Absolutely continuous measures on the unit circle with sparse Verblunsky coefficients

  • Leonid Golinskii

Анотація

Orthogonal polynomials and measures on the unit circle are fully determined by their Verblunsky coefficients through the Szegő recurrences. We study measures $\mu$ from the Szegő class whose Verblunsky coefficients vanish off a sequence of positive integers with exponentially growing gaps. All such measures turn out to be absolutely continuous on the circle. We also gather some information about the density function $\mu'$.

Downloads

Як цитувати

(1)
L. Golinskii, Absolutely continuous measures on the unit circle with sparse Verblunsky coefficients, Мат. физ. анал. геом. 11 (2004), 408-420.

Номер

Розділ

Статті

Завантаження

Дані завантаження ще не доступні.