On the separated maximum modulus points of meromorphic functions

E. Ciechanowicz
Szczecin University, Institute of Mathematics 15 Wielkopolska Str., Szczecin, 70451, Poland E-mail:ewa.ciechanowicz@poczta.onet.pl
I.I. Marchenko
Department of Mechanics and Mathematics, V.N. Karazin Kharkov National University
4 Svobody Sq., Kharkov, 61077, Ukraine
Szczecin University, Institute of Mathematics 15 Wielkopolska Str., Szczecin, 70451, Poland
E-mail:iim@ukr.net
marchenko@wmf.univ.szczecin.pl
Received April 15, 2004
Communicated by I.V. Ostrovskii

We consider the relationship between the number of separated maximum modulus points and the Eremenko's value $b(\infty, f)$ for meromorphic functions.

Let $\nu(r, g)$ denote the number of maximum modulus points of an entire function $g(z)$ on the circle $|z|=r$. In 1964 P . Erdös set up the question whether it is possible to find an entire function $g(z) \neq c z^{m}$ with $\nu(r, g)$ unbounded. In 1968 F. Herzog and G. Piranian [10] gave a positive answer to this question. They constructed an entire function $g(z)$ with $\nu(r, g) \rightarrow \infty$ for $r \rightarrow \infty$.

In this paper we present an upper estimate of the number of separated maximum modulus points for meromorphic functions. We shall use the standard notations of value distribution theory: $m(r, a, f), N(r, a, f)$ and $T(r, f)$ [8]. Let $f(z)$ be a meromorphic function.

Let's set $\mathcal{L}(r, \infty, f)=\max _{|z|=r} \log ^{+}|f(z)|, \quad \mathcal{L}(r, a, f)=\mathcal{L}\left(r, \infty, \frac{1}{f-a}\right)$. The quantity

$$
\beta(a, f)=\liminf _{r \rightarrow \infty} \frac{\mathcal{L}(r, a, f)}{T(r, f)}
$$

[^0](C) E. Ciechanowicz and I.I. Marchenko, 2005
is called Petrenko's magnitude of deviation of meromorphic function $f(z)$ at pointa. V.P. Petrenko in [13] obtained a sharp upper estimate of the magnitude of deviation of meromorphic functions of finite lower order $\lambda=\liminf _{r \rightarrow \infty} \frac{\ln T(r, f)}{\ln r}$.

Theorem A. If $f(z)$ is a meromorphic function of finite lower order λ, then for each $a \in \overline{\mathbb{C}}$

$$
\beta(a, f) \leq\left\{\begin{array}{lll}
\frac{\pi \lambda}{\sin \pi \lambda} & \text { if } & \lambda \leq 0.5 \\
\pi \lambda & \text { if } & \lambda>0.5
\end{array}\right.
$$

We now introduce the quantities which count the number of separated maximum modulus points of a meromorphic function $f(z)$ on the circle $|z|=r$. For $0<\eta \leq 1$ and $r>0$ we denote by $p_{\eta}(r, \infty, f)$ the number of component intervals of the set

$$
\left\{\theta: \ln \left|f\left(r e^{i \theta}\right)\right|>(1-\eta) T(r, f)\right\}
$$

possessing at least one maximum modulus point of the meromorphic function $f(z)$. Moreover, we set $p_{\eta}(\infty, f)=\underset{r \rightarrow \infty}{\liminf } p_{\eta}(r, \infty, f)$ and $p(\infty, f)=\sup _{\{\eta\}} p_{\eta}(\infty, f)$.

In [3] the authors obtained the following estimate of the value $p(\infty, f)$ through Petrenko's magnitude of deviation $\beta(\infty, f)$.

Theorem B. For meromorphic functions $f(z)$ of finite lower order λ the following inequality is true:

$$
p(\infty, f) \leq \max \left(\left[2 \frac{\pi \lambda}{\beta(\infty, f)}\right], 1\right)
$$

where $[x]$ means the entire part of the number x.
For entire functions $\beta(\infty, g) \geq 1$, which leads us to the following conclusion.
Corollary B. For entire functions $g(z)$ of finite lower order λ we have

$$
p(\infty, g) \leq \max ([2 \pi \lambda], 1)
$$

In case of meromorphic functions of infinite lower order the quantity $\beta(a, f)$ may be infinite, so we apply the following result of Bergweiler and Bock [2].

Theorem C. If $f(z)$ is a meromorphic function of infinite lower order, then

$$
\liminf _{r \rightarrow \infty} \frac{\mathcal{L}(r, \infty, f)}{r T_{-}^{\prime}(r, f)} \leq \pi,
$$

where $T_{-}^{\prime}(r, f)$ is the left derivative of Nevanlinna's characteristic function.

