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The Brownian motion of a classical particle can be described by a Fokker�

Planck-like equation. Its solution is a probability density in phase space. By

integrating this density w.r.t. the velocity, we get the spatial distribution or

concentration. We reduce the 2n-dimensional problem to an n-dimensional

di�usion-like equation in a rigorous way, i.e., without further assumptions

in the case of general Brownian motion, when the particle is forced by linear

friction and homogeneous random (non-Gaussian) noise. Using a represen-

tation with pseudodi�erential operators, we derive a reduced di�usion-like

equation, which turns out to be non-autonomous and can become elliptic

for long times and hyperbolic for short times, although the original problem

was time homogeneous. Moreover, we consider some examples: the classical

Brownian motion (Gaussian noise), the Cauchy noise case (which leads to

an autonomous di�usion-like equation), and the free particle case.

1. Introduction

The Brownian motion of a classical particle in a space- and time-homogeneous

medium is characterized by two forces acting on the particle: a deterministic

linear friction and a random force � Gaussian or white noise. Thus, the velocity

evolution of the particle is random, whereas the evolution of the spatial coordinate

is deterministic. The trajectory
�
v(t); x(t)

�
of the particle in phase space can be

described by the random system

_v(t) = �av(t) +
p
2b

dw(t)

dt
;

_x(t) = v(t)
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with a Wiener process w(t) and is no longer deterministic, but rather a Markovian

process with the probability density W (v; x; t). The equation describing the time

evolution of this density is the Fokker�Planck equation (see, e.g., [2])

@

@t
W (v; x; t) =

@

@v

�
avW (v; x; t)

�
+ b

@
2

@v2
W (v; x; t)� v

@

@x
W (1)

with the initial data W (v; x; 0) = W0(v; x) and decreasing boundary conditions.

Dealing with probability densities, we demand normalization

Z
R

Z
R

W0(v; x)dvdx =

Z
R

Z
R

W (v; x; t)dvdx = 1

and positivity W (v; x; t) � 0.

The following can be considered in an arbitrary n-dimensional case. For sim-

plicity, all formulas are written for the case n = 1. Thus, we consider a two

dimensional phase space coordinate (v; x) 2 R2 .
Often our interest is only in the spatial distribution (concentration)

c(x; t) =

Z
R

W (v; x; t)dv : (2)

Looking from a phenomenological point of view at the time evolution of c(x; t),

for long times it looks like a di�usion. So we can guess that c(x; t) is the solution

of a di�usion-like equation, say

@

@t
c(x; t) = D

@
2

@x2
c(x; t) : (3)

This equation was derived by A. Einstein in 1905, by P. Langevin in 1908,

and by others using phenomenological assumptions to describe the same physi-

cal problem � Brownian motion. Indeed, by some heuristic arguments it can

be shown that c(x; t), derived from the solution of (1) by (2), satis�es (3): by

integrating equation (1) w.r.t. v, we get

@

@t
c(x; t) = �

@

@x

Z
R

vW (v; x; t)dv =: �
@

@x
j(x; t) (4)

with the current j(x; t) =
R
R
vW (v; x; t)dv. To get an equation for j(x; t), we

multiply (1) by v and integrate w.r.t. v:

@

@t
j(x; t) = �aj(x; t) �

@

@x
�(x; t) (5)
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with the mean energy �(x; t) =
R
R
v
2
W (v; x; t)dv. Multiplying (1) by v

2 and

integrating w.r.t. v, we get

@

@t
�(x; t) = �2a�(x; t) + 2bc(x; t) �

@

@x

Z
R

v
3
W (v; x; t)dv: (6)

Now we assume that the x-derivative of the third moment vanishes and �(x; t) is

not changing in time. We get from (6)

�(x; t) =
b

a
c(x; t):

Assuming that j(x; t) is not changing in time, either, we get from (5)

0 = �aj(x; t)�
b

a

@

@x
c(x; t) =) j(x; t) = �

b

a2

@

@x
c(x; t):

Now we get from (4)

@

@t
c(x; t) =

b

a2

@
2

@x2
c(x; t); (7)

i.e., equation (3) with the di�usion coe�cient D = b
a2
.

