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It is known that Bernoulli scheme of independent trials with two out-
comes is connected with the binomial coefficients. The aim of this paper is
to indicate stochastic processes which are connected with the g-polynomial
coefficients (in particular, with the g-binomial coefficients, or the Gaussian
polynomials), Stirling numbers of the first and the second kind, and Euler
numbers in a natural way. A probabilistic approach allows us to give very
simple proofs of some identities for these coefficients.
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1. Introduction

n
The connection of binomial coefficients ( ) with Bernoulli scheme of inde-

pendent trials is well known. To be more specific, let z € (0,1), n be a positive
integer, £ be a trial with two outcomes 0 and 1 with probabilities in a single trial
being equal to 1 — = and z, respectively. Let £ be repeated n times under the
condition that every outcome of any trial is independent of outcomes of all other
trials. Let 1(}) denote an event such that the outcome 1 has happened k times
in n repetitions of the trial £. Then the probability P(1(})) of this event equals

Pa) = () o0 -2+,
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A probabilistic approach to g-polynomial coefficients...

The aim of this paper is to construct random processes which are connected
with g-polynomial coefficients

|:Z.1 + 'i2 + ...+ Z'm:| - (Q)i1+i2+...+im (1 1)
ila Z.Za v aim q (Q)Zl (Q)zz s (q)zm ’

where (q); :== (1 —¢q)(1 —¢?)...(1 —¢’) for j € N, (g)o := 1, in particular, ¢-bi-
nomial coefficients (or Gaussian polynomials). The probabilistic approach gives
very simple proofs of some identities for g-polynomial coefficients.

We apply an analogues approach to Stirling numbers of the first and the second

kind [ k]’ { k} and Euler numbers < k> (we follow notation used in [3, Ch. 6]).

In this paper, we introduce numbers associated with Euler and Stirling num-
bers and obtain some identities for them.

Asusual, N ={1,2,3,...} and Ng = {0, 1,2,3,...} denote the sets of positive
integers and nonnegative integers, respectively. We use the following notation (see

[1, Ch. 3]):

(@) = (1—2)(1—gz)---(1—¢"'z) forneN, (z;q)0:=1;
@Dn = (¢:9)n-
The identity
(@;Q)m - ("2 0)n = (T5@)mn (1.2)
will be useful in the sequel.

We recall that Stirling numbers of the first and the second kind [Z], {Z},

and Euler numbers <:> may be defined for n € Ng and integer k£ such that

0 <k < n as numbers which equal 1if n =%k =0, and 0, if kK < 0 or £ > n, and
satisfy the following recurrence identities (see [3, Sect. 6.1]):

- el
0= () o
<Z> = <”—k><2:1>+<’“+1)<”;1>a

respectively.

We remind some elementary probabilistic concepts which we use in this paper
(see, for example, [2, Chs. 1, 2]). A probability space is a pair (Q2,p) where Q
is a finite set (it is called a sample space) and p is a function on € (it is called
a probability) such that p(w) > 0 for all w € Q and ) op(w) = 1. Every
set A C  is said to be an event. The probability of an event A is defined by
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P(A) =3 ,cap(w). f A,B C Qand P(B) # 0, then P(A|B) := P(ANB)/P(B)
is said to be the conditional probability of A given B. The formula P(AN B) =
P(B)P(A|B) is called the multiplication theorem of probability. We say that
events A;, [ =1,2,... L, form a partition of a sample space 2 if A; are mutually
exclusive and UlelAl = . In that case, the formula of total probability is valid:

L
P(B) = P(B| A)P(4). (14)
=1
We also use the following notation: iy :=4,1,...,¢ for k € N.
—

The paper is organized as follows. In Sectiofi 2, we consider g-binomial coeffi-
cients. We consider this special case of g-polynomial coefficients separately for
the convenience of readers.

Section 3 is devoted to g-polynomial coefficients. We consider the case m = 3
in (1.1) only. The general case is obvious after that.

In Sections 4-6, we consider Stirling numbers of the second and the first kind
and Euler numbers, respectively.

