A sharp inequality for the order of the minimal positive harmonic function in T-homogeneous domain

  • V. Azarin
  • A. Gol՚dberg

Анотація

Let $G$ be a simply connected domain in $\mathbb{C}$ which is $T$-homoheneous, i.e., $TG=G$ for some $T>0$. Let $\rho(G)$ be the order of the minimal positive harmonic function in $G$. We prove that a kind of symmetrization of $G$ and prove that it does not increase $\rho(G)$. This implies a sharp lower bound for $\rho(G)$ in terms of conformal modulus of a quadrilateral naturally connected with $G$.

Downloads

Як цитувати

(1)
V. Azarin и Gol՚dberg A., A sharp inequality for the order of the minimal positive harmonic function in T-homogeneous domain, Мат. физ. анал. геом. 11 (2004), 375-379.

Номер

Розділ

Статті

Завантаження

Дані завантаження ще не доступні.