Of course, equation (1) is more physical than (3), because it takes into account

the real state of the particle (v; x) instead of the only spatial coordinate x. If our

interest is only in the spatial distribution, it is very tempting to use the much

simpler equation (3), but in the derivation shown (1) =) (7) it is di�cult to

understand what we have done exactly. Moreover, equation (3) cannot be correct

at least for short times, because, from a phenomenological point of view, it is

clear that the evolution of c(x; t) has to depend on the initial velocity and seems

to look more like a solution of a hyperbolic equation than a parabolic one.

As shown, integrating equation (1) w.r.t. v, we get an unclosed equation (4) for

c(x; t). The method shown here is a way to close this equation by applying some

heuristic assumptions. The goal of the present paper is to derive a di�usion-like

closed equation for c(x; t) in a rigorous way for a more general transport equation

in phase space.

In Section 2 we show a general scheme to close equation (4). In Section 3 we

consider the general Brownian motion. In this case, the general scheme can be

calculated explicitly. It turns out that the reduced equation is non-autonomous.

We investigate the time behavior of this equation in Section 4. Some examples in

Section 5 complete the paper.

We will assume throughout that the considered evolution equations have clas-

sical norm and positivity conserving solutions in L1(R
2) resp. L1(R).
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2. A general scheme for the reduced equation

We will consider the motion of a classical particle with phase-space coordinate

(v; x) in a random medium. In a space- and time-homogeneous medium, the forces

acting on the particle are represented by a random function F not dependent on

x, whereas the evolution of the spatial coordinate is determined by the velocity.

We have the following random system

_v(t) = F
�
v(t)

�
;

_x(t) = v(t):
(8)

Assuming that (v(t); x(t)) is Markovian with the probability density W (v; x; t),

the Kolmogorov equation describing the time evolution of this density has the

structure

@

@t
W (v; x; t) = AW � v

@

@x
W; W (v; x; 0) =W0(v; x); (9)

where A is a linear operator of the general form (see, e.g., [2, 6])

�
Af

�
(v) =

@

@v

�
a(v)f(v)

�
+

@
2

@v2

�
b(v)f(v)

�
+

Z
R

�
Q(v0; v)f(v0)�Q(v; v0)f(v)

�
dv
0

acting only on the parameter v. The �rst derivative comes from a deterministic

part in F , the second and the integral operator come from a random part. In

general, the kernel Q(v; v0) can become singular for v = v
0. Therefore, the integral

is to be understood as a mean (or principle) value integral. In this case, the

corresponding operator is unbounded, but dominated by the second derivative.

In x, equation (9) contains only the �rst derivative because _x(t) = v(t) is a de-

terministic equation (nevertheless x(t) is a random process because v(t) is so).

With suitable boundary conditions, regularity conditions for the coe�cients

a(v), b(v), and Q(v; v0), and with positivity conditions b(v) � 0 and Q(v; v0) � 0,

the solution of equation (9) � if it exists � conserves positivity, W0(v; x) � 0 =)
W (v; x; t) � 0, and L1-norm,Z

R

Z
R

W0(v; x)dvdx =

Z
R

Z
R

W (v; x; t)dvdx = 1:

In general, the existence of a solution to (9) in L1 is a di�cult problem and can

be proved in some special cases, for instance, if b(v) @2

@v2
is strongly elliptic and the

integral operator is dominated by the second derivative (see, e.g., [5]).