In the beginning of each section we define a probability space or a space
equipped with a weight which is connected with corresponding coefficients in
a natural way (see Theorems 2.1, 3.1, 4.3, 5.2, 6.2). Using probabilistic arguments
we give very simple proofs of some identities for these coefficients (see Theo-
rems 2.2, 2.3, 3.2, 3.3, 4.4, 5.3, 6.3). We also introduce a notion of coefficients
associated with Stirling and Euler numbers and deduce some identities for them
(see Theorems 4.5, 5.4, 6.4).

The paper is divided in two parts. The first part contains Sect. 1-3. The se-
cond part contains Sect. 4-6.

This study has been stimulated by the paper [4]. When this work has been
already written, I have learned about the paper [6] which contains other processes
which lead to the g-binomial coefficients.

2. ¢-binomial coefficients (Gaussian polynomials)

Let z and g be arbitrary real numbers from the interval (0,1), n be a positive
integer. Let £ be a trial with two outcomes 0 and 1. We consider a sequence of
n trials £. We take the probability of outcomes 0 and 1 in the first trial £ to
be equal 1 — z and z, respectively. Assume that the trial £ is repeated m times
and the outcome 0 has occurred j times where 0 < j < m. Then we take the
probability of 0 and 1 in the (m + 1) repetition of £ to be 1 — ¢/z and ¢’z,
respectively.

A mathematical model of this sequence of n trials £ is the probability space
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(Qnapz,q,n) where
Qp i={w=(e1,69,...,6n) g =00r ,k=1,2,...,n},
the probability pg ¢n(w) of an elementary event w = (e1,¢€2,...,€&,) is equal to

px,q,n(w) = pz,q,n((ela €2y--s€n)) =fr-foriit fu, (2.1)

where fi =z,ife; =1, f{ =1 — 1z, if e = 0, and for every integer m (1 <m <
n-— 1)7 )
Pz, it em41 =1,
= . 2.2
fmir {l_qjx’ ey (2.2
where j = #{l : 1 <1 < m,g = 0}. The probability of an event A C Q, is
defined by
Prgn(4) = prgnw). (2.3)
weA
For the sake of brevity, sometimes we write P instead of P, 4,. It is not difficult
to see that Py gm(A) = Prgn(4 x {0,1}"™™) if m < n and A C Q. ( The
sign x means the Cartesian product. Therefore w = (e1,...,€m,Emt1s---,6n) €
A x {0,1}"™™ if and only if (e1,...,6m) € A and ep41,...,6np = 0or 1. In
other words, the event A x {0,1}"~™ C €, does not depend on the (m + 1),
(m +2)t, ... n'repetitions of the trial £. )
For 4 = 0,1 and integers I,m, and k (1 <1 <n,1<m<n,0<k<m) we
define
i) .= {w = (e1,€0,...60) € Uy : g = i}, (2.4)
i(3") :={w=(e1,€2,...6n) €U : #{L: 1 <1 <m,g =1} = k}. (2.5)
Using this notation, we may write
Poqme1 (1™ V[1(1) = ¢ *2,  Pogmnn (0 FV1(1)) =1 ¢™ 2
for every m > 1. It should be pointed out that the exponent of the power g™ *

is equal to the quantity of all trials with outcome 0 among the first m trials.
The following theorem is a key theorem of this section.

Theorem 2.1. Let n,k € Ny, 0 < k <n. Then

Pa) = (3] @ ans- (2.6)

Proof. Itisnot difficult to see that p(w) = 2*(2;q)n_kg" for every w € 1(%),
where 7 is an integer such that 0 < r < k(n — k). For example,

(L), 0n—i))) = 2"(@ )k
P(Om—r)> 1)) = 2*(z39)n—rd"
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Therefore, we may write for all n € N and integer k such that 0 < k < n:

P(1(3)) = 2*(2;@)n-r7(}) , (2.7)

where (%) is a polynomial in g. We define also (J) =1 and () = 0 for k > n
and k < 0.

