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An analog of scattering data for the operators which are strong limits
of reflectionless Dirac operators is introduced and the corresponding inverse
problem is solved. On this basis a method of solving the Cauchy problems
for nonlinear Schrodinger equation with initial data from a wide set of non-
vanishing at infinity functions is developed.

Introduction

Let Ly(a,b) denote the Hilbert space of vector-functions (column matrices)
fi(z) T

with the standard scalar product

b

(5,9 = [(h@H@ + L@ nE)de.

a

Let D be the differential operator

d
D = i03%+V(9€) (—oo < 2 < 00),
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where 1 (z) is a continuous complez-valued potential. D defines a symmetric
operator in Eg(—oo, o) with domain of definition the set of C'' functions with
compact support. The closure of this operator is the Dirac operator, which is a
self~adjoint operator and will still be denoted by D.

A complete analysis of the direct and inverse scattering problems for the Dirac
operators with potential 1(z) which satisfy the finite density conditions

d' I
Jim ot (6(a) - gpeter) =0 1)
(p >0, ¢z € [-7, ) are fixed, k,1 =0,1,2,...) is given in the monography [1].
Among the potentials satisfying the finite density condition an important class
is the class of reflectionless potentials, which generate the Dirac operators with
vanishing reflection coefficients.

Let us introduce the following notations:

B(p, ¢, ¢4) is the set of all reflectionless potentials satisfying condition (1);

B(w) is the union of all sets B(p, ¢, ¢4) forall p € (0,w], p_, ¢4 € [-7,7);

B(w) is the closure of B(w) for the topology of compact convergence on the
real axis.

The characteristic properties of potentials belonging to the set m and of
the corresponding Dirac operators are described in [2].The set B(w) contains a
broad class of bounded functions. For example, all finite-gap potentials and all
potentials which satisfy the condition of finite density and define Dirac operators
with compactly supported reflection coefficients belong to it.

In this paper we prove, under some additional conditions, the following results:

Results. 1. We obtain a linear integral equation which, for Dirac operators

with potentials in B(w), plays the same role as the main equation of the inverse
scattering problem for Dirac operators with potentials satisfying the finite density
condition.

2. The solution of the Cauchy problem for the nonlinear Schréodinger equation

{ IS, 0) = = Zv(a,t =) + 2 ([, ) = ) vz, 1)
$(,0) = ()

with the initial data ¥(z) from the set B(w) is reduced to the resolution of a
system of linear integral equations, and we prove this is uniquely solvable.

1. Auxiliary results

According to the classical Weyl theorem, the equation

. A
iozy +V(z)y = 5Y (1.1)
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The Cauchy problem for nonlinear Schrédinger equation

has two solutions ®4 (A, z) € Ly(0,00), ®_(\, z) € Ly(—o0,0) for all non real
values of A\, where

(I):I:(Av ‘r) = F()‘v :C) + mﬂ:(/\)G(’\v m)v
and F'(X,z), G(A, z) are the solutions of equation (1.1) with initial data
F(X0) = (1,97, G0 =(i,1)7T,

and my (A) are holomorphic functions outside of the real axis. The solutions
&4 (A, z) are called the Weyl solutions and the functions my (A) are called the
Weyl functions of equation (1.1), or of the corresponding Dirac operator.

Choosing an arbitrary positive number w, we may replace the Weyl functions
m4 (M) by one function

m_(wM) if Im z >0,

n(z):{ Z-l—z_l ) ||7£17
my(wsE—) if Im 2 <0, |2| #1,

(1.2)

and the Weyl solutions ®4 (A, z) by one function

(2, z) = P_ (w2 ,ac) Imz>0, |2|#1, (1.3)
(Z L 2) Imz<0, |z|#1,
which satisfies the equation
io5® + V(2)® = %(z—l—z_l)q), (1.4)

and belongs to the space Eg(—oo, 0) if Imz > 0,|z| # 1 and to the space EQ(O, 00)
if Imz < 0, |2 # 1.

The function n(z) and the solution ®(z,z) defined by (1.2), (1.3) are also
called the Weyl function and Weyl solution of equation (1.4), or of the corre-
sponding Dirac operator.

Definition. The numberw > 0 and the function n(z) defined by the equalities
(1.2) are called the spectral data of the Dirac operator.

It is obvious that the Weyl functions m4 (), and therefore also the potential
(), can be uniquely reconstructed from the spectral data. Characteristic prop-
erties of the spectral data of operators with potentials in B(w) are obtained in
[2]:

The number w > 0 and the function n(z) are spectral data of some Dirac
operator with potential in m if and only if the function n(z) has an integral
representation of the form

§+z2
E—z
T

n(z) = dp(§), (1.5)
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where p is a Borel measure on the unit circle T = {£||£| = 1} satisfying the
condition

[ du=1. (1.5)
T

(The measures which satisfy condition (1.5') are probability measures.)

In particular, it follows from this that the potential 1 = (z) belongs to m
if and only if the Weyl functions m4(X), m_(\) have continuous limits on both
semi-azes (—00, —w), (w, 00) satisfying the equality

m4 (A —i0) =m_(A410) if A€ (-0, —w) U (w, 00).

Thus B(ws) C B(wy) if wg > wy.
It is often more convenient to use, instead of (1.5), the equivalent representa-
tion

) 7\’ eioz _I_Z
ne) =i [ S duta), (1.6)
where p(a) is a non-decreasing function which satisfies the condition

p(r) = p(=m) = 1. (1.6

According to the I. Riesz—Herglotz theorem (see, for example, [3, p. 116]), the
function n(z) can be represented in the form (1.6) if and only if it is holomorphic in
the circle |z| < 1, its imaginary part is positive there, n(0) = i, and n(z) = n(z~1).
In this case the function p(«) is determined by the formula

1
= | -
pla) = lim o

/ Imn(ret)dp. (1.7)

If the function n(z) satisfies the conditions of the F. Riesz—Herglotz theorem then
(for some choice of the branch of the logarithm) the function

2 2 2

| -2 2
- nn(z) - n|n(z)|—}—zﬂargn(2)

also satisfies these conditions.
Therefore we have

where
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The Cauchy problem for nonlinear Schrédinger equation

Since 0 < argn(re*?) < « for r < 1, and since for almost all ¢ € [, 7] the limit

n(p) = lim argn(re) (1.8)

r—1-0

exists, the function v(«a) is absolutely continuous and dv(a) = 7~ %y(a)da, where

1 K
0<u@ <n, = [nla)da=1. (1.9)
T
Hence i i
it [eY 4 2 1 e+ 2
Inn(z) = oY T v(a)= _%/em — n(a)do
and

ks

n(z) = exp{—i/ifz n(a)da} . (1.10)

z
Elementary checking shows that for any measurable function 7(a) satisfying (1.9),
the function (1.10) satisfies the conditions of the F. Riesz—Herglotz theorem and
hence can be represented in the form (1.6).

