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Earlier M.L. Rabelo and K. Tenenblat have introduced the notion of toroidal submanifolds
generated by some curve & and they have constructed immersions of domains of the n-dimensional

Lobachevsky space L" in E n -1 as toroidal submanifolds. Here these submanifolds are
reconstructed by a simply way, and in the case # = 3 the influence of the torsion « of the curve

3cEgS
coefficient of torsion of the special normal basis of M
constructed.

« on the geometry of the submanifolds M is investigated. Here the torsion appears in the

3. The Grassmann image of its has been

Introduction

In [1]Rabelo and Tenenblat have introduced the notion of toroidal submanifolds and
they have constructed immersions of domams of the n-dimensional Lobachevsky space
L"in the (2n — 1)-Euclidean space £ 2" ~ ! as toroidal submanifolds. We recall here that
notion. Let

a (xl) = (fl(xl)y f2(x1)""’fn(x[))’ x €I CR,

be a parametrization of a regular curve in E " such that f(x)#0,i22 Vx €I The
submanifold parametrized by

r(xpe0 X)) = (%), f(x, )cos Xy, fo(x, )81 X, ..,f [(x,)cos x, f, (x,)sin x, )

is called a toroidal submanifold M " of E*" ™ ! generated by the curve .

In [1] such toroidal submanifolds with sectional curvature equal to — 1 have been
constructed in Theorem 2.1. The results are distinct for n = 3 and n = 4. For n = 4 the
submanifold is generated by a tractrix in E" .

In this paper we reconstruct these submanifolds for n = 3 in a simple way and inves-
tigate their properties. The question about the influence of the torsion « of the curve « on
the geometry of the submanifolds M3cE’is especially interesting. We show that «
appears in the coefficient of torsion of the normal basis generated by a principal vector of
the normal curvature of the submanifold M 3. Moreover, when « = 0, this basis parallel
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translated in the normal bundle. Then we construct the Grassmann 1mage of the
submanifold M3 ¢ E®

For n =z 4 we show that it coincides with the toroidal submanifold with sectional
curvature equal to — 1, which is the one discovered by F. Shur.

For all these immersions a family of line of curvatures consists of geodesic curves of
L™ In [2]the immersions L3inE ] with this condmon were investigated with the view of
solving the principal system of immersions L%in E° (see Theorem 4, p. 382). However,
the condition on the toroidal structure of submanifolds gives us new opportunities fora
deeper investigation of their behaviour. : ' ’

1.Case N =3
For simplicity we use the notatlon xl =t and for n = 3, we have the posmon vector of ‘
M3 '. v
r(t, Xo» x3) = (fl, f2 COS X, f2 sin Xy, ,‘r'3 COS X,, _f_?’ sin xs),
where f, = f; (1), i = 1, 2, 3. We use the prime to denote derivatives with respect to z.
We have the following expression of the derivatives ofr_: '
r,= (fl,fzcos x2,f251nx2,f3cos xa,f3 sin x )

< rx2 = ( f2 sin x2,f2 Cos x2’ 0 0)

rx3 = o, »0, 0, —f3 sin x3,f3 €os xs). :

. _ v 3 . :
We can take the léength of arc of the curve « as the parameter ¢. Then E ! ;2 = | and hence
, =1 :
for the metric of M > we obtain o
2 g2 22 52 2242
ds® = dt +f2dx2+f3dx3.

~ Since the ds? metric has a constant curvature equal to — 1, using formulas (37.4) from
{3 ], we obtain the three equations:

From the two equations we have

f2=Aet+B‘e_t, f3=Cet+De~t,

where A, B, C, D are some constants and the third equation implies that
AD + BC = 0. B

Fromff: 1 —-f'zz—fézwehave

t
5 (t)=tf\/al—aze2t—a3e_2’dt+c,
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where a = 1 - 2(AB + CD), a,= A% + Cz, az = B2+ D?and cisan arbitrary constant.
" Then we have the necessary condition
2(4B + CD)< 1.

1fA%2 + C? = 0and B* + D* = 0, then the functionf1 isdefined in an interval of the f-axis.