We need prove that y(}) = [Z]q, where (%) is a polynomial defined by (2.7).
First, we prove that the polynomials v(}) satisfy the following recurrence identity:

@) =G+ G- (2.8)

We apply the formula of total probability. The events 1(?_1) (1=0,1,...,n—1)
are disjoint with union €2,. Since P(1(})| 1(?71)) =0 forall j but j =k—1 and
j =k, we may write

v(®)2" (@5 q)n—r = P(1(}))

= P11 PAG™) + PAE)I1G2))PAGT))

= P(O™| 1) PAG) + PA™1G-))PAG))

= (1= ¢" o)y (2P (@ @nor—k + 26" FY(ETD TN @ D 1) k1) -

Using (1.2) and dividing by z*(z;q),_x, we conclude that (2.8) is true. It is
known that the Gaussian polynomials satisfy the same recurrence identity:

n n— 1] ek [n - 1]
[k]q [ ko, k—1],
Next, (2.7) yields that y(f) = 1 and () = 1 for all n € N. Therefore

polynomials fy(;) and Gaussian polynomials satisfy the same recurrence identity
and boundary conditions. This completes the proof of Theorem 2.1. ]

We apply Theorem 2.1 to the proof of two known identities which contain
g-binomial coefficients (see, for example, [1, Formulas (3.3.9), (3.3.10)]).

Theorem 2.2. 1) If a,b,m € Ny, then

[a+b] -1 T [ ] [ quk (qak+qu)_ (2.9)

3,k>0
j+k=m
2) If m,n € Ny, then
n+m+1 _i i[m+i (2.10)
m+1 21 m ’ ’
q ]:O q
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Proof 1) The events 1(§),1(¢),1(5),...,1(%) form a partition of the
sample space €2,. The formula of total probability yields

P(1(5") = > PAGE)L())PAE))- (2.11)
=0

Obviously, P(1(%1?)] 1(%)) = 0, if j > m. To calculate P(1(%H)] 1(3)) for j <m
we need the following

Lemma. Ifa,b,m € Ny and 0 < 5 < m, then

Py gars(1( ) 1)) = Paga-i gp(1(ny)) - (2.12)

The proof of this lemma follows from the definition of conditional probability
and from the definitions (2.1)—(2.3)of probability in the considered probability
space. It is elementary and may be omitted.

By (2.12) and (1.2), we see that the j** term at the right-hand side of (2.11)
equals

b o . , ol
| 2™ gD ) (29T g) s - [ ] 9 (23q) 0
[m_JL q (g™ Do~ | q (%3 @)a—j

b . .
- [ ] [a] 2" gD (259)apn (2.13)
m=Jlqlilq
Substituting (2.6) and (2.13) into (2.11) and dividing by 2™ (z; q)a+b—m, We get
m
[“*b] -y [ b ] m @ D)m—)
molg S lM T Ilq LI
Replacing m — j with k shows that

[a;b]q: 2. [j]q[;ﬁ]qq(”)k- (2.14)

3,k>0
j+k=m

If we first replace in (2.14) a with b and b with a, and then j with k£ and k with
7, we get

[a;b]q: > [?]q[g]qu("_k)- (2.15)

J>k>0
jtk=m

Summing (2.14) and (2.15), we get (2.9).
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2) Let us calculate the probability P(1(™F™*1)) in two ways. We have by

m+1
(2.6)
1 n+m+1 1
Pranemsa 0GR = [ e e
Now we calculate this probability in a different way. For 7 = 0,1,2,...,n, we

introduce the following events:
1
Ci =1 N { (615 s nime1) € Qugmrr
Em+j+1 = 1>5m—|—j—|—2 = ... = Entm+1 = 0} .

(We distinguished the last outcome 1 in the sequence of n +m +1 trials £.) Any
element w of Cj can be written as w = (', 1,0(,_)), where ' € 1(m™7). The

events C; are mutually exclusive and U7_,C; = 1(%:?“). Therefore:

P = > P(Cy). (2.17)
§=0

Using (2.6) and (1.2), we obtain

Py gntm+1(Cj)
= Pegm+i(10") - (2¢!) - (1 = 2g) (1 —2g/*) - (1—2g")  (218)
= mnfj]qmm(w;Q)j-qu (@) =¢ [mﬁ]qu“(gg;q)n.

Substituting (2.16) and (2.18) into (2.17) and dividing by z™"!(z; q),, we obtain
(2.10). n

We may distinguish the first rather than the last - or the first and the last-
outcome 1 in the sequence of trials. This leads to the following theorem.