Therefore the spectral data of the Dirac operators with the potentials from the
set B(w) are defined by the positive number w and either by an arbitrary non-

decreasing function p(«) which satisfies (1.6') or an arbitrary measurable function
n(a) which satisfies (1.9).

Here the functions p(a), n(@) and n(z) are connected by the relations (1.6)-
(1.8), (1.10).

We emphasize that the spectral data depends on the chosen value of the
parameter w. It follows from (1.3) that the pairs {w,n(z)} and {w;, n(w(2))} are
the spectral data of the same Dirac operator, if

w(z) = LZE2 +\/(ﬂz+z )2—1.

w 2 w 2

On the other hand, if the vector-function ®(z,z) is the Weyl solution of equation
(1.4) then the vector-function ®(z,“:z) will be the Weyl solution of the equation

z—l—z‘1
4

) w w
iosy’ + iV(ia@)y =w

y

from which it follows that the Weyl function n(z) of this equation is the same as
the Weyl function of equation (1.4). Therefore the potentials %, (z) and ,, (z)
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of the Dirac operators with the spectral data {w, n(z)} and {wy, n(z)} are related
by the formula

Y (1) = T ().

Hence the transformation ¢ (z) — w™'¢(w™'z) is a one-to—one mapping of the
set m onto the set W which preserves the Weyl functions of the correspond-
ing operators. This allows, without loss of generality, to deal only with Dirac
operators with potentials in B(1) and their spectral data {1,n(z)}.

From the results of [2] (see formulae (5.2) and (5.6)—(5.8) on pages 22-24) it
follows that for any z, the Weyl solutions ®(z, z) of Dirac operators of the class
we consider are analytic with respect to z outside of the circle |z|] = 1 and the

points z = 0, 00, and we have

lim (é g)eik(z”q)(z,x) — (2, 4iv(2))7

|z| = oo
im (20 ) e 00 0) = (40, 20)7 (1.11)
2—0 0 1 ! - k ’ '
with .
k(z) = 5(2 -2z, (1.12)
Let R(z) denote a scalar function, analytic outside of the circle |z| = 1,

tending to a finite limit R(oo) for |z| — oo, and having simple pole with residue
R_1(0) at the origin. It follows from (1.11) that the vector-function

9(z,2) = ¢ “FER(2)®(2, 2) (1.13)

is also analytic outside of the circle |z| = 1, tends to 2(R(c0),0)” when |z| — oo
and has a simple pole at 0 with residue 2(0,iR271(0))7, and the vector—function

9(z,2) = 2(R(00),iR_1(0)=7")"

tends to zero when |z| — oo and to a finite limit when z — 0. According to
Cauchy’s theorem,

L/g(fyﬂ — 2(R(00),iR_1(0)¢71)

T
e 3

9(z,2) = 2(R(c0),iR_1(0)z7")" =

27

where I' is the oriented boundary of the annulus ro < |£| < ry, and z lies outside
of this annulus. Because the function & — (& — 2)7}(R(c0),iR_1(0)¢~ 17T is
holomorphic in this annulus, its integral along I' vanishes and

1 rgé )

211 ) € — =z
r

g(2,7) = 2(R(c0),iR_1(0)2~H)7T 4 de . (1.14)
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The Cauchy problem for nonlinear Schrédinger equation

It follows further from equalities (1.11) that

lim zgy(z,2) =4iR(c0)y(z), (1.15)

|z|] =00

lim gi(z2) = 4R (0)F().

We note that any vector-function analytic outside of the circle |z| = 1, hav-
ing a finite limit 2(R(c0),0)” when |2| — oo and a simple pole with residue
2(0,iR_1(0))T at the origin, satisfies equality (1.14). By a suitable choice of
the function R(z) we obtain a uniquely solvable integral equation from equality
(1.14).

2. Factorization and choice of the function R(z)

The choice of the factor R(z) in formula (1.13) is connected with a suitable

factorization of the function

N(z) = 5(7@(2) - n(z_l)), (2.1)

the study of which is the purpose of this section.
It follows from (1.6) that

L fé e u(a) - p(-a)
N(z)_z/ (R, (2.2)
and because the function N (z), together with n(z), satisfies the conditions of the
F. Riesz—Herglotz theorem

1 7 e + z
N(z) = exp{—% / . Zl/(a)da} (2.3)
with '

v(a) = lim arg N(re'?). (2.3%)

r—1-0
Let us introduce the following notations:
™ .
ezoz +Z

S(z,p) = i/em_zdp(a),

-

P(z,6) = exp{—i/ﬂem—}—zﬂa)da},

271 e — z
-7
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where p(a) is a nondecreasing function and §(a) = §(a) a bounded and measur-
able function on the interval [—7, 7].

Let V' be the involutive map of sets A C [—n, 7] or of functions p(a) (-7 <
a < 7) such that

‘/(A) = {a | —ac A}7
V(p)@) = p(-a).

It is easy to verify that the functions S(z, p), P(z,§) satisfy the equalities

S(z,pr+p2) = S(z,p1)+S(z,p2),
S(="4p) (Z,p) =5(z,=V(p)) , (2.4)
P(z,01 +62) = P(z,61)P(z,9,),

P(z718) = P(Z,8) = P(z, -V (9)). (2.4)

wn

|

~

I

We denote the non-tangential limits of the function f(z) when z — €' € T
by
+ _ ta
FHa)= lim (e
or f(a) if [+(a) = /().
It follows from classical complex analysis that there exist, for almost all «
(with respect to the Lebesgue mesure), finite limits

SE(a,p) = ReS(a,p)+27ip'(a), (2.5)

T5(T)d7'}. (2.6)

o —

ks
1
PE(a,8) = exp{:i:itS(oz) — Q—V.p./cot
T
—T
If the function &(«) satisfies a Hélder condition on the interval a; < o < ay
then the convergence to the limit values is uniform on any interior segment of

this interval, the functions P*(«, ) satisfy the same Hélder condition, and their
absolute values

|Pa, 8)| = exp{—%v.p./cot a T5(T)d7'}
T

are separated from zero and bounded:
0< M~ <|P(e,8)| < M < 00 (2.7)

(The number M depends on the chosen segment.)

10 Matematicheskaya fizika, analiz, geometriya , 2000, v. 4, No. 1/2
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Using the notations above, we obtain the following formulas for the functions

n(z) and N(z):
Wz = S(p) = Plan), 23)

N(z) = S(z,%v('u)):P(z,y), (2.9)
where

n(a) = argn™(a), v(a) = arg Nt (a),

and the function p(a) is defined by (1.7).

Let us denote by € the support of the measure dyu(«) defined on the segment
[-7, 7] which derive from the non-decreasing function u(e). According to the
definition the point @ € (—m, ) belongs to the support if and only if any interval
which contains this point has positive measure and the points —7 and 7 are
identified and belong to the support if and only if for any € > 0 the measure of
the set [—7, =7+ ) U (7 — &, 7] is positive.

The support of the measure 1d(u(e) — p(—a)) is evidently the compact set
QUV(Q).