We have $r T_{-}^{\prime}(r, f)=A(r, f)+O(1)$, where $A(r, f)$ means the spherical area covered by the image of the disc $\{z:|z| \leq r\}$ under $f(z)$, divided by the area of the Riemann's sphere. In connection with this equality and the above theorem A. Eremenko introduced the quantity

$$
b(a, f)=\liminf _{r \rightarrow \infty} \frac{\mathcal{L}(r, a, f)}{A(r, f)}
$$

In [5] he proved the following estimate for $b(a, f)$.
Theorem D. For a meromorphic function $f(z)$ of lower order $\lambda, 0<\lambda \leq \infty$, and for $a \in \overline{\mathbb{C}}$ we have

$$
b(a, f) \leq \begin{cases}\pi & \text { if } \quad \frac{1}{2} \leq \lambda \leq \infty \\ \frac{\pi}{\sin \pi \lambda} & \text { if } \quad 0<\lambda<\frac{1}{2}\end{cases}
$$

In case of $\eta=1$ one of the authors in [12] obtained the upper estimate of $p_{1}(\infty, f)$ through $b(\infty, f)$. Our main result is the upper estimate of $p(\infty, f)$ through $b(\infty, f)$ for meromorphic functions.

Theorem 1. For a meromorphic function $f(z)$ of lower order λ, where $0<\lambda \leq \infty$, and for $0<\eta \leq 1$ we have

$$
p_{\eta}(\infty, f) \leq \max \left\{1,\left[(2-\eta) \frac{\pi}{b(\infty, f)}\right]\right\}
$$

Corollary 1. For a meromorphic function of lower order $\lambda, 0<\lambda \leq \infty$ we have

$$
p(\infty, f) \leq \max \left\{1,\left[2 \frac{\pi}{b(\infty, f)}\right]\right\}
$$

1. Auxiliary results

For $0<\eta \leq 1$ let's consider the function

$$
u_{\eta}(z)=\max (\log |f(z)|,(1-\eta) T(|z|, f))
$$

where $f(z)$ is a meromorphic function in \mathbb{C}.
Lemma 1. The function $u_{\eta}(z)$ is a δ-subharmonic function in \mathbb{C}.
Proof. Let $g_{1}(z)$ and $g_{2}(z)$ be entire functions without common zeros such that $f(z)=\frac{g_{1}(z)}{g_{2}(z)}$. Then we can write

$$
u_{\eta}(z)=\max \left(\log \left|g_{1}(z)\right|-\log \left|g_{2}(z)\right|,(1-\eta) T(|z|, f)\right)
$$

$$
=\max \left(\log \left|g_{1}(z)\right|,(1-\eta) T(|z|, f)+\log \left|g_{2}(z)\right|\right)-\log \left|g_{2}(z)\right|
$$

The characteristic function $T(r, f)$ is a nondecreasing and convex function of $\log r$ for $r>0$, hence the function $T(|z|, f)$ is a subharmonic function in $\mathbb{C}[14]$. Therefore $u_{\eta}(z)$ is a difference of two subharmonic functions: $U_{1}(z)=\max \left(\log \left|g_{1}(z)\right|,(1-\eta) T(|z|, f)+\log \left|g_{2}(z)\right|\right)$ and $U_{2}(z)=\log \left|g_{2}(z)\right|$. This completes the proof of Lemma 1.

For a complex number $z=r e^{i \theta}$ let's put [1]

$$
\begin{gathered}
m^{*}\left(r, \theta, u_{\eta}\right)=\sup _{|E|=2 \theta} \frac{1}{2 \pi} \int_{E} u_{\eta}\left(r e^{i \varphi}\right) d \varphi \\
T^{*}\left(r, \theta, u_{\eta}\right)=T^{*}\left(r e^{i \theta}\right)=m^{*}\left(r, \theta, u_{\eta}\right)+N(r, \infty, f)
\end{gathered}
$$

where $r \in(0, \infty), \theta \in[0, \pi],|E|$ is the Lebesgue's measure of the set E and $N(r, \infty, f)$ is the Nevanlinna's counting function. Let's put $\tilde{u}_{\eta}(z)$ for the circular symmetrization of the function $u_{\eta}(z)$ [9]. The function $\tilde{u}_{\eta}\left(r e^{i \varphi}\right)$ is nonnegative and nonincreasing on the interval $[0, \pi]$, even in φ and for each fixed r equimeasurable with $u_{\eta}\left(r e^{i \varphi}\right)$. Moreover, it satisfies the relations:

$$
\begin{aligned}
& \tilde{u}_{\eta}(r)=\max \left(\log \max _{|z|=r}|f(z)|,(1-\eta) T(r, f)\right) \\
& \tilde{u}_{\eta}\left(r e^{i \pi}\right)=\tilde{u}_{\eta}(-r)=\max \left(\log \min _{|z|=r}|f(z)|,(1-\eta) T(r, f)\right) \\
& m^{*}\left(r, \theta, u_{\eta}\right)=\sup _{|E|=2 \theta} \frac{1}{2 \pi} \int_{E} u_{\eta}\left(r e^{i \varphi}\right) d \varphi=\frac{1}{\pi} \int_{0}^{\theta} \tilde{u}_{\eta}\left(r e^{i \varphi}\right) d \varphi
\end{aligned}
$$