Integrating (9) w.r.t. x, we get a closed equation

@

@t
w(v; t) = Aw (10)
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for the velocity distribution w(v; t) =
R
R
W (v; x; t)dx, whereas integrating (9)

w.r.t. v, we get the unclosed equation (4) for c(x; t). We will try to close this

equation in a rigorous way for some suitable operators A, i.e., we will try to

write the right-hand side of (4) as a function of c(x; t). Since equation (9) and the

expression (2) to calculate c(x; t) are linear, this function is linear, too. Therefore,

we will look for an equation for c(x; t) in the form

@

@t
c(x; t) = R c(x; t); c(x; 0) = c0(x); (11)

where R is some unknown linear operator. We will call this equation the reduced

equation.

The only assumption we demand is

W0(v; x) = w0(v) � c0(x): (12)

This assumption means that the initial velocity and spatial distributions are inde-

pendent. This seems to be natural. When looking for a velocity-free description

of the problem, we have to assume that the initial spatial distribution c0(x) is well
de�ned and given. This can be made transparent in the following way. Let us

assume that equations (9) and (11) have Green functions ! and h. The solutions

of these equations can then be formally written as

W (v; x; t) =

Z
R

Z
R

!(v; v0; x� x0; t)W0(v
0
; x
0)dv0dx0 (13)

and

c(x; t) =

Z
R

h(x� x0; t)c0(x0)dx0: (14)

(Because of the homogeneity of the problem in x, the Green function depends

only on the di�erence x� x0.) Integrating (13) w.r.t. v, we have to get a solution

of type (14). Assuming (12), we have

W (v; x; t) =

Z
R

0
@Z
R

!(v; v0; x� x0; t)w0(v
0)dv0

1
A c0(x

0)dx0

and so

h(x; t) =

Z
R

Z
R

!(v; v0; x; t)w0(v
0)dv0dv:
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In the following, we will use Fourier transforms of the solutions and initial

data. Let

 (�; t) =

Z
R

e
i�x
c(x; t)dx;

 0(�) =

Z
R

e
i�x
c0(x)dx;

'(�; �; t) =

Z
R

Z
R

e
i(�v+�x)

W (v; x; t)dvdx;

'0(�; �) =

Z
R

Z
R

e
i(�v+�x)

W0(v; x)dvdx;

e
�(�) =

Z
R

e
i�v
w0(v)dv () �(�) = log

Z
R

e
i�v
w0(v)dv:

Note that  (�; t) = '(0; �; t) because of (2).
An operator D of the form

(D f)(x) =
1

2�

Z
R

Z
R

e
i�(x0�x)

(�)f(x0)d�dx0 (15)

is called pseudodi�erential operator (PDO) with the symbol . If  is given,

we can write D as an integro-di�erential operator calculating the inverse Fourier

transform in a distribution sense. Now we are ready for the following

Theorem 1. Let W (v; x; t) be the solution of the equation

@

@t
W (v; x; t) = AW (v; x; t)� v

@

@x
W (v; x; t) (16)

with initial data

W (v; x; 0) = w0(v) � c0(x); w0(x) � 0; c0(x) � 0;Z
R

w0(v)dv =

Z
R

c0(x)dx = 1; (17)

and '(�; �; t) its Fourier transform. Then c(x; t) de�ned by

c(x; t) =

Z
R

W (v; x; t)dv (18)
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is the solution of the equation

@

@t
c(x; t) = R(t)c(x; t) (19)

with initial data

c(x; 0) = c0(x); (20)

where the (in general time-dependent) operator R(t) is a PDO with the symbol

r(�; t) =
@

@t

�
log'(0; �; t)

�
:

P r o o f. Let Ca be the shift operators (Caf)(x) = f(x + a). Because

of the spatial homogeneity of the medium, the operator R has to commute with

the shift operators: RCa = CaR. The Fourier transform is the operator which

diagonalizes Ca. Since R commutes with Ca, the Fourier transform diagonalizes

R, too. That is, operator R becomes a multiplication operator in Fourier space,

and equation (19) is equivalent to equation

@

@t
 (�; t) = r(�; t) (�; t); (21)

where r(�; t) is the symbol of R = R(t), in general depending on t. Knowing

 (�; t), we get r(�; t) from (21) by

r(�; t) =
@
@t
 (�; t)

 (�; t)
=

@

@t
log (�; t) =

@

@t
log'(0; �; t): (22)

For t = 0 we get c(x; 0) =
R
R
W (v; x; 0)dv = c0(x) �

R
R
w0(v)dv = c0(x).

