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We prove that the unimodular entire matrix-function
A(2) B(2)
Qz) D()

with real entries is a Nevanlinna matrix provided that the three quotients B/A, A/C, and
D/C have positive imaginary part in the upper half-plane.

Introduction. A unimodular entire matrix-function
[ A(z) B(z)
M(z) =
[C(Z) D(z))
is called a Nevanlinna matrix if for each fixed z from the upper (lower) half-plane the

MGobius transformation w > (A@w + B} C2)w + D(z))*1 maps the upper (lower)
half-plane into a disc lying with its closure in the same half-plane. It is readily seen

that equivalently one can say that the entries of the unimodular matrix M(z) are real
entire functions and for all real values ¢

A(Z)t + B(2)
Cor+n =X o

Here, (%) is a class of resolvent-type functions, i.e., functions 6(z) holomorphic in
the both upper and lower half-planes and satisfying 6(Z)= ET(—z—), and
Im 6(z) Imz > O for Im z # 0. ‘
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A remark to the definition of Nevanlinna matrices

Nevanlinna matrices play a fundamental role in the description of solutions of
problems of analysis connected with self-adjoint extensions of special classes of
symmetric operators with deficiency index (1,1), see [AG], [Akh}], [dBr, Chapter 2],
and [Krl]. We mention here the Hamburger moment problem [Akh] (probably, the
term "Nevanlinna matrix" was introduced for the first time in that book) and [Berg],
the spectral theory of Sturm-Liouville ditferential operators [Kr 2], Krein’s problem
of continuation of positive definite functions from an interval [Ber, Chapter VIII,
§ 3], and de Branges’ theory of Hilbert spaces of entire functions [dBr]. Analytical
properties of Nevanlinna matrices were investigated in the paper [Kr 2] as well as in
{dBr, Chapter 2].

Condition (1) immediately yields that

A/Ce (R), and B/D € (R).

If the Mobius transformation w+— (Aw+ B)(Cw+D)—l, AD - BC =1 maps the
upper half-plane into a disc lying in the upper half-plane, then the Mobius transfor-

mation obtaining by replacement of B and C by — C and — B or by changing positions
of 4 and D have the same property. Therefore the matrices

A(Z) B@) 4@ ~C0Q) 4 D@ - Cz)
Cz) D))’ | -B@) D(2) |’ - B(z) A2)

simultaneously belong or do not belong to the class of Nevanlinna matrices. Thus (1)
also yields that B/A € (%), and D/C € (R).

It is worth to remind, that the M0bius transformation given by a unimodular
matrix M maps the upper half-plane into itself it and only if

M—JMF;:-‘! > 0, (2)

0

where M " is the conjugate matrix, and J = (l —01); or, equivalently, if and only if

Im (B/4) 2 0, Im (D/C) 2 0, and Re [AD - BC] > 1. 3

See, e.g., [dBr, Problems 75 and 81]. We will use another equivalent form of the
same condition (see [Kr 2, Lemma 3} or [Akh, Chapter 3, Addenda and Probiems}):

Im (D/C) 20, and Im (D/C) - Im (4/C) > (Im (1/C))%. (3a)
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Theorem. Ler
(43 53
be a matrix-function whose entries are reall entire functions satisfying the conditions:
 det M(z) = A@D() - B@)C2) = 1 @
and
B/Ae (R),A/Ce (R), D/C € (R). &)

Then M(2) is a Nevanlinna matrix.

We do not insist on the novelty of this result, though we have not met it before. It
can be easily seen that there are complex values 4, B C, and D such that

AD - BC= 1, Im (B/A) > 0, Im (4/C) > 0, and Im (D/C) > 0,

but nevertheless neither (3) nor (3a) are fulfilled.

Krein’s theorems. In the proof of the Theorem we follow arguments from [Kr2)
(see also [Akh, Chapter 3, Addenda and Problems]). For convenience of the reader,
we formulate here the analytical results which are used below. First, we use Krein’s

multiplicative representation of functions from the class (£ ) which are meromorphic
in the whole complex plane (see [Lev, Chapter VII]).

Theorem K1. In order that a meromorphic function in the complex plane ¥(z)
belong to the class (X)) it is neccessary and sufficient that

_ z2-M, 2z z -1
"P(Z)-Cz‘_ H[l k)(l—_—] ,

”"n;eo n By

wherep, < A < p. ., A <0<uy,,c> 0. The product in the right-hand side
converges absolutely and uniformly on each compact subset of the complex plane.

Another analytical device we need is also due to Krein ([Kr 2], [Lev, Chapter V]).

A real entire function F(z) is said to be a function of Krein’s class (X7) if F~ l(z) can
be represented as a series of simple fractions
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L co+——+z { l}

with real poles A , and the series converges absolutely and uniformly on each

compact set of the complex plane, i.e., Z la, I\, 2 <o,
n

An entire function F(z) is said to be a function of Cartwright class if F has at most
finite exponential type and the logarithmic integral converges:

jMaw

1+x2

Theorem K 2. An entire function F belongs to the Cartwright class if and only if
log | F(2) | has positive harmonic majorants in the upper and lower half-planes.