Let us unvestigate this case. First we find the points whercf; = 0, which is cquivalent to

ar _ 2t — (4)
a, e a e +a;= 0.
Hence :
a, +Va-4aa
2t 1~ 1 273
e~ = 3 .
&)

Using condition (3) we obtain that A = af —4a,a, = (1 — 4AB)(1 — 4CD).

The case af - 4a2a3 = ( does not occur because the expression in the left hand side of
(4) would be positive for all ¢ except one point. Therefore, we can assume that
af - 4a2a3 # (. By setting

al—VA al+ﬂ
! —_— |, 2t, =In |—5——
2a2 2

y

2a,
~ the curve « is defined in the interval (7, £,) and its arc length [ is equal to

1 al + \/K ($)
-t = —_—— .

=2 VA

2

LN ‘

Since‘
a? — A = 4(AB — CD)?
1 b
ifB->0,D-»0and | A|, | C| <const, thenl - o,

Now, we calculate the curvature &k and the torsion « of the curve . We remember that
tis a natural parameter of «. Therefore

A

2 2 fN2 L f2 0 2y
K=la" |*=¢ ) +r5+f2=1-2a + > —5 ©)
. a, —d, e — a, e
, 1 2 3
Consequently, when t » 4, , the curvature k - . From this equality we have
_ A - ‘
al—a2e2’—a3e 2t=——2—-—-’————-—. N
k*+2a -1

Then, using the formula for the torsion of a space curve in the natural parametrization,

the equationsflf' =/, i=2,3imply that.
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A R WA e

' ry=\fy Sy Sy | =\ S 0 =0\ =IO 5= T4y
S f Sy | fs O
, (8)
Hence A _ v .
K_;cf;’—fi)(f'zfs-féfz)’ ©
. kZA ¢

Itis easy to obtain that f , f, — f ; f, is a constant number given by

fyfy =713, =2AD - BC).

We set ‘
T = 2(AD — BC),
and obtain that '
. 2 2 12 12 ’e ’ 2 .
F g = AR Rt Ytk Sl X e N UV
1 ) I (1 _f12~f;2)3/2
2 3
_ 4a2a3——af ,
(al’ _ az.e2t_ (l3 e~ 21’)3/2 .

Hence the torsion of the curve « is given by the expression :
2(4aya; — a))(AD — BC) ’ : : (10)

(al _ 512 eZt _ a3 e~ 2t)3/2k2 .

K=

From the assumption that A # ( we deduce that the curve a is a plane curve if and only if
AD — BC =0. From (3) this condition is satisfied if and only if A= C=0orB= D = 0.
Formulas (7) and (10) give us that k and « are connected by the algebraic relation

2 3/2
T(k* + 2a - 1)
We observe that the two numbers A and B (or C and D) cannot vanish simultaneously in

consequence of the regularity of the submanifold M 3,
In the case k # 0 the curve « is a space curve whose projection on the plane (fy f3) i

K= -

an arc of a hyperbola. In fact, we have
Cfy — Afy = (CB — DA)e” ,

Df.

, — Bfy = (AD — CB)¢'.

Hence

CDf %+ ABfl= - (DA - CB)%. - Db
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Condition (3) means that there exists a number A such that
C=A1A, D= —AB.
Therefore, equation (11) can be rewritten in the form
2,2 2 _ 432
A f5—f5=42"AB.

If the curve a is a plane curve, then this hyperbola is degenerated into a pair of straight
lines with an intersection. Now, we investigate the geometric properties of the submanifold
M3 c ES. The immersions L" in E**~! always have plane normal conncctions.
Therefore, there exists a basis of normal vector fields with coefficicnts of torsion
identically equal to zero. But now, we shall construct special normal vector fields whose
coefficients of torsion will be related to the torsion « of the curve a.

We take the family of coordinate curves on M 3 with the parameter /. Since these curves
are geodesic curves their curvature vectors lie in the normal plane. We take the ficld of unit
vectors along them :

n, = 712 (f;',yf2 €OS X,, f, Sin X,, f €OS x5, f5 5in x,). (12)

The second field of normal vectors n, we calculate using the cross-product

where v is the norm of this cross-product. After some calculations we obtain

1 ! ’ . «
ny,=o (f‘,’f2 "fzfs’ & cos X5 £ sin X, 7] COS X3, 77 Sin xs), (13)
where ‘

_ ' ) 2 2
V'_\/(f3f2—f2f3) +§ +77
As the fields of the normal basis n,,n, do not depend on X, and X35 the coefficients of
torsion u, , /2 andpu,, /3 are equal to zero. Finally, we have ‘
My = (ny ”2x1) == (”1x} ny ).