Thus, knowing '(0; �; t) from equation (16), we can calculate r(�; t), i.e., R(t).
We can say the problem is solved if we know R(t) explicitly. But this does not

mean that each of the calculations denoted by the arrows in the following scheme

has to be done explicitly.

A; w0(v) =) '(0; �; t) =) r(�; t) =) R(t):

Sometimes it is enough to know the structure of the value. Unfortunately, even

this seems to be a di�cult problem in general, but there are some special cases for

which this can be done. One of them is the important case of general Brownian

motion.
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3. General Brownian motion

Following A.M. Yaglom [7], we will call the motion of a random particle general

Brownian motion, if the forces acting on the particle are the sum of a deterministic

linear friction and random forces not depending on the velocity of the particle.

In this case equation (9) has the following form:

@

@t
W (v; x; t) =

@

@v

�
avW

�
+ b

@
2

@v2
W � v

@

@x
W

+

Z
R

�
Q(v � v0)W (v0; x; t)�Q(v0 � v)W (v; x; t)

�
dv
0
; (23)

W (v; x; 0) = w0(v)c0(x); �(�) := log

Z
R

e
i�v
w0(v)dv: (24)

The classical Fokker�Planck equation (1) is the special case Q � 0.

Theorem 2. Let W (v; x; t) be the solution of equation (23) with initial data

(24). Then c(x; t) de�ned by (18) is the solution to the equation

@

@t
c(x; t) =

1

2�

Z
R

Z
R

e
i�(x0�x)

�e
�at

�
0
�
�

a

�
1� e�at

��
c(x0; t)d�dx0

+
b

a2

�
1� e�at

�2 @2
@x2

c(x; t)

+

Z
R

a

1� e�at
Q

�
ax

0

1� e�at

��
c(x� x0; t)� c(x; t)

�
dx

0 (25)

with initial data c(x; 0) = c0(x).

P r o o f. Transforming equation (23) to Fourier space, we get

@

@t
'(�; �; t) = �(�)'(�; �; t) + (� � a�)

@

@�
'(�; �; t); (26)

where

�(�) = �b�2 +
Z
R

�
e
i�v � 1

�
Q(v)dv (27)

is the symbol of the random part of operator A. Equation (26) is a �rst-order

PDE and can be solved explicitly. Let

h(�; �; t) =
�

a

�
1� e�at

�
+ �e

�at
; h(0; �; t) =

�

a

�
1� e�at

�
:
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We get

'(�; �; t) = '0

�
h(�; �; t); �

�
� exp

0
@

tZ
0

�
�
h(�; �; t0)

�
dt
0

1
A : (28)

Taking into account the special initial value (24), we get

'(�; �; t) =  0(�)w0

�
h(�; �; t)

�
� exp

tZ
0

�
�
h(�; �; t0)

�
dt
0
;

'(0; �; t) =  0(�)w0

�
h(0; �; t)

�
� exp

tZ
0

�
�
h(0; �; t0)

�
dt
0
:

From (22) it follows

r(�; t) =
@

@t

�
log'(0; �; t)

�
=

@

@t
h(0; �; t)�0

�
h(0; �; t)

�
+ �

�
h(0; �; t)

�
= �e

�at
�
0
�
h(0; �; t)

�
+ �

�
h(0; �; t)

�
= �e

�at
�
0
�
�

a

�
1� e�at

��
+ �

�
�

a

�
1� e�at

��
: (29)

Thus, the symbol of operator R(t) as a function of w0 (via �) and A (via �) is

calculated. Therefore, we have

(R(t) f)(x)

=
1

2�

Z
R

Z
R

h
e
i�(x0�x)

�e
�at

�
0
�
�

a

�
1� e�at

��
+ �

�
�

a

�
1� e�at

��i
f(x0)d�dx0:

Using (27), we get (25).