Theorem 2.3. If m,n € Ny, then

n+m+1 :z”:q(mﬂ)j n+m-—j (2.19)
m+1 |, = m ¢ ’

n+m+2 1 n+m—j3—k (i mat2)i m
e R R )
m q 7,k>0 m q

jt+k<n

(2.20)
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Proof 1)Forj=0,1,2,...,n, we introduce the following events:
D =10 N {(es- s enymi1) € Qnimrr €1 = ... =& = 0,651 = 1}.
D; is formed by elements w = (0(;),1,w’) where w’ € 1(J;™*!). Therefore
P(Dj) = (2:0);-(24') - Pagi gmim— (1))
n—j+m ; ;
= (z39);- [ ] (2¢")" (2¢’; Q)n—j
m q
- [” s m] 2™ (25 q)ng " (2:21)
m q

The events D; are mutually exclusive and U7_D; = 1("mﬁ_"f+1). Therefore, by the

additive property of probability, P(1(Zt7TH)) = > i—o P(Dj). Inserting (2.16)
and (2.21) into this formula and dividing by ™!(z; q),, we get (2.19).

2) For j > 01 k > 0 such that j + k < n, we consider events

2
Eir =100 5 0 {0 (e1,-- - entme2) € Qngpmea :
€1 =...& :O,6j+1 = 1,
Entm+3—k = L, Engtmid—k = -+ = Entmy2 = 0}-

The event Ejj is formed by elements w = (0),1,w’,1,0()), where
w' € 1(HT™7F) " We calculate the probability of the events E; ), using (2.1)-
(2.3):

Py gn+m+2(Ejk)
= (2:9);* 2¢" * Py gnim—ji (LTI 7)) 2gf TR (g ),
Since

n+m*jfk)) _ [n +m—j—k

quw,q,n—kmfjfk(l(m m :| (-qu)m($qja Q)n—(j—Hc) )
q

it follows by (1.2) that

ik o
P(Ej) = [” Tmd ] I (e ) (2.22)
q

m
Since E;j are mutually exclusive and 1(""#;"'2) = U;kE;k, the following

equality holds: P(1(:‘n"_'|fg+2)) = > P(FE;}). Substituting (2.22) into this equality,
Jik

using (2.6), and dividing by z™"2(z; q),, we get

n+m+2 n+m—7j—k ; .
[ 2 ] =y [ - ] gtk (2.23)
q 3,k>0 q
j+k<n
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Replacing j in (2.23) by k, and k by j, we obtain

n+m+ 2 n+m—j5—k i
[ 9 :| — Z |: . :| qu+n+k J. (2.24)
a k>0 q
J+k<n
Summing (2.23) and (2.24), we get (2.20). [

3. g¢-polynomial coefficients

Letn e N,u; >0, us >0, U:=u; +ux <1,0< g< 1 Let £ be a trial
with four outcomes 0, 1,2, . We consider a special random process satisfying the
following conditions:

1) The trial £ is repeated n times.

2) The probabilities of the outcomes 0, 1,2 in the first trial are equal to

1—U1—U2:1—U, ui, us , (31)

respectively. Consequently, the probability of the outcome * in the first trial is
equal to zero.

3) Let m be a positive integer, m < n. Suppose that in the first m trials the
outcomes 0, 1,2 have happened 4, %1, %2 times, respectively, with i 4+ 41 + 19 = m
(so, there is no outcome * in the first m trials). Then the probabilities of outcomes
0,1,2 in the (m + 1)* trial are equal

1- inUa qioul ) qi0+i1u2 ) (32)

respectively. Consequently, the outcome * happens in the (m + 1)* trial with the
probability

1= g"ur — gty — (1 — gour — ¢Pus) = ¢"us(1 — ¢"). (3-3)

4) If the outcome * happens in the k¥ trial, then * will happen in the (k4 1)
trial with the probability 1.