The derivative n 1t has the form

3
rre

]- ’ ! . ! ’ . k
n,= k(fl s 5 €08 Xy, f 5 Si01 X,, f 5 COS X3, f 5 5in x3)—-—k—nl .

Consequently, the coefficient of torsion

=1 , , RN VAN VA
.“12/1_':7;7(}(1 (faf2—f2f3)+‘5f2+77f3)= l l kj ! 22 .

Using equation (9), we obtain

ook (14)
KBppn =k%-
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Let us consider the quotient «/v. We have

1= 15T LT
fe———— VT
Vidry —f; C Vi-r7 -1,
Therefore ' ‘ .
_ . 2
ERPINS LT ..
. a, —aye” —aze

If we compare this expression with k%in (6), we see that they are very similar. Using (7), .
we obtain ' s

v—Clk +C,, | -

where

C

1 — 4(AD — BC)? . o
= A . C=C,2a -1~ L
. Consequently, v ’
k

Byapy =K )
Ve +c, _
where C, and C, are some constants. Since the second fundamental forms
13 02 72 7.2 _ #2122
IF =k dt j’2dx2 fsdxa’
2_ 2 _ 2
= f2§dx2 f377dx3 ‘
are diagonal, the coordinate curves are lines of curvature. In particular, t-curves are the

lines of curvature and ' is the principal vector of curvature. We call the basis n, , n., the
122

special invariant normal basis. Thus we can formulate the result:

Theorem. On the toroidal submanifold M 3 c ES with curvature equd.l 1o — 1 the
coefficient of torsion Hia1 of the special invariant basis is expressed in terms of the

curvature k and the torsion k of the curve a by the relation
' k

By =% -
2
Ve, ke,

where Cl and C2 are constants.

It is obvious for « = 0 that the coefficient u , /1 also vanishes. Since we have explicit
expressions for n, and n,, it is easy to obtain the Grassmann image of M 3 We get for its k

Pliicker coordinates

plz=crl Cos X, , p'3 =0 sinx

1 2’
14 _ 15 _ .
pU=o0,008%;, p°=0,sinx;,
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o We also choose three unit vectors a; € E, defmed by
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3 _ 0, p45 = 0’

24 _ 25 _ o -
p™ = 0,008 x,C08 X3, P =0zC0S8X,S8inXy,

3
p34 =0, sin X, COS X5 , p35 =0, sin Xy sin X3,
where g,,i= 1, 2, 3 are functions of . v ‘
f16=1,T Fin=£T  Ln=/é
NET kv 0 2T T kv 0 9T kv -
Consequently, the Grassmann image T3 lies in some 8-dimensional Euclidean space E 8
We introduce three Euclidean spacesE, , E, and E, mutually orthogonal with coordinates
. and posmon vectors given by . o Ll o
' =10 By =0,

E3. ={P 25 34 35}

E

_{costSmx2} . —{cosx sm»x3»},,’

sin x, sin x

a3={cosx 3 28 O

COS X, COS X, Sin x3 SlIl x Cos X

2 3’ 2

The position vector p of the Grassmann image T3 is a linear combination of the vectors .
a, -
B

Cew . p=olal+02a2+asas.

- If x, and x, are fixed, then a; will be conStant vectors. Henc?the image of a f-curve is not

o

in general aplane curveina three dlmensmnal Euchdean space As Z 02 = 1, this curve
i=1
‘lieson a 2—d1mensnonal unit sphere When ¢ is fixed and x,, and x, are changing, 1hen r

~and r, describe two circles and r; describes the Clifford torus.