Let

r0(�; t) = �e
�at

�
0
�
�

a

�
1� e�at

��
;

rA(�; t) = �

�
�

a

�
1� e�at

��
:

Then, the operator R(t) can be written as a sum of two parts

R(t) = R0(t) +RA(t) ;

where R0 is a PDO with the symbol r0(�; t) and depends only on the initial

velocity distribution w0(v), and RA is a PDO with the symbol rA(�; t) depending

only on A, i.e., on the interaction of the particle with the medium.
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Considering equation (25) instead of equation (23), we assume that the chang-

ing of the velocity is not interesting for us. This can be so, because the velocity

density does not change in time and is known from the beginning. This means

the initial velocity density w0(v) is the stationary one w1(v), i.e., a solution to

the stationary variant of equation (10): Aw1 = 0. We will assume that the

stationary solution is unique. In this case, the operator of the reduced equation

R(t) is determined by the operator A and the following theorem holds.

Theorem 3. Let W (v; x; t) be the solution of equation (23) with initial data

W (v; x; 0) = w1(v) � c0(x) ; (30)

where w1(v) is the unique solution (with
R
R

w1(v)dv = 1) to the equation

0 =
@

@v

�
avw1(v)

�
+ b

@
2

@v2
w1(v)

+

Z
R

�
Q(v � v0)w1(v0)�Q(v0 � v)w1(v)

�
dv
0
: (31)

Then c(x; t) de�ned by (18) is the solution to the equation

@

@t
c(x; t) =

b

a2

�
1� e�at

� @2
@x2

c(x; t) +

+

Z
R

a

(1� e�at)2
Q

�
ax

0

1� e�at

��
c(x� x0; t)� c(x; t)

�
dx

0 (32)

with initial data c(x; 0) = c0(x).

P r o o f. We will use formula (29) and therefore have to calculate �0(�). Be-

cause of w1(v) =
R
R
W (v; x; t)dx we have '0(�; 0) = '(�; 0;1), where '(�; 0;1)

is the solution of the stationary variant of equation (26) for � = 0:

0 = �(�)'(�; 0;1) � a�
@

@�
'(�; 0;1): (33)

Using this, we get

�
0(�) =

@

@�
log'0(�; �)

����
�=0

=

@
@�
'0(�; 0)

'0(�; 0)
=

@
@�
'(�; 0;1)

'(�; 0;1)
=
�(�)

a�
:
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Now, from (29) it follows

r(�; t) = �e
�at�

�
�
a

�
1� e�at

��
a
�
a

�
1� e�at

� + �

�
�

a

�
1� e�at

��

=
1

1� e�at
�

�
�

a

�
1� e�at

��
: (34)

Thus, the symbol of operator R(t) as a function of A is calculated. Using (15)

and (27), we get (32).

4. Time dependence of the operator R(t)

It seems to be strange that the operator R(t) depends on time explicitly,

whereas the original physical problem is time-independent. The reason is that the

original problem has various time scales, where the solution behaves di�erently.

For short times, the initial velocity distribution w0(v) is the dominating in�uence

on the particle. It moves like a free particle with given velocity. From (8) we see

that the velocity changes independently of x. Thus for intermediate times, the

probability density of the velocity relaxes and becomes stationary. This stationary

density w1(v) is the solution of the stationary equation related to equation (10):

Aw1 = 0. This middle time behavior can be investigated setting w0(v) = w1(v)

and then t = 0, assuming the velocity was relaxed from the beginning. For long

times, the particle moves with equilibrium velocity.