From Baernstein's theorem [1] the function $T^{*}\left(r, \theta, u_{\eta}\right)$ is subharmonic in

$$
D=\left\{r e^{i \theta}: 0<r<\infty, 0<\theta<\pi\right\}
$$

continuous in $D \cup(-\infty, 0) \cup(0,+\infty)$ and logarithmically convex in $r>0$ for each fixed $\theta \in[0, \pi]$. Furthermore:
$T^{*}\left(r, 0, u_{\eta}\right)=N(r, \infty, f)$,
$T^{*}\left(r, \pi, u_{\eta}\right) \leq(2-\eta) T(r, f)$,
$\frac{\partial}{\partial \theta} T^{*}\left(r, \theta, u_{\eta}\right)=\frac{\tilde{u}_{\eta}\left(r e^{i \theta}\right)}{\pi} \quad$ for $0<\theta<\pi$,
where $T(r, f)$ is the Nevanlinna's characteristic function of $f(z)$.
Let $\alpha(r)$ be a real-valued function of a real variable r and

$$
L \alpha(r)=\liminf _{h \rightarrow 0} \frac{\alpha\left(r e^{h}\right)+\alpha\left(r e^{-h}\right)-2 \alpha(r)}{h^{2}}
$$

When $\alpha(r)$ is twice differentiable in r, then

$$
L \alpha(r)=r \frac{d}{d r} r \frac{d}{d r} \alpha(r)
$$

In [3] the authors obtained the following result.

Lemma 2. For all $0<\eta \leq 1$ and for almost all $\theta \in[0, \pi]$ and for all $r>0$ such that on the set $\{z:|z|=r\}$ the meromorphic function $f(z)$ has neither zeros nor poles we have

$$
L T^{*}\left(r, \theta, u_{\eta}\right) \geq-\frac{p_{\eta}^{2}(r, \infty, f)}{\pi} \frac{\partial \tilde{u}_{\eta}\left(r e^{i \theta}\right)}{\partial \theta}
$$

W. Bergweiler and H. Bock in [2] introduced a generalization of Polya peaks [4] to functions of infinite lower order. Let's remind the basic facts of this construction.

For all sequences $M_{j} \rightarrow \infty, \varepsilon_{j} \rightarrow 0$ there exist sequences $\rho_{j} \rightarrow \infty$ and $\mu_{j} \rightarrow \infty$ such that, for all r 's fulfilling the inequality $\left|\log \left(\frac{r}{\rho_{j}}\right)\right| \leq \frac{M_{j}}{\mu_{j}}$, we have

$$
\begin{equation*}
T(r, f) \leq\left(1+\varepsilon_{j}\right)\left(\frac{r}{\rho_{j}}\right)^{\mu_{j}} T\left(\rho_{j}, f\right) \tag{1}
\end{equation*}
$$

We can choose the sequences μ_{j} and M_{j} such that

$$
\mu_{j}=o\left(\log ^{\frac{3}{2}} T\left(\rho_{j}, f\right)\right), \quad M_{j}=o\left(\log T\left(\rho_{j}, f\right)\right), \quad j \rightarrow \infty
$$

Let's put

$$
P_{j}=\rho_{j} e^{-\frac{M_{j}}{\mu}}{ }_{j}, \quad Q_{j}=\rho_{j} e^{\frac{M_{j}}{\mu_{j}}}
$$

Then the inequality (1) is true for all $r \in\left[P_{j}, Q_{j}\right]$. We shall assume that $M_{j}>1$.
Let's consider the sets

$$
\begin{aligned}
& A_{j}=\left\{r \in\left[\rho_{j}, Q_{j}\right]: T(r, f) \leq \frac{1}{\sqrt{\mu_{j}}}\left(\frac{r}{\rho_{j}}\right)^{\mu_{j}} T\left(\rho_{j}, f\right)\right\}, \\
& B_{j}=\left\{r \in\left[P_{j}, \rho_{j}\right]: T(r, f) \leq \frac{1}{\sqrt{\mu_{j}}}\left(\frac{r}{\rho_{j}}\right)^{\mu_{j}} T\left(\rho_{j}, f\right)\right\} .
\end{aligned}
$$

Let's put

$$
\begin{gather*}
R_{j}=\left\{\begin{array}{ll}
\min A_{j}, & \text { if } A_{j} \neq \emptyset, \\
Q_{j}, & \text { if } A_{j}=\emptyset,
\end{array} \quad t_{j}= \begin{cases}\max B_{j}, & \text { if } B_{j} \neq \emptyset \\
P_{j}, & \text { if } B_{j}=\emptyset\end{cases} \right. \tag{2}\\
S_{j}=e^{-\frac{1}{\mu_{j}}} R_{j}, \quad T_{j}=e^{-\frac{2}{\mu_{j}}} R_{j} .
\end{gather*}
$$