We construct a probability space corresponding to the random process de-
scribed above. The sample space €, consists of all sequences w = (g1,€9,...,&p)
of the length n, such that its elements ¢; are equal to 0,1,2,*, and the follow-
ing condition is valid: if ¢ = * for some k (1 < k < n), then ¢ = * for any
l=k+1,k+2,...,n. We define the probability py, u,,uv,qn(w) of the elementary
event w = (€1,€9,...,6p) @S

pul,u2,U,q,n((€1762’ s ’gn)) = fl . f2 et fn’ (3'4)
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where, according to (3.1),

1-U, if e =0,

_ ui, if &1 = 1,
hi= Uz, if e1=2, (3:5)
0, if €1 = *,

and according to (3.2) and (3.3), for any m, 1 <m <n-—1,

1—-¢°U, if ep41=0,
_ q"uq , if emy1 =1,
fm-l—l - qzo+zlu2 ) if Emil = 2, (36)

gouz(l—g"), if empr =*,
ifig+i1+io=mand #{j:1<j<m,ej=s}=1i,, s=0,1,2. We define
also
Emi1 =% and  fpy1 =1, if gy = *. (3.7)
We define the probability of an event A C €, as follows

Py uz,U,gn(4) := Z Puiuz,Uigin (W) - (3.8)
wEA
Although U = u1 + ue, it is useful to write U as a subscript of the probability
sign P. Sometimes we write P instead of Py, u,,v,¢n- As in Section 2, we see
that Py, us,0,q,m(A) = Py us,U,gn(A4), if m < n and the event A C €, does not
depend on outcomes of the trial £ with the numbers m +1,m + 2,...,n.

Let us introduce notation for some events of the sample space €,,. For i €
{0,1,2, %} and integer m, 1 < m < n, and k, 0 < k < n, we use definitions
(2.4), (2.5) from Sect. 2. For m € N, j € {0,1,2}, ig,41,i2 € Ny such that
19 + 11 + 29 = m, we define

Al i2) = 00g) N 1GT) N2(G) -

10,81,02

The event A(™ ) can be described as follows: outcomes 0, 1,2 happen ig, i1, i2

10,01,82
times, respectively, in the repetitions of the trial £ with the numbers 1,2,...,m.
We set A(?; ;) =0 if i; <0 or i; > m for some j € {0,1,2}.

We may write (3.1), (3.2), (3.3) in the introduced notation as follows (P =
Pulau27anﬂn):
POMY=1—u —uy, PAV)=w;, PRW)=uy, PEM)=0; (3.9)
it meN, m<mn, i+ i1 +i2 =m, then
P (om0 A@m, ) =1-q°U, P (1A, 1)) = ¢ou,
P (2014, ) = 4 s, P (™A@, ) = 61— gt us.
(3.10)
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Formula (3.7) means that P(jUtV|«®) = 0 for j = 0,1,2; P(+(4+D %) = 1 for
alll=1,2,...,n—1.

The following theorem is an analogue of Theorem 2.1. It is a key theorem of
this section.

Theorem 3.1. Let n € Ny, 49,171,722 € Ny, 19 + 11 + 22 =n. Then

n
P(AG ) =i o |, 1] (311)
Proof It can be readily seen that the probability of every elementary
event w € A(}t ; ;,) (fo+11+12 = n) equals u'u? (U;q)inq", where r is an integer
such that 0 < r <igi1 + %9t + 1122. For example:
p((]'(h)’ 2(’&2)’0(10))) = uzlllu’; (U Q)Zoqz1Z2
Z1 22

p((2(i2)a 1(11)a0(10))) = Uy Ug (Ua q)io )
p((O(io)a 1(i1)’ 2(1’2))) _ u111u222(U; q)ioqzou1+(zo+u)12

Therefore,

P (A(:Z],ihiz)) = uzlluZQQ(U q)lo (zo,zl 12) (312)
where c(Zo i, iy) = ¢(n,10,11,42;9) is a polynomial in g. We set 0(8’0’0) =1 and
(3t i1iy) = 0 if one of the numbers 49,1, i2 is negative.

We need to prove that c(i; ; ;) = [ o ] where c(?
g

i lynomial in

20, 11 22)
q defined by (3.12). First we prove a recurrence relation for coefficients ¢(%
We show that if n > 1, 4g,41,%9 > 0, 49 + 21 + %0 = n, then

20,01 zz)

C(’Z),h,iz) = C(zg 1 21,12) +q20 C(zo,zl 1 12) +q10+21 (10,11,12 1) (313)
Since the events A(]0 in) (0sd1,02 >0, jo+ j1 +j2 =n —1) and By =
{(e1,---,6n) € Qp r e = * (Fk,1 <k <n—1)} form a partition of the sample

20511112)

space Q and since P (A( |Bn_1) = 0, it follows by the formula of total

probability that
P (A i) = A= g°'U)P (A(?O__llyilai?))
_I_qioulp (A(Znoj’iifl,lé)) + qio+i1u2p (A(Z;ill,izfl)) . (3.14)

Substituting (3.12) into (3.14), using the formula (1—¢"°~*U)(U;q)i, 1 = (U;q)i,,
and dividing by uiu2(U;q)i,, we obtain (3.13).