2. CaseN>4

In conclusmn we investigate the toroidal submamfold MRPCEM™ with constant .
curvature equal to — 1, for the general case n = 4 We obtain the system of' equmons i

) fi =fl’ flszflf]’ ) l’T’—‘,_z"”',,n‘
Hence ’ : ' . '
— (A > —t ,
L f;=Ae+Be ",
where . Co
Al.Bj+Bl.Aj=Q, z,]=2,,n
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It is not difficult to prove thatall A, = 0 or all B, = 0. In fact, we choose three different,
indices i, j, k and the corresponding equations

AB +AB, =0, | (15)
AB, + AB =0, ' (16)
AB +BA, =0, (17

Suppose, for example, that B, # 0. We must remark that, in consequence of the regularity

of the submanifold M ", for every index i the corresponding constants A, and 5, are not
identically zero at the same time. From (15) we obtain

AB,
4j=-75"

]
Substituting this relation in (17), we get i
Bj(—AlBk+AkBi)=0. 18)
From (16) and (18) we have
Bj Ai B = 0.

We have to analyse three possibilities. The first one is b’j = 0. This implics that Aj =0,
but since B # 0, we have a contradiction with (15). The second one is B, = 0 and again
from (16) we end up with a contradiction. The third case is A= 0 for which from (16) we
obtain that BA, = 0, but since B # 0 we necessarily have that A, = 0.

‘Thus we have only one solution A=4 = A!. = 0 and the cxpressions for f; assume the

forms

fl=f 1-cte~dt, fi=Bye!, i=2,..,n, ,

- n
where ¢% = 2 Bl.z. With the choice of a new parameter 7 = 1 — In ¢ we can obtain the
i=1
coincidence with the example of F. Shur.
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O TOpoMAAbHBIX NOAMHOr000pPa31aX MOCTOSHHONW OTPULIATENLHON
KPHBHU3HbI

10.A. Amunos, M.JI. Pabeno

Panee M. Pa6eno u K. Tenen6naT BBEIM NOHATHE TOPOMAANLHBIX NOAMHOPOOOM: -
3uil, MOPOXKAAEMBIX HEKOTOPOM KPHBOM «, M NOCTPOMIM norpyxewus ofnacrei -

MepHOro npocrpancTsa Jlo6auesckoro heE Ly BUMJIE TOPOUAAIBHbBIX NTOAMHOIO-
obpaauit. 3pecb 3T NOAMHOro00pa3us CTPOSTCS NPOCTbIM criocofom, v B cayuae n = 3
. 3 5

M3YUEHO BIMSHHE KPYUEHMS K KPHUBOM @ HA PEOMETPHIO NOAMHOTrO00pasus M ° C £2
ITokaszaHo, uTo x nposaiasier cefs B K0ahPUUMUEHTE KPYUEHHMS CrIEUMANbHOIO Baduca

Hopmaneit M 3 TakK, YTO KOTAa « = 0, TO 37T0T 6a3HC — NAPANIENBHO NEPEHOCUMDII.

Crpourcs rpaccMaHos obpas M 3,

Ipo TopoinanbHi NiAMHOFOBUAM NOCTIMHOT Bil’éMHOT KPUBHHU

I0.A. Aminos, M.JI. Pabeno

Pauiwe M. Pateno ta K. TeneHOnaT BBEIM NOHATTS PO TOPOIAAIbHI MIAMHOTOBH)H,
- TIOPOIKEHI KPHUBOW @, i nobynyBanm aaHypeHHs 06JacTeit n-BMMIpHOTO RPOCTOPY -

Jlo6auescokoro L E2n -1 Y BUMISAI TOPOIAAJIbHMX NMIAMHOrOBUAIB. Y poboTi i
3aHypeHHst NoOyA0BaHi NPOCTMM 3ac000M, i Y BUNAAKY 7 = 3 BUBUEHO BILIMB CKPYTY K

3 CE 5. JloBeneHo , o CKPYT K 3'SBASCTLCS

' KPHMBOI @ Ha reOMETPilo NiaMHOTOBUAY M
y koediuienti ckpyTy cneuianabnoro 6asucy nopmaneit M 3 TAKMM HMHOM, 11O KOOI

« = 0, T0 uen 6a3uc napanesbHo nepeHocuMufi. Bynyernca rpacemanis o6paz M 3.
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