Then

$$
t_{j}<\rho_{j}<T_{j}<S_{j}<R_{j}
$$

In [2] it is shown that

$$
\begin{equation*}
\frac{T\left(R_{j}, f\right)}{R_{j}^{\mu_{j}}}+\frac{T\left(t_{j}, f\right)}{t_{j}^{\mu_{j}}}=o\left(\mu_{j} \int_{t_{j}}^{T_{j}} \frac{T(r, f)}{r^{\mu_{j}+1}} d r\right), \quad j \rightarrow \infty \tag{3}
\end{equation*}
$$

Apart from that, it follows from the inequality (19) in [2] that

$$
T\left(\rho_{j}, f\right) \leq T^{\frac{3}{2}}\left(t_{j}, f\right), \quad j \rightarrow \infty
$$

In order to prove our main results we shall need several additional lemmas.
Lemma A [13]. Let $f(z)$ be a meromorphic function of finite lower order λ. Then there exist sequences S_{k}, R_{k} tending to infinity such that $\lim _{k \rightarrow \infty} \frac{S_{k}}{R_{k}}=0$ and for each $\varepsilon>0$, for all $k \geq k_{0}(\varepsilon)$ we have

$$
\frac{T\left(2 R_{k}, f\right)}{R_{k}^{\lambda}}+\frac{T\left(2 S_{k}, f\right)}{S_{k}^{\lambda}}<\varepsilon \int_{2 S_{k}}^{R_{k}} \frac{T(r, f)}{r^{\lambda+1}} d r
$$

Let's define new quantities

$$
\begin{gathered}
h(r, \lambda, p):=\mathcal{L}(r, \infty, f) \cos \frac{\lambda \psi}{p}-\frac{\pi \lambda}{p} T^{*}\left(r, \alpha, u_{\eta}\right) \sin \frac{\lambda(\alpha+\psi)}{p} \\
+\frac{\pi \lambda}{p} N(r, \infty, f) \sin \frac{\lambda \psi}{p}-\tilde{u}_{\eta}(r, \alpha) \cos \frac{\lambda(\alpha+\psi)}{p} \\
h_{\eta}(r, \lambda):=h\left(r, \lambda, p_{\eta}(\infty, f)\right) .
\end{gathered}
$$

The inequality, that we present as a lemma below, was proved in [3].
Lemma B. Let $f(z)$ be a meromorphic function of finite lower order λ. Then for $0<\alpha \leq \min \left(\pi, \frac{\pi p_{\eta}(\infty, f)}{2 \lambda}\right)$ and $-\frac{\pi p_{\eta}(\infty, f)}{2 \lambda} \leq \psi \leq \frac{\pi p_{\eta}(\infty, f)}{2 \lambda}-\alpha$, we have the asymptotic inequality

$$
\int_{2 S_{k}}^{R_{k}} \frac{h_{\eta}(r, \lambda)}{r^{\lambda+1}} d r<\varepsilon \int_{2 S_{k}}^{R_{k}} \frac{T(r, f)}{r^{\lambda+1}} d r, \quad k \rightarrow \infty
$$

where S_{k} and R_{k} are the sequences from lemma A.
The following lemma is an analogue of lemma B for meromorphic functions of infinite lower order.

Lemma 3. Let $f(z)$ be a meromorphic function of infinite lower order. Then for such numbers p that $1 \leq p \leq \max \left\{1, p_{\eta}(\infty, f)\right\}, 0<\alpha \leq \min \left\{\pi, \frac{\pi p}{2 \mu_{j}}\right\}$, $-\frac{\pi p}{2 \mu_{j}} \leq \psi \leq \frac{\pi p}{2 \mu_{j}}-\alpha$ we have

$$
\begin{equation*}
\int_{t_{j}}^{T_{j}} \frac{h\left(r, \mu_{j}, p\right)}{r^{\mu_{j}+1}} d r<\varepsilon \mu_{j} \int_{t_{j}}^{T_{j}} \frac{T(r, f)}{r^{\mu_{j}+1}} d r, \quad j \rightarrow \infty \tag{4}
\end{equation*}
$$

where T_{j} and t_{j} were defined in (2).
Proof. Let's put $[11,6,7]$

$$
\sigma(r)=\int_{0}^{\alpha} T^{*}\left(r, \theta, u_{\eta}\right) \cos \frac{\mu_{j}(\theta+\psi)}{p} d \theta
$$