0
Now we prove the result by induction on n. By definition 0(8,0,0) = [0 0 0] :
) q

n—1
We assume that the equality c(?(:jl1 j2) = [ L ] holds for all 79, 71,72 > 0
s JosJ15J2 q
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n
10,12

such that jo + j1 + j2 = n — 1. We will show that ¢(}. ) = [ , ] for all
q

Z'O; Z-la 12
i0,%1,12 > 0 such that ig 4+ 71 + i2 = n. Applying (3.13), we get:
i) = e i) F0° et 1) Fao T e, )

10,81,12 to—1,1,%2 i0,i1—1,in i
(Q)n—l . . . o .
— (1 — qlo + qzo 1— qz1 + qzo+zl 1— qzz
(@)io (9)i1 (9)is ( ) ( ) ( )
_ (@n-1
(Q)io (q 1 (Q)iz

and the proof of the theorem is complete. [

(1-¢") =

The next theorem contains an analogue of the Vandermond formula.

Theorem 3.2. If n,k € Ng, 0 <k <mn, 1,141,520 > 0, 19 + i1 + 12 = n, then

[ " L (3.15)

i07i1ai2
_ Z |: k :| |: n—k qjo(ilfj1)+(j0+j1)(i2*j2) .
jovitdg>o LJ0:J1,021¢ L% = J0s 01 — J15%2 — J2 14
jotiit+ia=k

Proof. The events A(.I;Osjl,j2) (k is fixed, jo, 1,72 > 0, jo+ j1 +j2 = k) and
By == {(e1,---,6n) € Qp:er =% (3,1 <1 < k)} form a partition of €2,,. Since

P (A(” ) |Bk) — 0, it follows by the formula of total probability, that

10,01,12

k k
PAGa) = > P(AG0a)1ACG0) P (AG0) - (316)
J0:1-4220
Jotiitiz=k
Let us first find the conditional probabilities at the right-hand side of (3.16). If
the event A(‘I;O,jl, j») has occurred, then the probabilities of outcomes 0,1,2 in the
(k +1)" trial £ are equal to 1 — ¢°U, ¢°u;, and ¢/°*I1uy, respectively. In n — k
trials with numbers k + 1,k + 2,...,n there must be 79 — jo outcomes 0, 41 — j1
outcomes 1, and i9 — jo outcomes 2. Therefore:

k
p (A(?O,z'l,iz) | A(jo,jl,jz))
—k
= quou1,qjo+j1 u2,q70U,q,n—k (A(g)fj(),il*jl,iz*h)) (3.17)
S —k
= (qjo'u,l)“ . (qJ(H—]l'U/Q)z2 ” (qJOUa Q)io—jo [ !

ip — Jo, %1 — J1,%2 — J2 ],
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Substituting (3.11) and (3.17) into (3.16), we get

(U; q)iou?u? |: n . :| — E (qjoul)h*jl (q]'0+]'1u2)i2*j2 %
10,%1,12 q L.
(40,41,2)

. n—=k
< (@U, @))i—se [

L ] (U3 q) joul ud? [ ] .
0 — Jo,%1 — J1,%2 — 72 q q

J0, J1, J2

Using (1.2) and dividing by (U; ¢)i,u?u%?, we obtain (3.15). ]

The following theorem contains results that give analogues of Theorems 2.2
and 2.3.

Theorem 3.3. For all iy, 11,19 € Ng the following identities are valid:

- . . .o 20 . . k

k 1-—
I S L B R == = R CED
L did2 |, il Rinde g 1 —grtite

g + 11 + 12| (1= girtin) i [k +i1 + iQ] g(i1+i2)(io—k)

—_— 3.19
! bivis |, 1-grra e G19)

iOailaiQ lq
10 + 11 + 22
i07i17i2 lq

_ (1 g z": bisria] gt (Logiros)
B 1 k,i1,19 q (1 - qk+i1+i2*1) (1 — qk+i1+i2) o

k=0

k=0

Remark 3.1. Identities (2.10), (2.19), (2.20) follow from (3.18), (3.19),
(3.20), respectively, if we take io = 0.