Let us consider three cases:

-

t = 0 w0(v) = w1(v); t = 0 t =1

u

4.1. The asymptotic behavior for t �! 0

Setting t = 0 in (29), we get, because of e�at
��
t=0

= 1, that

r(�; 0) = ��
0(0) + �(0):

From (27) we conclude �(0) = 0 and from the de�nition (24) of �

�
0(�) =

i
R
R
e
i�v
vw0(v)dvR

R
ei�vw0(v)dv

:

Therefore,

�
0(0) =

i
R
R
vw0(v)dvR

R
w0(v)dv

= i�v ;
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where �v is the average velocity at t = 0. Finally, we have r(�; 0) = i��v and so

@

@t
c(x; t) = R(0)c(x; t) = ��v

@

@x
c(x; t):

This equation shows that for t �! 0 the particle moves like a free particle with

average velocity �v. The equation is �rst-order hyperbolic.

4.2. The asymptotic behavior for t �!1

For t �!1, we have R0(t) �! 0 (the in�uence of the initial velocity vanishes)

and it follows

r(�;1) = �

�
�

a

�
;

and so we get

@

@t
c(x; t) = R(1)c(x; t)

=
b

a2

@
2

@x2
c(x; t) +

Z
R

aQ(ax0)
�
c(x� x0; t)� c(x; t)

�
dx

0
:

For Q = 0, this is the di�usion equation (a parabolic one).

4.3. The w0(v) = w1(v), t �! 0 case

Expanding r(�; t) from (34) in Taylor series for t = 0 and taking into account

�(0) = 0, we get formally

r(�; t) =
�

a
�
0(0) + �

2
t
1

2a
�
00(0):

Setting

q1 =

Z
R

vQ(v)dv; q2 =

Z
R

v
2
Q(v)dv;

we have

r(�; t) =
q1

a
i� � �2t

b+ q2

2a
:

This leads to the reduced equation

@

@t
c(x; t) = �

q1

a

@

@x
c(x; t) +

b+ q2

2a
t
@
2

@x2
c(x; t):
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The special case of symmetric Q(v) = Q(�v) leads to q1 = 0 and to the reduced

equation

@

@t
c(x; t) =

b+ q2

2a
t
@
2

@x2
c(x; t): (35)

From this we get @
@t
c(x; t)

��
t=0

= 0 and therefore for t! 0

@
2

@t2
c(x; t) = lim

t!0

1

t

�
@

@t
c(x; t) �

@

@t
c(x; t)

����
t=0

�
= lim

t!0

1

t

@

@t
c(x; t):

This shows that (35) is for t! 0 a second-order hyperbolic equation:

1

t

@

@t
c(x; t) =

@
2

@t2
c(x; t) =

b+ q2

2a

@
2

@x2
c(x; t):

Equations (25) or (32) arise in a natural way as a strong derivation from

a phase-space equation and in some sense interpolate between parabolic and hy-

perbolic equations. This can be an alternative to fractional time derivatives con-

sidered, for instance, in [1].

5. Some examples

5.1. The classical Brownian motion

For Q � 0, equation (23) is the classical Fokker�Planck equation (1). We have

�(�) = �b�2 and the Fourier transform of the stationary velocity distribution is

(see (33))

'(�; 0;1) = e
� b

2a
�2

or

w1(v) =
1q
2� b

a

e
� a

2b
v2
:

This is the well-known Maxwell distribution. If we take w0(v) = w1(v), we get

from (32) the equation

@

@t
c(x; t) =

b

a2

�
1� e�at

� @2
@x2

c(x; t); (36)

which is indeed similar to equation (7) and tends to it for t �!1. So we can state:

the classical di�usion equation describes the Brownian motion of a particle if the
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initial velocity distribution is Maxwellian and is independent of the initial spatial

distribution (assumption (24)) and only for long times, i.e., near equilibrium.

From (34), we can conclude that this is the only case where we get a parabolic

PDE for c(x; t).