Because the open set (—m, 7)\§2 does not contain points of the support of the
measure dy(a) we can pass to the limit under the integral sign in formula (1.6)
when z = €%, p € (=7, m)\Q, and it follows that for any ¢ € (=7, 7)\Q

nt(p) =n"(¢) = n(p) = [cot SFEdu(a),
dn(e) _ }r .dgb(;l_)w > 0. (2.10)

d
@ g 3

Similar statements are true for the function N(¢) on the set (—x,7)\ (QU
V(Q)). Therefore on the set {&| € = e, p € (—m,7)\(QU V(Q))} the functions
n(§), N (&) take on real values which increase monotonously with ¢.

Let us divide the support €2 into its symmetric and asymmetric parts:

Q = ANV(Q)={{alaeQ,—aeQ},

Q) = N\V(OQ)={a|aeQ,-adgQ}.
These are disjoint, and the symmetric part €5 is always compact whereas the
asymmetric part is compact if and only if the distance dist(£2y,€22) is positive.

According to the Lebesgue theorem a non-decreasing function p(«) is the sum
of an absolutely continuous function p*(a) and a singular function p°(a):

pla) = p*(a) +p’(a);  dp'(e) = p'(a)da.

The support of the measure which is generated by the singular function p*(«) is
denoted by €2°. Supposing

Q=N QF =Q\Q5,
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we obtain the following expansion of £ in nonintersecting subsets:
Q=0Q,UQ;UQ;. (2.11)

In what follows we shall consider only the measures du(«) whose support satisfy
the condition

A) In (2.11) all three sets have positive mutual distances and the set Q5 is
finite or empty.

In particular, from this condition it follows that these sets are compact and
are at positive distance from the set V(€2;). Note that the points —m, 7 either
do not belong to the support or belong to one of the subsets €25,9Q45. This is
also true of course for the point 0. So there are 9 possible combinations for their
location with respect to the support 2. All of them can be examined likewise, so
we shall restrict ourselves to the simplest case when the points —m, 7 and 0 do
not belong to the support. Moreower, we shall suppose that the argument n(«)
of the function n't () satisfies the condition

B) The set Q5 can be covered by finite number of mutually disjoint intervals
d; on each of which the following inequalities are true:

esssup n(a) —ess inf (o) < 7, (2.12)
0651 OZESZ
0 < n(a)+n(—a) <27, (2.13)

and the function n(a) 4+ n(—a) satisfies a Hélder condition. The inequalities
0<e<na)<m—¢ (2.14)

hold almost ewerywhere on the set Q3 (with respect to the Lebesque measure), for
some € > 0.
Let
A=(0,m)\(QUV(2)UQ]) =UpAg,

where Ay = (ag, i) are mutually disjoint intervals.
It is evident that

V(A) = UV(AR) = (=, 0)\ (2 U V(Q1)UQ3),
AUV(A) = ((=7,0)U (0, 7)\(Q UV () UQ),
AUV(A) D Q.

Let us clarify the behavior of the argument v(a) of the function N*(a) on
the set AUV (A)\ Q3.

Lemma 2.1. The arguments n(a), v(a) of the functions n*(a), NT(a) take
on the same constant value, equal either to 0 or m, on every set (& N A)\Q5.

12 Matematicheskaya fizika, analiz, geometriya , 2000, v. 4, No. 1/2
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Proof. Because the set (§; N A)\Q4 lies in the complement of QU V() it
follows from the preceeding arguments that the functions n* (a) = n~ (o) = n(a),
N*(a) = N7 (a) = N(«) are real on this set and their arguments can only take
the values 0 or 7. Condition B) implies that the oscillation of the argument 7(«)
of n*(a) on the interval & is less than 7, and it follows that the range of the
function n(a) on the set (& N A)\Q3 cannot contain both 0 and 7. Therefore the
function n(«) is constant, equal to 0 or 7, on the whole set (§; N A)\Q3. Further,
since the values of n(a) 4+ n(—a) on this set are multiples of 7 and because of
condition B), the inequalities (2.13) hold there, we have

n(a) +n(—a) =7, a € (6 NANQ;. (2.15)

According to (2.8), (2.4")

NG = e = (=) = 5(Plem) - P )
= SPEm(- P -n)PE )
= w25 (1 Pl —n- V().
Therefore
arg N'*(0) = argn* (o) +arg(1 — P* (o, —1 = V(1))

that is,
v(a) = n(a) +arg(l - P*(a, =0 = V(n))), (2.16)

and since we have P*(a,—n — V(n)) < 0 on (& N A)\Q§ (according to (2.6),
(2.15)), it follows that we also have arg{1 — P™(a, - — V(5))} = 0 and v(a) =
n(a) on this set. |

Lemma 2.2. Fach interval (o, Br) = Ay splits into two pieces
Ay = (g, @r), AL = (on, Br) (2.17)
so that

Nt(a) < 0 whenae AL\QS,
N~ (a) < 0 when o€ AF\Q4. (2.18)

One of the intervals A, AT may be empty.
k k

P roof. If the interval Ay contains no point of 9, then it lies in the
complement of Q U V() and the function Nt(a) = N~ (a) = N(«) is real,
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and increasing. Hence in this interval there is at most one point, where Nt ()
changes sign from — to +. Let us denote this point ¢ (if N*(a) is positive,
resp. negative, on the whole interval, we set ¢ = oy (resp. (i)) we obtain the
intervals (2.17) on which the inequalities (2.18) hold.

If the interval Ay contains points of Q4 then because of condition B) the set
AL N QF is covered by a finite number of mutually disjoint intervals & N Ay =

(ozgcl), ﬁ](cl)), on which the inequalities (2.12), (2.13) are fulfilled. Obviously, these
intervals can be labelled so that

ap = ﬁ](co) < 04561) < ﬂ,(cl) < af) < ﬁ,(f) <...

<oV < BV <otV = gy
(for the sake of convenience the endpoints ay, 8; of Ay are denoted by ﬁ,(co), ozgcnﬂ)).
According to Lemma 2.1 the argument v(«) of the function N*(a) is constant,
equal to 0 or to 7, on each set

¢, = (o, BPNQE (1<p <)

Therefore the function N*(a) is real, of constant sign, on each set ®,. Let us
denote by ®,+ (resp. ®,-) the set with the smallest (resp. greatest) number p*
(resp. p~) at which the function NT(a) is positive (resp. negative) and ® =
(B, af) = (ar, o) (resp. B = (B, a{"*V) = (8", 34)) if this function
is positive (resp. negative) on all sets ®, (1 <p < n).