Proof. 1)Forr=1,2and j =i+ 9,41 +i2+1,...,450 + i1 + i2 we
consider the events

CF = AGTIT2) N {(e1, - - €igtintin) T €5 = Ty Ej41 = -+ = Eigpin i = 0} -

(For example, the event C} is formed by elements w = (w', 1, 0(jy44; +i,—j)) Where

W e A(;::;riz,irl,b)‘) By the additive property of probability, we have
S 10+11+12 to+i1+42
PaGgigm) = 3 PE)+ X P(e)). (321
Jj=t1+12 Jj=t1+i2

446 Matematicheskaya fizika, analiz, geometriya , 2004, v. 11, No. 4



A probabilistic approach to g-polynomial coefficients...

It is readily seen that

. . . . . '_1
P(C}) = (U; Q)iouzfuzfq’““[. N , ] ,
J—i1—ig,01 — Lig],
2 i1, 42 j—i j—1 (322)
P(C?) =(U;q); —ia '
( ]) (U; @igui'uy’ g [j—il—iz,h,ig—l]q

ubstituting (3.11) and (3.22) into (3.21) and dividing by (U;q)i,u%u?, we get
Substituting (3.11) and (3.22) i 3.21) and dividing by (U; q)i,ut us?

. . . t0+%1+1%2 .
z0+21+’t2] Z [ J—1 ] J—t1—12
= q
[ q q

10,11, %2 i, LTt — Ldg

+ [ S ] i (3.23)
iy, Wit — 1],
Replacing j in (3.23) by k = j — i1 — 42 and using the identities
a+b+c—1| [a+b+c 1—¢
a,b—1,c | abec ql—q‘”"”‘c’ (3.24)
a+b+c—11 [a+b+c 1—4¢° )
a,b,c—1 q_ a,b,c |, 1—qotbre’
we see that the righthand side of (3.23) is equal to
Z +11 + 10 — qk-l-z +11 +129 — qk+i1
ki — 1,4 kip,ig — 1
0 . .
k+i1+ia—1 1 ik i\ ki
= > [ kyinip ], 1—gFate (=g + (1= a)a)
k:() 7 3

This gives (3.18).
2) The proof 0f(3.19) is similar to that of (3.18). We only need take the events
D; = A(:gjf,lgu) m{(el’ s a€i0+i1+i2) rer=...=¢;=0,6541 = T‘}
forr=1,2 and j =0,1,...,% instead of C’;-".
3) The proof of (3.20) is similar to those of (3.18) and (3.19). For j,k > 0,
j+k <ig, a,b=1,2 we consider the events

ab __ A (toti1ti2 . . — N —
Ejk = A(io,il,i2 ) (€155 Eigtirtin) € Qigrigtin €1 = .. = gj =0,¢541 =a,
Eig+it+is—k = by Cigtistis—k+1 = - = Eigtig+ip = 0} -
instead of C7. ]

Matematicheskaya fizika, analiz, geometriya , 2004, v. 11, No. 4 447



A. I'inskii

Remark 3.2. Itis clear that the arguments of Section 3 are perfectly
general. In order to generalize our arguments to the case of g-polynomial co-

efficients [10_+ o %Zk] , k > 3, we can take a trial £ with k£ + 2 outcomes
105+,

0,1,2,...,k,*. Analogously to (3.1), we assume that the probabilities of the

outcomes 0,1,2,...,k in the first trial are equal to

l—U, ULy, U245 ---, Uk,

respectively, where u; >0 (i =1,2,...,k), U:=u; +uo+...+u <1l. If misa

positive integer, g, %1,...,%% > 0, 99 + %1 + ... + i = m, and if we know that in
the first m trials the outcomes 0,1, 2,...,k have happened 49,1, %9, . .., i times,
respectively, we assume that the probabilities of the outcomes 0,1,2,...,k in the

(m + 1)t trial are equal to
1-— inUa qioul ) q’i0+i1u2 3 ey qi0+i1+m+ik71uk )

respectively.
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