Applying Lemma 2, the fact that $L T^{*}\left(r, \theta, u_{\eta}\right) \geq 0$ and Fatou's lemma, we obtain that for almost all $r \geq r_{0}$

$$
r \frac{d}{d r} r \sigma_{-}^{\prime}(r) \geq-\int_{0}^{\alpha} \frac{p_{\eta}^{2}(r \infty, f)}{\pi} \frac{\partial \tilde{u}_{\eta}(r, \theta)}{\partial \theta} \cos \frac{\mu_{j}(\theta+\psi)}{p} d \theta
$$

After applying integration by parts to the right side of the above inequality we have

$$
r \frac{d}{d r} r \sigma_{-}^{\prime}(r) \geq p^{2} h\left(r, \mu_{j}, p\right)+\mu_{j}^{2} \sigma(r)
$$

We divide this inequality by $r^{\mu_{j}+1}$ and integrate it over an interval $\left[t_{j}, T_{j}\right]$.

$$
\begin{equation*}
\int_{t_{j}}^{T_{j}} \frac{1}{r^{\mu_{j}}} \frac{d}{d r} r \sigma_{-}^{\prime}(r) d r \geq p^{2} \int_{t_{j}}^{T_{j}} \frac{h\left(r, \mu_{j}, p\right)}{r^{\mu_{j}+1}} d r+\mu_{j}^{2} \int_{t_{j}}^{T_{j}} \frac{\sigma(r)}{r^{\mu_{j}+1}} d r \tag{5}
\end{equation*}
$$

Integrating by parts the left side of (5) and applying the monotonicity of $r \sigma_{-}^{\prime}(r)$, we obtain

$$
\begin{equation*}
p^{2} \int_{t_{j}}^{T_{j}} \frac{h\left(r, \mu_{j}, p\right)}{r^{\mu_{j}+1}} d r \leq\left.\left(\frac{\sigma_{-}^{\prime}(r)}{r^{\mu_{j}-1}}+\mu_{j} \frac{\sigma(r)}{r^{\mu_{j}}}\right)\right|_{t_{j}} ^{T_{j}} \tag{6}
\end{equation*}
$$

The definition of $\sigma(r)$ implies that

$$
\sigma(r) \leq \frac{(2-\eta) p}{\mu_{j}} T(r, f)
$$

Since $r \sigma_{-}^{\prime}(r)$ is monotonically increasing on $\left[t_{j}, T_{j}\right]$, we have

$$
\sigma\left(S_{j}\right)-\sigma\left(T_{j}\right)=\int_{T_{j}}^{S_{j}} \sigma_{-}^{\prime}(r) d r \geq T_{j} \sigma_{-}^{\prime}\left(T_{j}\right) \log \frac{S_{j}}{T_{j}}=\frac{1}{\mu_{j}} T_{j} \sigma_{-}^{\prime}\left(T_{j}\right)
$$

Hence

$$
T_{j} \sigma_{-}^{\prime}\left(T_{j}\right) \leq \mu_{j} \sigma\left(S_{j}\right) \leq(2-\eta) p T\left(S_{j}, f\right)
$$

Apart from that, for all $r \geq 1$ we have $r \sigma_{-}^{\prime}(r) \geq \sigma_{-}^{\prime}(1)$. Now, applying (6) and (3), we obtain

$$
\begin{gathered}
p^{2} \int_{t_{j}}^{T_{j}} \frac{h\left(r, \mu_{j}, p\right)}{r^{\mu_{j}+1}} d r \leq \frac{2(2-\eta) p T\left(S_{j}, f\right)}{T_{j}^{\mu_{j}}}-\frac{\sigma_{-}^{\prime}(1)}{t_{j}^{\mu_{j}}} \\
<\frac{2(2-\eta) p e^{2} T\left(R_{j}, f\right)}{R_{j}^{\mu_{j}}}+\frac{T\left(t_{j}, f\right)}{t_{j}^{\mu_{j}}}<\varepsilon \mu_{j} \int_{t_{j}}^{T_{j}} \frac{T(r, f)}{r^{\mu_{j}+1}} d r, \quad j \rightarrow \infty .
\end{gathered}
$$

This completes the proof of Lemma 3.

2. Main result

In this section we present the proof of Theorem 1.
If $b(\infty, f)=0$ or $p_{\eta}(\infty, f)=0$ then the statement is obviously true. Therefore let's take $b(\infty, f)>0$. Then also $p(\infty, f)>0$.