Since the function N*(«) grows monotonically on the segment [ﬁ](cpﬂ, ozgcptH)]

([ﬁ,(cp__l), oz(p_)]) and in its neighborhood, it remains positive (negative) on this
segment and on the next (previous) set ® 4+, (resp. ®,-_;). Hence p* = p~ +1,

and the function N*(«) is positive on the set (aipﬂ, B1)\24% and negative on the
set (o, l(cp+_1))\Q%. Because of the monotonicity on the segment [ﬁl(cer_l), ozgcpﬂ]
there is one point ¢ at which the function N*(a) changes sign from — to +.
Setting ¢ = o when p™ = 0 (pr = B when p~ = n+1), we obtain the intervals
(2.17) on which the inequalities (2.18) are fulfilled. |

Corollary. The argument v(«) of Nt () satisfies the equalities

_Jm ifae (V(AT)UAT)\Q],
v(e) = { 0 ifae (V(AT)UAT))\QE, (2.19)

with
AT = UkA];, AT = UkAz_.

14 Matematicheskaya fizika, analiz, geometriya , 2000, v. 4, No. 1/2
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Proof. Infact,ifa € A7\Q% or @ € AT\Q4 these equalities are equivalent
to the inequalities (2.18) proved in Lemma 2.2. If a € V(AT)\Q} then —a €
AT\Q4, v(—a) =0 and

v(a)=v(a) +v(-a),  a€V(AT)N\Q,
and if @ € V(A7)\Q3 then —a € A™\Q3, v(—a)=r,and
v(ia)=v(a)+v(-a) -, a € V(AT)\QS.
Hence to prove the equalities (2.19) it is sufficient to prove the equality
via) +v(—a)=mr, —rm<a<mT. (2.20)

According to (2.1) we have N(z) = —N(z71), hence N*(a) = —N~(-a) =

—N*(-a), so v(a) =7 — v(—a). This proves (2.20). |

Let us denote by xi1(a),x$(e), and x(«) the indicators of the sets €, QF,
and ATUV(AT). It is evident that x; (—a), x5(—a) = x5(«) and x(—«) are the
indicators of the sets V (1), V(%) = Q4 and V(AT UV(AT)) = V(A7) U AT,
and y(a) + x(—a) is the indicator of the set A~ UAT UV (A7) UV(AT) which
contains Q4. Therefore

X5 (@) = x3 (@) (x(@) + x(=a)) . (2.21)

Lemma 2.3. We have, almost everywhere on the segment [—m, 7| (with re-
spect to Lebesque measure), the equality

v(@) = (1= ()5 + (2le) +8(@) = (pl=a) +5(=a)),  (2:22)

where )
#(@) = (x1(0) + 3x3(0)) 1 ((lal) - x(lal)m) (2.22)
5(a) = (1+ %l)xuang. (2.22")

Proof. By definition of the sets A=, AT, Q;, we have the equality

x1(@) +x1(=a) +x(a) + x(-a) =1 (2.23)
for all @ € (—m, 7), which do not belong to the union of the finite set €5 or the
set of numbers £y, which is at most countable. Hence almost everywhere

v(e) = (@) +xi(=e))v(e) + (x(@) + x(-a))v(a)
= (@) +xa(=a))r(a) + x(@)(1 = x3(@))v(e)
+x(=a)(1 = x3(@))v(a) + xz (@) (x(a) + x(—a))v(a).

X1(Oé
X1
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Since x(a)(1 — x3(a)) (resp. x(—a)(1 — x3())) is the indicator of the set
(AU V(AT)\QS (resp. (V(AT)UAT)\QE) on which v(a) = 7 (resp. v(a) = 0),
according to (2.19), then

x(@)(1 = xz(a)v(e) = x(@)(1-xz(a))7,
x(=a)(1 = xz(a))v(e) = 0.

From these equalities, equality (2.21), and the preceding arguments, it follows
that we have, almost everywhere

v(e) = (xa(@) + xa(=a))v(e) + x(@) (1 = xz ()7 + xz()r(a).  (2.24)
Further, from the identity

& )+ (1 - =) Lt Ca)

| |

which is true for all functions on the interval (-7, 7), and from equality (2.20),
it follows that

fla) =

x(@) = ool + (1- )M,
v(e) = my(|a|)+(1—m)§.

Substituting these expressions in (2.24) and taking into account (2.21), (2.23),
we obtain the equality

(8%

v(e) = (a(e)+xi(-a) V(IOZI)+X%(@)%(V(IO¢I)

o]
—x(al)m) + x(al) m+ (1= )5

||

|

which is equivalent to (2.22) because

pla) —p(=a) = (a(e)+xi(-a)+ Xz(a))%(’/(lfﬂ) = x(|af)7),
() = 3(=a) = xlal)jm,
and
(x1 (@) + x1(=a))x(la]) = 0
(the sets Q; UV (€4) and AUV (A) are disjoint). |

Let us denote by 3 (resp. ag) the smallest (resp. greatest) positive number
of the compact set €4 UV (£2;) U Q3. Since the support € does not contain the
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points —m, 7,0, then 0 < § < ap < 7 and the intervals (0, 3) (resp. (ag, 7)) are
contained in A. Therefore

A= (0,8)U (ag, ) U (Ug(ag, Br)),

where 0 < 0 < a < O < ag < w. Let us note now that in a neighborhoods of
the points 0,7 the function N*(«) is continuous, monotonously increasing, and
NT(0) = N*(x) = 0. It follows that in right neighborhoods of 0 the function
N*(a) is positive and in the left neighborhood of 7 it is negative so according to
Lemma 2.2 the interval (0, 3) is contained in AT and the interval (ag,7) in A™:

AT = (ag,m) Uy (ar, 0r); 0<p<ap<er<Pr<ayg<m;
At = (0,8) Uk (¢r, Br); 0<B<ap <o <Br<ag<m.

It follows from the definition of A that the endpoints of the intervals (o, Gk)
belong to one of the three disjoint sets ¢, V(€1), Q5. And moreover, the number
of the intervals whose endpoint belong to different sets is finite. In fact, if the
endpoints of the interval (ag, i) belong to different sets then

Br — oy > min{dist(y, V(€21)), dist(€24,Q23) }

and if there were infinitely many such intervals then some of them would have
arbitrary small length so that one of the distances dist(€2;, V' (€2)), dist(€2y, ©23)
would vanish, in contradiction with condition A). In the same way, the set Qf is
contained in a finite union of intervals (o, i) because the distances dist(€y, 23),
dist (€25, %) are positive.

To make a factorization of N (z) with the properties we will need later on, we
must choose one number a5 (resp. ¢}) in each pair of (o, —ag) (resp. (¢r, —¢k)),
according to the following rule: let

« ) ag if o & V(21);
X = { —ay if o, € V(). (2.25)

If both endpoints of an interval (ag, i) belong to the set ©Qq or V/(€4), we set

« | o if o and By belong to €y; (2.26)
k= —pr  if oy and B belong to V(€24); '

and in all other cases (there are only finitely many) we set

. 1 ‘ / .
o :{ ok o g ] (31)’ (2.26")

Matematicheskaya fizika, analiz, geometriya , 2000, v. 4, No. 1/2 17



Anne Boutet de Monvel and Viadimir MarchenkoT

Let us denote by ® = {¢;} and A = {a}} the sets of all ¢} and of all af. It is
essential that with this choice of the ¢} and aj the sets

QL Ud, V(Q)UV(®), QF,

be at positive distance from one another.