Theorem K 3. Each entire function of the class (X)) belongs to the Cartwright
class.

Remark (Krein, de Branges). Using the Theorems K1 and K3, Krein proved in
[Kr 2] that a real entire function C (z) can serve as an entry in a Nevanlinna matrix if
and only if it belongs to the class (X). He also described the pairs of real entire

functions C (z) and D(z) which can serve as the second row in a Nevanlinna matrix:
the product C - D should belong to the Krein class and

- D/Ce (R).

In the framewotk of the theory of Hilbert spaces of entire functions another form
of the same condition was given by de Branges [dBr, Chapter 2}: the pair of real

entire functions C (z) and D(2) is the second row in a Nevanlinna matrix if and only if
the entire function E (z) = C (2) - iD(z) has at most exponential type,

|Ex+iy) | < | Ex-iy)l for y >0,
and
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Q0
1 dx
——— — 5 < ®
I | E() P 1+
-0 )
If these conditions are fulfilled, then, certainly, £ must belong to the Cartwright

class.
If the second row of the Nevanlinna matrix is given then one can easily restore the

'whole matrix: at zeros of C (z) the function A(z) equals 1/D(z) and therefore, assum-
ing that C (2) does not vanish at the origin, the Nevanlinna—Chebotarev representation
(see e. g., [Lev, Chapter VII}) of the function A/C € (X ) has a form

4@ _ v+ > 1 {1 _l}
@) s oo C AP0 A=z R

with a positive a and real b as parameters. In fact, that series is nothing but the
Lagrange interpolation series for the function A(z) with nodes at the zeros of C (2).

Then the function B(z) may be found either directly from equation (4) or using a
similar series.

Proof of the Theorem. We split the proof into several elementary
steps.

1. The zeros of all four entire functions A(z), B(z), C(2), and D(2) are real. Indeed,

if say A(z) has a non-real zero, then C(z) and hence det M(z) would have the same
non-real zero. Without lost of generality, we assume that all these four functions do
not vanish in the origin.

“Conditions (5) yield that zeros of the pairs of entire functions (B, A), (4, C ), and
(D, C) are interlacing. '

2. The zeros of functions B(z) and D(z) are interlacing as well. It follows immedi-
ately from identity (4) and conditions (5). Indeed, let A and A, be two consequitive
zeros of B(z). Then A(A, )D(A, ) = A(A,,, )D(A, ., ) =1 and since the zeros of 4 and

B are interlacing, we conclude, that D has an odd number of zeros between each pair
of consequitive zeros of B. In the same way, B has an odd number of zeros between
each pair of consequitive zeros of D.
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3. The entire functions A - C and B - D belong to the Cartwright class. Indeed,
identity (4) may be rewritten in the form

1 _D
C

1 _D_ B
ACTC 4~

Thus A - C belongs to the Krein class (17C ) and by Theorem K 3 it belongs to the
Cartwrlght class.

4. Let Ap={A, } be a zero set of a real entire function F(z) from Cartwright’s
class with real zeros. Then the limit

M@= lim [] [1—%}

R=>o <R n

exists uniformly on each compact set of the complex plane (see [Lev, Chapter V}),
and

F(z) = const 1 (2).
Thus we can write

A=A0)" T, ,B=B(0)eCTl,, C=C0)e ™ T, D=D0) I,

where H(z) and G(z) are real entire functions vanishing at the origin. All four
canonical products also belong to the Cartwright class. Indeed, consider, for example,

the products IT, and I1 . . The logarithmic integrals

oo}

log" | Ne£D] 40 o o
1 +x*

-0

converge for IT=1II, .. Since the zeros of A and C are interlacing,

L, D] "
Cy(1+x])2 Tﬁ“—("—ﬂs H(1+1x )72,
C

and hence
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log | I, (x + ) | = 5 log | TT,c(x % 1) | + O log | x ),

| L1 .
log|Hc(xi1)|=ElogIHAC(xit)HO(loglxl),

as x tends to infinity. That is, the logarithmic integrals converge also for IT=TI  and
I1= HC . Thus, by Theorem K 2, the logarithm of the modulus of the both canonical
products has harmonic majorants in the halt-planes Imz < 1 and Imz > -1 and
hence in the lower and upper half-planes. Therefore the products IT [, and I'IC also
belong to the Cartwright class.

Since B/A € (X ), Theorem K1 implies that G(z) — H(z) = const. Taking into ac-
count that both functions vanish at the origin, we find G(z) = H(z). The same argu-
ment applied to the functions A(z) and C (2) says that H = 0. That is, all four entries
of the matrix-functions M(z) are entire functions of Cartwright class.