First we shall prove the statement for meromorphic functions of finite lower order λ. We consider the case when $p(\infty, f)<\infty$. For $\lambda>0$ we have

$$
\int_{2 S_{k}}^{R_{k}} \frac{T(r, f)}{r^{\lambda+1}} d r=\frac{T\left(2 S_{k}, f\right)}{\lambda 2^{\lambda} S_{k}^{\lambda}}-\frac{T\left(R_{k}, f\right)}{\lambda R_{k}^{\lambda}}+\frac{1}{\lambda} \int_{2 S_{k}}^{R_{k}} \frac{r T_{-}^{\prime}(r, f)}{r^{\lambda+1}} d r
$$

Thus, applying lemma A, we obtain

$$
\begin{equation*}
\int_{2 S_{k}}^{R_{k}} \frac{T(r, f)}{r^{\lambda+1}} d r<\frac{1+\varepsilon}{\lambda} \int_{2 S_{k}}^{R_{k}} \frac{A(r, f)}{r^{\lambda+1}} d r, \quad k \rightarrow \infty \tag{7}
\end{equation*}
$$

Let's first assume that $\frac{\lambda}{p_{\eta}(\infty, f)}>\frac{1}{2}$. Then $\frac{\pi p_{\eta}(\infty, f)}{2 \lambda}<\pi$. In Lemma B we put $\alpha=\frac{\pi p_{\eta}(\infty, f)}{2 \lambda}, \psi=0$. Then, as $k \rightarrow \infty$

$$
\int_{2 S_{k}}^{R_{k}} \frac{\mathcal{L}(r, \infty, f)}{r^{\lambda+1}} d r<\left(\frac{\pi \lambda}{p_{\eta}(\infty, f)}(2-\eta)+\varepsilon\right) \int_{2 S_{k}}^{R_{k}} \frac{T(r, f)}{r^{\lambda+1}} d r
$$

Inserting (7) into this inequality, we obtain

$$
\int_{2 S_{k}}^{R_{k}} \frac{\mathcal{L}(r, \infty, f)}{r^{\lambda+1}} d r<\frac{1}{\lambda}(1+\varepsilon)\left(\frac{\pi \lambda}{p_{\eta}(\infty, f)}(2-\eta)+\varepsilon\right) \int_{2 S_{k}}^{R_{k}} \frac{A(r, f)}{r^{\lambda+1}} d r, \quad k \rightarrow \infty
$$

Therefore there exists a sequence $r_{k} \in\left[2 S_{k}, R_{k}\right]$ such that

$$
\mathcal{L}\left(r_{k}, \infty, f\right)<\frac{1}{\lambda}\left[\frac{\pi \lambda}{p_{\eta}(\infty, f)}(2-\eta)+\varepsilon\right](1+\varepsilon) A\left(r_{k}, f\right), \quad k \rightarrow \infty
$$

Passing to the limit with $k \rightarrow \infty$ and $\varepsilon \rightarrow 0$, we obtain

$$
b(\infty, f) \leq \frac{\pi}{p_{\eta}(\infty, f)}(2-\eta)
$$

This leads us to the statement in this case, as $p_{\eta}(\infty, f)$ takes only integral values.
Let's now assume that $\frac{\lambda}{p_{\eta}(\infty, f)} \leq \frac{1}{2}$. Then $\pi \leq \frac{\pi p_{\eta}(\infty, f)}{2 \lambda}$. In the definition of $h_{\eta}(r, \lambda)$ we put $\alpha=\pi$ and $\psi=0$. Thus
$h_{\eta}(r, \lambda)=\mathcal{L}(r, \infty, f)-\frac{\pi \lambda}{p_{\eta}(\infty, f)} T^{*}\left(r, \pi, u_{\eta}\right) \sin \frac{\pi \lambda}{p_{\eta}(\infty, f)}-\tilde{u}_{\eta}(r, \pi) \cos \frac{\pi \lambda}{p_{\eta}(\infty, f)}$.
If $p_{\eta}(\infty, f)=1$ then the statement is obvious. Let then $p_{\eta}(\infty, f) \geq 2$. Then we have

$$
\begin{gathered}
h_{\eta}(r, \lambda) \\
=\mathcal{L}(r, \infty, f)-\frac{\pi \lambda}{p_{\eta}(\infty, f)} T^{*}\left(r, \pi, u_{\eta}\right) \sin \frac{\pi \lambda}{p_{\eta}(\infty, f)}-(1-\eta) T(r, f) \cos \frac{\pi \lambda}{p_{\eta}(\infty, f)}
\end{gathered}
$$

This leads us to inequality

$$
\begin{gathered}
\int_{2 S_{k}}^{R_{k}} \frac{\mathcal{L}(r, \infty, f)}{r^{\lambda+1}} d r \\
\leq \int_{2 S_{k}}^{R_{k}} \frac{h_{\eta}(r, \lambda)+(2-\eta) \frac{\pi \lambda}{p_{\eta}(\infty, f)} T(r, f) \sin \frac{\pi \lambda}{p_{\eta}(\infty, f)}+(1-\eta) T(r, f) \cos \frac{\pi \lambda}{p_{\eta}(\infty, f)}}{r^{\lambda+1}} d r
\end{gathered}
$$