Lemma 2.4 (factorization). The function —i(z — 27" )N(2)™! can be fac-
tored out as follows:

—i(z—2"HYN(z)7' = R(x)R(zY, (2.27)
R(z) = Ro(z)Ri(z)Rz(2), (2.28)
where
Ro(z) = iedob(z=1 — emiof) H(z - :z: Jetleimai), (2.29)
k

Ri(5) = Ple—p),  Fa() = P(s,—¢2) (2:30)

fi() = al@)e() = () Srvllal, (2.31)

erf0) = xla)ele) = 35(0) Sr(va) ~ x(ahm) . (232

and the numbers of, ¢} are defined by equations (2.25), (2.26), (2.26").

Proof. It follows from the formula (2.9), Lemma 2.3, and the equalities
(2.4) that

N(z)™' = P(z,v) ' =Pz, -v)

1 o
= Plee stV V) ek [ T aal,

Pz, ~p =3+ V(p) +V(9) = Pz, —¢) P(z7, —¢) P(

also since we have

w
|
>
SN
3
w
|
-
|
>,
R

2o
e+ z

1 1 2 —em
— : da = —(vg — 1 :
Qi/em—z @ 2(72 71)+n(z—eW2)’

"
0 .
{1/6“‘—}—2 } z4+1
expl — . day =1
27 e — z z—1

-

we get
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and
1
N = i P(s, —) P! —¢) P, —6) P, =6). (2.33)
It follows from (2.22') that ¢(a) = ¢1(@) + @2(@) if the functions ¢1(a), pa(a)
are defined by the equalities (2.31), (2.32). Therefore

Pz, —¢) = P(z,—p1 — ¢2) = Pz, —¢1) P(2, —¢2)

that is,
P(z,—¢) = R1(2)Ra(2) . (2.34)

Further, according to (2.22"), we have

1/ e+ z
P(z,-0) = exp{ 5 / . Zx(a)da} )

where x(a) is the indicator of the set A~ = (ag, 7) Uy (v, ). Hence

1 Weioz_l_z 1 ~ 2a+z zoz_I_Z
— . d =
Qi/ela—zX(a) @ 21/6”— Ohl_ZQz/e”— da
0 agQ
i ,c—e
= ln- I
2(7r ag) + In g

,c_eiak
-l—Z{ o — ag) —an_ewk}’

P(Z7 _5) = G%(W_ao)z —e HE%(H%—O%) (Z — ez'o‘k) )

z+1 p

P(Zv _5)P(2_17 _5)

_ gilr—ao) (22 €7 il [ ezt (22 A et
z ‘|‘ 1 2_1 + 1 2 2 — ¥k Z_l — eivk

B 5 eiozo o e—iozo H 5 eiozk P e_iak

It is obvious that the right-hand side of the last equality will not change if we
replace ay, @i by af, ¢f. Therefore we have

Pz —5) P, =) = [ Z2C20) (22 Sl (e
(27 ) (Z 3 ) ( 241 241 1;[ - _ ier 5 _ etk
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=1 —1+11)(z+ 1){ 2% (27— ) 1;[ A C:Zw};)}
X{Ze%af?(z — ') 1;[6%(%_%) <z_1 : Zw;)}7

that is,

Ro(2) Ro(="")
'+ 1D(z4+1)°
where the function Ry(z) is defined by equality (2.29). Substituting the right-
hand sides of (2.34), (2.35) in formula (2.33), we obtain the factorization (2.27),
(2.28). n

P(z, =8 P(z"!, —68) = (2.35)

Let us denote by A the image of the set A by the map a — €*:
A={z]|z=¢€" ac A}.

It follows from this and (2.29)—(2.32) that the function R(z) is analytic outside
of QU®UQE C T and of the origin. It tends to the finite limit R(co) = —e'
when |z| — oo, and has a simple pole with residue R_;(0) = R(co) = —e™*", at
the origin, with

kis

g1 {ﬂ —af+ Z —af)+ % / go(oz)doz}. (2.36)

—T

According to (1.13), (1.14) it follows from this that the vector-function

g(z0) = eHITR(2)(2,2)
k() z—I—z_1 z—}—z‘l
= ¢z R(Z){F( 5 ,:C) —}—n(z)G( 5 ,x)} (2.37)
satisfies the equality
N o ;i —if _—1\T L/g(fﬂﬁ)
g(z,z) = =2(e",ie”""z7") +27Tir 5_2075, (2.38)

where I' is a contour formed by two concentric circles bounding an annulus con-
taining the unit circle T'. In this annulus the functions 651“(2)“‘“', F(%,m),

G(Z+§_l,$) are analytic, the singularities of the function n(z) lie in the set
Q = Q UQUQ4, and the singularities of the function R(z) lie in the set
Q; UPUQF. Hence all the singularities of the vector-function g(z,z) in this
annulus lie in the union of the three sets Ql uo, QQ, Q%, which lie at positive
distances one from other and from the set V(Q U V®. This makes it possible
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to deform the contour I' into a finite system of simple closed contours 'y, I'5, ']
which enclose the sets ©; U®, Q3, Q%, and which are so close to them that their

interiors lie at positive distances from one another and from the set V(Q U uve.
Thus formula (2.38) is reduced to

glz2) = —2(e",ie" -1>T

+271rz{ g_ d5+/5£’ d€+/5€’ dé} (2.39)

3. Deduction of the fundamental equation for the inverse
problem

Let us ﬁlst calculate the integrals in the right-hand side of (2.39). We denote
by O, O3, OF the domains which lie inside the contours I'y, 1§, I'§, which are
close to the sets €y U <I> Q Q%, so that the distances between any two of them
and between any one of them and the set V(® U Q) are positive.

Calculation of the integrals along the contours belonging to I'y

According to (2.37) we have

E+ ¢t ) ik(&)z
9 7

and from the factorization R(E)R(E™Y)N (&) = —i(¢ — £€7') obtained in Lemma
2.4 we get

9(&2) = g(€7", 2)eMOTRE T R(E) + 26

9(&,2) = 1§, 2) (=N ()™ + f2(&, ),

where

fi(& )
hl&e) = —2iG(

ig(€7Y, 2) e O R(ETN) 2 (¢ — €7, (3.1)
4 &1 GE

S—z)e s RE)THE-ET.

