtain that

 $\mod D_{-1}(I_{-1}, I_0) + \mod D_1(I_0, I_1) \le \mod D^2(I_{-1}, I_1).$

Obviously mod $D_{-1}(I_{-1}, I_0) = \mod D_1(I_0, I_1)$. Thus

 $2\mu := \mod D^2(I_{-1}, I_1) \ge 2 \cdot \mod D_1(I_0, I_1) =: 2M.$

By the same Lemma G, used repeatedly, we obtain the inequality

$$\mod D^{2n}(I_0, I_{2n}) \ge 2n\mu \ge 2nM.$$

Thus from Theorems ADP and P we obtain the inequality of Theorem 1. It is clear that the equality is attained iff $\mu = M$, i.e., when D_0 is symmetric to D_{-1} and hence D is symmetric with respect to I_0 .

References

- V. Azarin, D. Drasin, and P. Poggi-Corradini, A generalization of trigonometric convexity and its relation to positive harmonic functions in homogeneous domains. – J. d'Anal. Math. (To appear)
- [2] L.I. Volkovyskii, Quasiconformal mappings. L'vov (1954). (Russian: Kvazikonformnye otobrazheniya)
- [3] L. Ahlfors, Lectures on quasiconformal mappings. D. van Nostrand Co. Inc., Princeton, New Jersy (1966).
- [4] A.A. Gol'dberg, Estimates of conformal maps of curvilinear strips. Mat. Fiz., Anal., Geom. (2002), v. 9, No. 1, p. 1–4.
- [5] P. Poggi-Corradini, The Hardy class of geometric models and the essential spectral radius of composition operators. J. Funct. Anal. (1997), v. 143, p. 129–156.