Applying lemma B, we get

$$
\begin{gathered}
\int_{2 S_{k}}^{R_{k}} \frac{\mathcal{L}(r, \infty, f)}{r^{\lambda+1}} d r \\
<\left[(2-\eta) \frac{\pi \lambda}{p_{\eta}(\infty, f)} \sin \frac{\pi \lambda}{p_{\eta}(\infty, f)}+(1-\eta) \cos \frac{\pi \lambda}{p_{\eta}(\infty, f)}+\varepsilon\right] \int_{2 S_{k}}^{R_{k}} \frac{T(r, f)}{r^{\lambda+1}} d r .
\end{gathered}
$$

Inserting (7) into this inequality, we obtain

$$
\begin{gathered}
\int_{2 S_{k}}^{R_{k}} \frac{\mathcal{L}(r, \infty, f)}{r^{\lambda+1}} d r \\
<\frac{(1+\varepsilon)}{\lambda}\left[(2-\eta) \frac{\pi \lambda}{p_{\eta}(\infty, f)} \sin \frac{\pi \lambda}{p_{\eta}(\infty, f)}+(1-\eta) \cos \frac{\pi \lambda}{p_{\eta}(\infty, f)}+\varepsilon\right] \int_{2 S_{k}}^{R_{k}} \frac{A(r, f)}{r^{\lambda+1}} d r .
\end{gathered}
$$

Therefore there exists a sequence $r_{k} \in\left[2 S_{k}, R_{k}\right]$ such that

$$
\lambda \mathcal{L}\left(r_{k}, \infty, f\right)<(1+\varepsilon)\left[(2-\eta) \frac{\pi \lambda}{p_{\eta}(\infty, f)}+(1-\eta) \cos \frac{\pi \lambda}{p_{\eta}(\infty, f)}+\varepsilon\right] A\left(r_{k}, f\right)
$$

As the above inequality holds for any $\lambda>0$ such that $\frac{\lambda}{p_{\eta}(\infty, f)} \leq \frac{1}{2}$ we have

$$
\lambda \frac{\mathcal{L}\left(r_{k}, \infty, f\right)}{A\left(r_{k}, f\right)}<(1+\varepsilon)\left[(2-\eta) \frac{\pi \lambda}{p_{\eta}(\infty, f)}+\varepsilon\right]
$$

Passing to the limit with $k \rightarrow \infty$ and $\varepsilon \rightarrow 0$, we obtain the statement in this case. The proof for $p(\infty, f)=\infty$ can be conducted similarly [11].

We now consider the case when $f(z)$ is a meromorphic function of infinite lower order. Let $p_{\eta}(\infty, f) \geq 1$ and let p be the number from Lemma 3 . We take j_{0} such that for $j \geq j_{0}$ we have (4) and $\frac{p}{\mu_{j}}<1$. In Lemma 3 we put $\psi=0$ and $\alpha=\frac{\pi p}{2 \mu_{j}}$. Then we have

$$
h\left(r, \mu_{j}, p\right)=\mathcal{L}(r, \infty, f)-\frac{\pi \mu_{j}}{p} T^{*}\left(r, \alpha, u_{\eta}\right)
$$

and

$$
\int_{t_{j}}^{T_{j}} \frac{\mathcal{L}(r, \infty, f)}{r^{\mu_{j}+1}} d r=\int_{t_{j}}^{T_{j}} \frac{h\left(r, \mu_{j}, p\right)+\frac{\pi \mu_{j}}{p} T^{*}\left(r, \alpha, u_{\eta}\right)}{r^{\mu_{j}+1}} d r
$$

Since $T^{*}\left(r, \theta, u_{\eta}\right) \leq(2-\eta) T(r, f)$ for all $\theta \in[0, \pi]$

$$
\int_{t_{j}}^{T_{j}} \frac{\mathcal{L}(r, \infty, f)}{r^{\mu_{j}+1}} d r \leq \int_{t_{j}}^{T_{j}} \frac{h\left(r, \mu_{j}, p\right)+\frac{\pi \mu_{j}}{p}(2-\eta) T(r, f)}{r^{\mu_{j}+1}} d r
$$

Hence, on the basis of Lemma 3

$$
\int_{t_{j}}^{T_{j}} \frac{\mathcal{L}(r, \infty, f)}{r^{\mu_{j}+1}} d r<\left[\frac{\pi}{p}(2-\eta)+\varepsilon\right] \mu_{j} \int_{t_{j}}^{T_{j}} \frac{T(r, f)}{r^{\mu_{j}+1}} d r, \quad j \rightarrow \infty
$$

Using integration by parts and applying (3), we obtain

$$
\begin{gathered}
\mu_{j} \int_{t_{j}}^{T_{j}} \frac{T(r, f)}{r^{\mu_{j}+1}} d r=\frac{T\left(t_{j}, f\right)}{t_{j}^{\mu_{j}}}-\frac{T\left(T_{j}, f\right)}{T_{j}^{\mu_{j}}}+\int_{t_{j}}^{T_{j}} \frac{r T_{-}^{\prime}(r, f)}{r^{\mu_{j}+1}} d r \\
<(1+\varepsilon) \int_{t_{j}}^{T_{j}} \frac{A(r, f)}{r^{\mu_{j}+1}} d r, \quad j \rightarrow \infty .
\end{gathered}
$$