The functions R(¢71), R(€71)~71 n(¢71) so as the vector-functions g(£71,z),
fi(&, ), f2(&, ) are holomorphic outside of the compact set

V(®U Q) U,

In particular, all these functions are holomorphic in the domain Oy and according
to the Cauchy theorem we have

1 g(€7$ fl
%F/f—z 271'2/ ~N(©) e,
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if 2 ¢ O1. As the function (-N(€))™" satisfies the conditions of the F. Riesz-
Herglotz theorem and it is continuous and real on the set T\{® U ©; U Qs U

V(®UQ)} then

(N =i [ S dp(a) (32

—T

and the support of the probability measure dp(«) is contained in the union of the
sets ® Uy and Qo UV (P UQ,) which lie at positive distance from one another.
Therefore we have

eia_g

dp(a) + N1(§)

where the function

Ni(€) = / i o)

V(@UQl)UQQ

is holomorphic in the domain O;. Because the function f;(&,z)(€ — 2)~! is also
holomorphic in this domain when z ¢ O, we have

/fl § ) N1 df:O

and

1 g(€7$) 1 /f1(€7$){ / eioz_l_g }
— | T dE = — | —/——— , d d€.
27ri/ E—z ¢ 2mi E—=z ! e — & ple) pdé
I I QU
The family of contours I'y enclose the set ® U2, and are at positive distance from

it, which allows to change the order of integration. If we do this and use theorem
of residues to calculate the inner integral we obtain

9(&: ) / 2¢ fi(e™, )
—=—d¢ = = e By
271'@ £ — &= e — z pla).

dUN
(Here we remind that the contour I'y is oriented clockwise.) According to (3.1)

it follows from this that

g(&, z) / €' gin o " _2 —wsine +

d __4 _ _ T sin o _ P d .

o [ et [ SRR )T o tel, 0
1
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where
Rf(—a) = R (—a)=R(e),
+(_O‘7x) = g_(—a,;r):g(e_ 756)

1o’

g

on the set ® U £2; on which integration is performed.

Calculation of the integrals along the contours belonging to I'§

According to condition A) the part € of the support of the measure du(a)
consists of a finite number of pairs of points (a7, —«a;) at which positive masses
p(aq), p(—ap) are concentrated. Let us clarify the behavior of the function g(&, z)
near the points & = € and &' = e~ It follows From (1.6), (2.2) that

w0 = i glgne0 + ettt f ), 3.4

€z+€+€f1+€}u(az)+u(—az)
G-¢ &gl-¢ 2

where the functions n;(€), N;(§) are holomorphic near the points & and 51_1
According to (2.25) and to Lemma 2.4, we have af = a, the function R() is
holomorphic near the points &, 51_1 and R(§) = 0, R(fl_l) # 0. Hence the
two functions R(&), R(£)n(€) are holomorphic near the point &, and so is the
vector-function ¢(&,z). The function R(§) is holomorphic in a neighborhood of
the point 51_1 and the function R(£)n(£) has a simple pole at 51_1 with residue
—2i& u(—ay) R(&Y). Thus if the contours Iy, I'f bounding the set Q3 enclose
the points 51,51_1 and are close enough to them, we have

1 rg&z),
ﬁr/—f_zds = 0,

N(§) = z{ + Ni(§), (3.5)

ih(e7 e -1
1o, 2it p(—on) R(E)e ™ T G )
27riF* -z N -2 :
Hence
ik(¢; ")
1 , 2%E TR L -1
%/‘quf_’?df: zg:z % f(li _)Z u(—az)G(L +2€l ,m). (3.6)
rs o1 €93

Since R(&) = 0, and according to (2.37), (3.4) we get

g+ &1

, ik(E)w
g(&,z) = 2iGu(ar)e 2 G( 3

2) Jim {(& - 7" RO},
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and it follows from Lemma 2.4 and decomposition (3.5) that

. =G -h
I FONGE) = =)
im REONE) = i&i(u(n) + p(=an) lim {(& - 7' R(E))}.
Thus " 5_1)
i -1 =S5 ) o —ay)) 7!
Jim (& =€) R(&)——aR(glil) (o) + p(=an)) ™,
L nen G-g '\ e G+
96y o) =2 (M(a1)+u(—az))<R(£fll)) G( 21 ’ )’

and together with the equality k(&) = —k(gfl) this implies that

G+¢&! (o) + p(—a))R(ET) e e
G(il 21 ,x):z ad L(al;u(& _151_1)1 ez g(&, ).

Substituting this in the right-hand part of (3.6), we obtain
1
1 / g9(& ) i
2m1 ) € — =z
3

- ERET2 T ()
o €05 G-I —2) pl-a

Let dp1(«) be the measure defined on 5 by

] (1(an) + p(—au))g(&, 2).

o)
p(—a)

the last formula can be rewritten as follows:

1 /g(&x) de= L [CRN @) e
271 —z
rs

pilar) =0, pi(—ay) = ((aq) + p(=au))

¢ = —— g7 (—a, 2)dpy (), (3.7)

2 T _ H
0 (e z)sin«

where the integration is actually performed along the set (—m,0) N Q5 on which
R (a) = R™(a) = R("), g7 (~a,z) =g (—a,z) = g(e™™ z).

It follows from the equalities (2.28)—(2.32) defining the function R(z) that we
have

*

— o in 2=% .
R*(a) = 25in =0 H(Sf“ 2 )|R1(a)||R2(a)|e—2{5iw1(0)i«p2(a)}7

a—@F
L \sin k
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and p1(—a) = po(—a) =0if a € PUQy, ¢1(a) = pa(a) = 0if a € Q5. Hence

RT(—a)? = €?|R(-a)} acdUQ, (3.8)
RT(a)? = €?|R(a)|?% a€Q, (3.9)

so equalities (3.3), (3.7) reduce to

1[92 o tan emrsine | ( 2 cos & )2
271'1'1/ f— 2 ¢ = —i / pra— (—o,2)2 R dp(a),
1

dUN

(3.10)

e — z

1 ¥ ) t o  —zsina R
ﬁr/%a% =[BT g, (L)

s
2

(3.11)

Calculation of the integrals along the contours [}

The set Q4 lies in a finite union of arcs Ay, AF, V(AL), V(A]) of the unit
circle T" and I'§ consists of a finite number of contours each of which encloses the
subsets A; NQ4, AF NQ4,...of Qf and lies close enough to it. The calculations
of the integrals along each of these contours are completely similar and we shall
examine only one of them, for example, the contour which encloses AI; N Qg Let

A7 = (k). @ =inf(A; NQY), By =sup(A] NQY).