5. The entries of M(z) belong to the Krein class. We prove it for ((z). First, we

will show that the series
) 1 { 1, 1 } ‘ 6
C'AM) (A z-A .

keAC

converges absolutely on compact subsets of the complex plane, and then, that it

converges to C~ }(z) — C ™ 1(0). As before, we assume for simplicity, that C (z) does
not vanish at the origin.
The convergence of the series (6) is equivalent to

1
Ae AC

To prove (7) we use the Cauchy—Bunyakovskii inequality

2
1 _ — AN B i
{ 2 [C'0) lxz} lezA C ‘(M2 ANC (W22

XEAC c

- 418 Matematicheskaya fizika, analiz, geometriya, 1996, v. 3, No 3/4



A remark to the definition of Nevanlinna matrices

_ AN S
2 [ c'(mz) EA( AC '<x)>@)<°°'
C

leAC

The first series converges since A/C € (X ), and the second series converges since

A-Ce (X).
The entire function of exponential type

I O 0 SR S 1 1
Fa) =7 {C(z) a EZA C'M) Mz- x)}
C

tends to zero on the boundary of angles

@i-1n @i+1)n
—— < —

as z tends to oo, and the Phragmén-Lindelof’s theorem applying in each of these four
angles immediately yields that F (z) = 0, provingthat C € (X).
6. Now, having the representation
1 __ 1 1 1,1 ’ (®)
C@@ C(©) C'AM)]z-2 A
Ae A c '

we prove (3a).
To this end, we separate the imaginary part in (8):

I

1 1 1 1
m = Z ~—Im =-Imz Z -3
C(@ > ACC ) z —.7» \ e ACC M) z-A

and estimate its square using again the Cauchy—-Bunyakovskii inequality

2 2
1 2 1 \/_ A 1
= 2l ﬂmz)[“ZA VA0C® | C'm) |z—x|2} )
C

o SRR _An) 1 | ©
S(Imz){ Z A()»)C’(?»)IZ*MZ} { z ( C'(k))lz—?»|2}.

le/\c keAC
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Since A/C € (&), we have

A _ A()) 1
ke/\c

and since D/C € (%), we have

D D)) 1 -1 1
m&@2 ) (— : ~) 5= D - 5 . an
C Leh, C'MN)lz-7| xeAC’“”Cm“’“

Substituting (10) and (11) into (9), we obtain (32) completing the proof of the
theoren:.

R e m ar k. 1.V. Ostrovskii called author’s attention to the fact that the arguments

- used above prove the following. Ler F(z) be a function from Krein’s class. Then it can
be factorized into the product

F(z) = F|(z) F5(2) ... F,(2),

where each entire functions F}(z) also belong to Krein’s class (X) and the zeros of
each pair of functions FJ and F,_ are interlacing. This factorization may be useful in

various situations since the asymptotic behaviour ot the modulus of the tactors | FJ | is

very close to | F {Vn

The converse to that statement requires certain additional assumptions since the
product of two functions of Krein’s class with interlacing zeros does not always belong
to Krein’s class (since zeros of the factors may come too close to each other, see, e.g.,
an example in [Koo]). The same combination of the Cauchy—Bunyakovskii inequality
and the Phragmén—Lindel0f theorem as used above gives the following statement. Let

the entire functions F and G have interlacing zeros and let G € (XC). Then FG € (X))
if and only if

2 [_Fxlo'x)ll;@“"' a2
n: GO =0 MG (W) 1+

Condition (12) is also sufficient for F € (X]).
This fact (as, in a sense, everything presented here) is contained implicitly in
[Kr 2]. We also mention that condition (12) arises naturally in Hamburger’s moment
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problem ([Akh, Chapter 4, Addenda and Problems; Berg]), as well as in the de
Branges theory [dBr, Chapter 2].
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3ameuanue K onpeaenenuio HeBaHMMHHOBCKMX MaTphu
Muxann Coaun

Jloxa3aHo, YT0 YHUMOXYASPHAS Uelas MaTpHua-GyHKUHs

A(z) B(2)
C(z) D(z)
ABAACTCA HCBaHHHHHDBCK()f’I Manuueifl. CCIit €¢ ICMCHTBI — BCUICCTHCHHBIC LIEIBIC

byHxumH ¥ Tpu otHOWIEHHA B/A4, A/C v D/ MMEIOT NONOXKUTENBHYI0 MHHMYIO 4acTh B
BEPXHEit NOMYIIIOCKOCTH.
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3ayeaxenns no BH3HauewHs HeBanAlHHOBCHKHX MaTphlb
Muxaitio Conin

JoseneHo, 1o yHIMGRYISpHa Mijia MAaTPUUS- HYHKLUISA

A(z) B(2)
Clz) D(2)
¢ HepailiHHOBCHKOW0 MaTpMULEIO, AKIMO 1 eXeMCeHTM — milicHi uimi dywxui i Tpu

pinHomwenns B/A, A/C ta D/C MaoTh NO3HTHBHY YABHY YacTMHY Y BEpXHiit misruio-
WKL
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