We have the following limit cases:

@
2

@t2
c(x; t) �

1

t

@

@t
c(x; t) =

b

a

@
2

@x2
c(x; t); t �! 0;

@

@t
c(x; t) =

b

a2

@
2

@x2
c(x; t); t �!1:

5.2. The Cauchy case

An interesting question is, in which case, we get an equation for c(x; t) with

a time-independent operator R(t) = R. In the general case (29) this is only

possible for the noninteresting case w0(v) = Æ(v) and �(�) = 0. In the w0(v) =

w1(v) case, this is possible if b = 0 and

Q(v) =
d

�v2
:

Then we have �(�) = �dj�j and

'(�; 0;1) = exp

0
@

�Z
0

�(�0)

a�0
d�

0

1
A = exp

0
@�d

a

�Z
0

sign�0d�0

1
A = e

� d

a
j�j
;

or, after inverse Fourier transform,

w1(v) =
1

�

ad

d2 + a2v2
:

This is the well-known Cauchy distribution. To get the reduced equation, we have

from (34)

r(�; t) =
1

1� e�at
�

�
�

a

�
1� e�at

��
=

1

1� e�at
(�d)

����
a

�
1� e�at

���� = �d
a
j�j:

So we can state: Let W (v; x; t) be the solution of the equation

@

@t
W (v; x; t) =

@

@v

�
avW

�
+
d

�

Z
R

W (v0; x; t)�W (v; x; t)

jv � v0j2
dv
0 � v

@

@x
W

with initial value

W (v; x; 0) =
d

�av2
� c0(x):
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Then, c(x; t) is the solution to the equation

@

@t
c(x; t) =

d

a

Z
R

�
c(x� x0; t)� c(x; t)

� dx0
jx0j2

with initial value c(x; 0) = c0(x).

5.3. A free particle

An important question in applications is: what can we say about the evolution

of c(x; t), if we know that the velocity distribution is given and does not change

in time? This means that w0(v) = w1(v) and Aw1 = 0. Often we know how

the velocity is distributed (e.g., Maxwell distributed), but we do not know the

real interaction in the medium. This means that we know w1(v), but we do not

know A. Does c(x; t) depend on A?

Let us assume that w0(v) = w1(v) = Æ(v�v0), i.e., the particle moves all the

time with determined velocity v0, then we will expect that

c(x; t) = c0(x� v0t):

If w0(v) = w1(v) is arbitrary, in heuristic derivations sometimes the seemingly

obvious assumption

c(x; t) =

Z
R

w1(v)c0(x� vt)dv (37)

is used. We will show that this is wrong in general. From (37) we get for t > 0

c(x; t) =

Z
R

w1(v)c0(x� vt)dv =

Z
R

1

t
w1

�
x� x0

t

�
c0(x

0)dx0: (38)

Thus, 1
t
w1

�
x�x0

t

�
is the Green function of some operator R(t). Taking

as an example the Maxwell distribution

w0(v) =
1

p
2��

e
� v

2

2� ; (39)

a simple calculation shows that the corresponding reduced equation is

ct(x; t) = �tcxx(x; t): (40)

On the other hand, we know that, for the classical Fokker�Planck equation, the

Maxwell distribution is the equilibrium distribution (with � = b
a
), but the corre-

sponding reduced equation is (36), which is similar to (40) only for short times.
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Equation (38) � or (40) taken for special w1(v) � is the reduced equation

for a free particle, i.e., for the case without interaction, where A = O is the zero

operator. In this case, equation (23) reads as

@

@t
W (v; x; t) = �v

@

@x
W (v; x; t): (41)

This is a model for the motion of a particle (or a swarm of noninteracting par-

ticles) with given initial velocity distribution w0(v) = w1(v) (obviously every

distribution w1(v) is an equilibrium distribution satisfying Ow1 = 0). Sim-

ple calculation shows that the solution of (41) is W (v; x; t) = W0(v; x � vt) =

w1(v)c0(x� vt), and so we get (38). This shows that, making assumption (37),

we assume no interaction between the particle and the medium.
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