Since the compact set A;” N QF is contained in the interval A} we have o <
ar < 9, < @ and, without changing the value of integral, the corresponding
contour can be replaced by a contour (k) consisting of two concentric arcs

yEh) = {1 €= (1 £ h)e™, o) < a < ¢}

and of two linear segments connecting their endpoints. Here o}, ¢} denote num-
bers chosen so that they satisfy the inequalities

ap < o <@, Bp < O < Ok,

and A is a small number. On the linear segments of the contour (k) the vector-
function g(&,z)(& — 2)~! is continuous. So the integrals along these segments
tend to zero when h — 0, and

i | e am( [ gt
v

S+ ()= (h)
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There exists, almost everywhere on the interval A, , a finite limit
lim g ((1+h)e”,2) = g*(a, )

and if the vector-function g ((1+ h)e'®,z) converges to this in LP-norm on the
segment [a}, @] (p > 1) then

. + , .
lim / 9(5’33)(15:/Md6m
h—0
v (h) o!

and

©
+ —qg- .
L. / g(€7$)dg: i/ g (OZ7$) g (a7$) elada.
271 E— =z 27 e — z
v(k) ay,
Since the vector-function ¢(, ) is holomorphic in a neighborhood of A;\Q%, we
have

g+(047 ) — g (a,2) =0, o€ A \Q)

so in view of the arguments above we get

+ e .
271 E—=z 27 e — z
~v(h) AL NQS
if '
lim g ((1F R, 2) = g% (0, 2) | ofor oy = 0. (3.13)

It follows from the definition of the functions R(&), n(§) that we have factoriza-
tions:

with
RV = eXp(%/(Ziztg)m(aé@(a)da), (3.14)
e
ngcl)(g) = eXp(—%/(thg)n(a)da), (3.15)
e

where the functions Rgf)(f), ngf)(f) are holomorphic near the set A, Hence

g(&,2) = g (& ) R + g7 (&, ) RV (©)niM (€)
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where the vector-functions gk (5, ) g](f)(f, z) are holomorphic in a neighborhood

of AL . So the vector-functions gl(C i) ((1F h)e®, z) (j = 1,2) converge uniformly to
their limits on the interval [o}, ¢}] C Ay when A —= 0. To prove equality (3.12)
it is thus sufficient to check that the functions RECI) (1 F h)e), Rgf) (1 F h)e@),
ng) ((1F h)e*™) converge to their limits in L norm when A — 0 on this segment.

This is the consequence of condition B) and of the following Lemma.

Lemma 3.1. Let 6(a) = §1(a) + 2(v) and suppose that the function z(a)
satisfies a Holder condition on an interval (a1, a) C (—m,7) and that on the
same interval the function §;(«) satisfies the inequality

= ) - inf & .
w essaliliga2 1(a) ess inf (a) <7

Then for any p < mw™" the function P ((1F h)em, §) converges in LP-norm to a
limit P*(a, ) on all compact subsets of (o, avg).

Proof. Let J(a) be the indicator of the interval (o, a3), and let

do(a) = B(a) — di(a) = (1 - J() 51 (a) + da(a) + J(a)C,

where )
=5 ess, max 51 (a) + ess ,, min - 5 (a)) .
Then é(ar) = dy () + da(a),
P(z,08) = P(z,dy)P(z,dy), (3.16)

the function d; (o) satisfies the inequality

T
ess_ﬂ%)ér|d1( a)| = <3

| €

(3.17)

and the function d; (o) satisfies the Holder condition on the interval (ay, az). So
the function P(z,d3) converges uniformly to its limit on each segment [of, o] C
(01, o) and it follows from inequality (3.17) that the function P(z,d;) belongs
to the Hardy space H? for any p < mw™! (see [4]). Hence

lim  max [P ((1 F h)em,dg) — P¥(a,dy)| =0,

h—0 a <a<a2

i, / P ((LF h)e, dy) = P*(a,dy)[Pdar = 0
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and this, together with (3.16) implies (3.15). |

In view of condition B) and Lemma 2.4 the function n(a) + n(—a) satisfies a
Hélder condition, and inequality (2.13), on the interval A}, so it follows that the
function 1 — P*(a, —np — V(n)) also satisfies a Holder condition on this interval
and that it vanishes nowhere there. Therefore the function

Ba) =arg (1 - P (0, —n—V(n)) -7
satisfies a Holder condition on the interval A . According to (2.16) we have
v(a) = n(a) + Bla) + .

From the definition of the function ¢(a) we get the following equalities on the
interval A :

) ) = dvle) ) = )~ 2,
n(a) — XZéa) m@(a) = %77(0‘) - %ﬁ(a) '

R = P&, =61 +8); RV(©On(©) = P&, 6 +6) (318
with ; ;
o) = 700, 5y(0) = ~ L g,

where J(a) is the indicator of the interval A} . The function §;(«) obviously sa-
tisfies a Hélder condition on the interval A and according to (2.12) the functions
+6; (@) satisfy the inequality

ess max (£6; (o)) — ess min (+61(a)) =
a€A a€A

<

| €
[NE]

In view of Lemma 3.1 this implies that the functions (3.18) converge in LP-norm
to their limits on the segment [}, ¢}] C Ap, for all p < 27w™. Since w < 7
they also converge in L?(a/,, ¢}).

This ends the proof of equality (3.12) and of formula (3.11). Similar formulas

hold for all other components of I'§ so we have

1 g(gv'r) 1 g+(04,$) —g_(oz,x) to
%FZ v d¢ / eda. (3.19)

27 e — z
3
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Remark. [t follows from the proof above that the functions x3(a)g™ (o, z)
and y2(a)g~ (o, z) belong to the Hilbert space L*(—m, ).

Lemma 3.2. The equalities

ﬁ:l (g+(—a, z)+ g9 (—a, .r)) (3.20)
_ 2ig(a)e”s e (g (a, 0) — g™ (o, 7)) +im(a) (gt (—e,7) — g~ (~a, @)
p(@) ’

with

O)‘) (3.22)

[ (—a)
|V #(a)
m(a) = (\/“;5(;0;)—/M’f((_oﬁ))cosnmww 3.23)

hold almost everywhere on the set Q3.

N

([ [F@ N,
pla) = (\/ 1 (o) +\/Hl(_a))t lp2(a)], (3.21)

Proof. Since the functions k(z), F(Z"'g_1 ,T), G(Z‘";_1 , ) are holomorphic

everywhere except at 0 and oo,the limit-value of the function ¢(z, z) is equal to

g (a,z) = e =5 (RE(a)F(cos a,z) + R (a)n®(a)G(cosa, z)).

Therefore

_zsina

gt (a,2) =g (a,z) = e 2 x{(RT(a)— R (a))F(cosa,z) (3.24)
+(RT(@)nT () — R~ (a)n™ (a))G(cosa, 7)}

and

gE(—a,z) = e {R*(—a)F(cos a,z) + RE(—a)n®(—a)G(cos a, z)}.

The last two equalities provide us with a system of equations for the components
of the vector-functions F'(cos o, ), G/(cos v, ), with determinant

D(a) = R* ()R~ (—a) (n™(=a) - n*(~a)) .
According to (2.5), (2.8) this determinant is equal to

D(a) = —4mic™|R(—a) |/ (—a) # 0
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almost everywhere on the set 2. So the system of equations is uniquely solvable
and

F(cosa,z) = D(a)le 2 {R™(—a)n™ (—a)g* (-, z)
—R+(—oz)n‘|.'(—oz)g_(—oz,x)},

Gcosa,z) = D(a) te™ 5 {—=R™(—a)gT (o, 2)
+RY(—a)g (—a,2)} .