Thus

$$
\int_{t_{j}}^{T_{j}} \frac{\mathcal{L}(r, \infty, f)}{r^{\mu_{j}+1}} d r<\left[\frac{\pi}{p}(2-\eta)+\varepsilon\right](1+\varepsilon) \int_{t_{j}}^{T_{j}} \frac{A(r, f)}{r^{\mu_{j}+1}} d r, \quad j \rightarrow \infty .
$$

Therefore there is such a sequence $r_{j} \in\left[t_{j}, T_{j}\right]$ that

$$
\begin{equation*}
\mathcal{L}\left(r_{j}, \infty, f\right)<\left[\frac{\pi}{p}(2-\eta)+\varepsilon\right](1+\varepsilon) A(r, f) \tag{8}
\end{equation*}
$$

The definition of the sequence $\left(t_{j}\right)$ implies that $t_{j} \geq P_{j}=\rho_{j} e^{-\frac{M_{j}}{\mu_{j}}}$ where $\rho_{j} \rightarrow \infty$, $\frac{M_{j}}{\mu_{j}} \rightarrow 0$. The sequence $P_{j} \rightarrow \infty$ as $j \rightarrow \infty$. Thus $t_{j} \rightarrow \infty$ and $r_{j} \rightarrow \infty$ as $j \rightarrow \infty$. From the definition of $b(\infty, f)$ and from (8) we get

$$
b(\infty, f) \leq\left[\frac{\pi}{p}(2-\eta)+\varepsilon\right](1+\varepsilon) .
$$

As it is true for any $\varepsilon>0$, therefore for all numbers p such that $1 \leq p \leq p_{\eta}(\infty, f)$ we have

$$
\begin{equation*}
b(\infty, f) \leq \frac{\pi}{p}(2-\eta) \tag{9}
\end{equation*}
$$

If $p_{\eta}(\infty, f)<\infty$ then, putting in (9) $p=p_{\eta}(\infty, f)$, we obtain the statement. If, on the other hand, $p_{\eta}(\infty, f)=\infty$ then the inequality (9) is true for all numbers $p \geq 1$. Hence in this case $b(\infty, f)=0$. This completes the proof of Theorem 1.

References

[1] A. Baernstein, Integral means, univalent functions and circular symmetrization. Acta Math. (1974), v. 133, No. 3-4, p. 139-169.
[2] W. Bergweiler and H. Bock, On the growth of meromorphic functions od infinite order. - J. Anal. Math. (1994), v. 64, p. 327-336.
[3] E. Ciechanowicz and I.I. Marchenko, On the maximum modulus points of entire and meromorphic functions. - Mat. Stud. (2004), v. 21, No. 1, p. 25-34.
[4] A. Edrei, Sums of deficiencies of meromorphic functions. - J. Anal. Math. (1965), v. 14, p. 79-104.
[5] A. Eremenko, An analogue of the defect relation for the uniform metric. - Comp. Variables Theory Appl. (1997), v. 34, p. 83-97.
[6] M. Essen and D.F. Shea, Applications of Denjoy integral inequalities and differential inequalities to growth problems for subharmonic and meromorphic functions. Proc. Roy. Irish Acad. (1982), v. A82, p. 201-216.
[7] R. Gariepy and J.L. Lewis, Space analogues of some theorems for subharmonic and meromorphic functions. - Ark. Mat. (1975), v. 13, p. 91-105.
[8] A.A. Gol'dberg and I.V. Ostrowskii, Distribution of values of meromorphic functions. Nauka, Moscow (1970). (Russian)
[9] W.K. Hayman, Multivalent Functions. Cambridge Univ. Press, Cambridge (1958).
[10] F. Herzog and G. Piranian, The counting function for points of maximum modulus. In: Proc. Symp. Pure Math. (1968), v. 11. Entire Functions and Related Parts Analysis, AMS, p. 240-243.
[11] I.I. Marchenko, On the magnitudes of deviations and spreads of meromorphic functions of finite lower order. - Mat. Sb. (1995), v. 186, p. 391-408.
[12] I.I. Marchenko, On the growth of entire and meromorphic functions. - Mat. Sb. (1998), v. 189, No. 6, p. 59-84. (Russian)
[13] V.P. Petrenko, The growth of meromorphic functions of finite lower order. - Izv. Akad. Nauk SSSR (1969), v. 33, No. 2, p. 414-454. (Russian)
[14] L.I. Ronkin, Introduction into the theory of entire functions of many variables. Nauka, Moscow (1971). (Russian)

[^0]: Mathematics Subject Classification 2000: 30D35 (primary); 30D30 (secondary).
 Key words and phrases: meromorpic function, subharmonic function,
 maximum modulus points.
 This research was partly supported by the grant INTAS-99-0089.