Substituting these expressions in (3.24), we obtain after some elementary trans-
formations the equality

gt (a,2) =g (a,2) = D(a) le7"5ne (3.25)
X{A(Oz)g+(—oz, z) + B(a)g™ (—a,z)},

with

= A(a). (3.26)

In view of Lemma 2.4 and formula (2.6) we have the following equalities on €23:

2sina  2sina )
= = €
Nt(a) |N(a)| ’

218 = ¢22(®); Rt (a)R™(-a)

from which it follows that

R_(Oé) _ QSinae_i(U(a)_2¢2(a))
Bt (a)  [N(a)] ’

=

“(@) R (=a) = BT () R™ (-a)

_ R+OA —2ips(a (v(a)—2p2(a
CUORE @*ﬂ)R—ém::2N+&we2@“>:=mAWaNe<<>2w<”,

~—

with

2¢2(0) = & (w(lal) = x(lahm). v(@) = 2 (wllah + (1= £) 7).

|
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Since v(a) — 2¢2(a) = (1 — i) 5+ ﬁx(|a|)7r, we have

|

(@) =2¢2(a) _ |a_|cosx(|a|)7r; sin 25 (o) = ﬁcosx(lal)ﬂsin v(a)
a a
and hence
B _ 2|z—|sina
R (@)R™(=a) = ~Rroreosx(lahs
_ R (o) @
nt(a) — n (—a = 2|N(a)|-—cosx(|a|)m
(7*(@) = n~ (o) =y = 2N @) cosx(la)
R (o) - @ i —
1 = preosllalmsiny(a) (i - tanga(a)
Therefore

R™ () R™ (=) = [R(a)[| R(—e)| cos x(|el),

(n+(a) - n_(—a)) gtig% (g;ig% - 1) = 2|N(a)|sinv(a) (i — tan pz(a))
= 2(i—tangy(a)) ImNT(a).

Substituting these expressions in formula (3.26), we get

A(a) = |R(a)||R(—a)|cos x(|a)7{2 (i — tan ¢2(a)) INnN T (a) — 2i Imnt (a)}.
Finally, it follows from (2.8), (2.9) that

I N*(a) = 7 (4'(0) + 1 (~a)), Tmn*(a) = 2m4(0)
and since
tan gae) = o tan 5 (vl = x(lalm) = & cosx(lalmtanea(a)
we get
Af0) = |R(@)]|(=a)] x 2r{~ (' (0) + 4 () tana (o)
Hi( (—0) —u’(a))cosx(lal)}

| R(o)||R(~a) 27 /i (o {—— )+ im(a) },

where the functions p(«) and m(a) are defined by the formulas (3.21), (3.23).
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Substituting these expressions of D(a), A(a) and B(a) = A(a) in formula
(3.25), we obtain the equality

2ig(a)eF T (gF (a,2) — g7 (7)) = P(Q)%(QW—O@ z)+9 (-, z))
—im(a) (g7 (o, 2) = g~ (-, 7)),
which is equivalent to (3.20). |

Let us denote by x1 (), x5(a), x5(e) the indicators of the sets ®UQy, (—m,0)N
Q35, Q% and let us define the measure do(a) and the vector-function u(w,z) =
(uy(a, ), ug(, 2))T on the union

Qozq)uglLJ((—ﬂ',O)ﬂQ;)UQ%

of these sets by the equality

do(a) = le<a>(|zc((ff)|) dp(a)
i) (e ) () + x5 X e, (aa)
u(@,z) = (vi(a) +x3() tan Te =" g(~a, )

em(g+(a,x) -9 (o, 2)). (3.28)

. _ (87
+x3 (@)ip(a) ™" tan| S

According to (2.39), (3.9), (3.10), (3.19)

o . —io -\T . [ulo,z)
=2 (e’ ﬁl-/.’d 3.29
g(z,2) = =2 (¢, ie 271 I o(a) (3.29)
0

from which it follows, when 3 € Qg and z — e¢~*?, that

+( . - A, . . ] :
g (=B, x)+9"(=B,x) _ _9(e? jem )T / Mdg(a)
9 el — e~18
Qo\Qg
. u(oz,;r)
—@V.p./mda'(@), (330)
3

where v.p. [ denotes the principal value of the integral. Let us also denote, for
the sake of brevity, the sum of the integrals in the right-hand side of this formula
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by v.p. [ (although they are not all singular for g € Qp\Q3). If 8 € Q\Q5 then
according to (3.28)

g+(_ﬁ7$) +g_(_ﬁ7$)
2

= 4=, 2)(a(8) + X3(8)) cot 5o u(s, @),

and if 4 € Qf then according to (3.28) and to Lemma 3.2

g+(_ﬁ7$)+g_(_ﬁvx) ﬁ t‘é
2

= — CO

2 B
A
M

and since %coﬂ% = cot% (—m < B < ) we have

ezsinﬁq(ﬁ)u(ﬁ7 x)

cot| 2 [m(B)eu(~5,2),

+(_ —(—
B kg () B
2 2

Hence for all 8 € Qg

CEAD IR _ o Berinsy(5)u(,2)-4m(8) cot Lex5(8)u(—5, ),

{e” 2 (B)u(B, z) + m(B)ePu(~p, z)}.

where
r(B8) = x1(8) + x3(8) + x3(8)\/a(B) . (3.31)

In view of (3.30) it follows from this that the vector-function u(c, z) satisfies the
equation

cotgeminﬁTQ(ﬁ)u(ﬁ,f) + m(ﬁ)cotgezﬁxg(ﬁ)u(_ﬁwf)

+ iv.p./ .u(ai’m).ﬁda(a) =-2 (ew,ie_wew)

el — =t
Qo

T

The unique solvability of this equation will be proved in the next section. Now we
note that it splits in two independent equations for the components of the vector-
function u(e, z) = (u1 (e, 2), uz(e, z))T which only differ in their right-hand sides.
Therefore we may restrict to examining only one of these scalar equations, for
example, the equation for the function uy(«, ):

ﬁ ﬁiﬁa

cot §e“inﬁr2(ﬁ)u2(ﬁ, z) + m(f) cot 56 X3 (B)uz(-06, )
—I—iv.p./ %da(a) = —2ie' (A0, (3.32)

Qo
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Substituting the solution wug(a, z) of this equation in (3.29), multiplying both
sides of the resulting equality by z and letting z — 0o, we obtain the equality

lim zgy(z,z) = —2ie” " + i/u2(a, z)do(a).

|z|] =00
Qo
Since R(o0) = —e' it follows from the last equality and (1.15) that
—210

P(z) = ‘ (1 _1 ePuy(a, m)da(a)).

2 2
Q

0
Furthermore, according to (3.32) the function
114

yla,z) = —%m(oz,x) (3.33)

is a solution of the equation

cot §€$Si“ﬁr2(ﬁ)y(ﬁa$) + m(B) COtgeiﬁX%(ﬂ)y(_&m)

+ iv.p./ %do(a) =i (3.34)
Qo

and

0(@) = 5= (14 [ w(5.2)d0(5) ). (3.35)

Conclusion. Thus for the reconstruction of the Dirac operator from ils spec-
tral data (1,n(z)) one must find the functions r(3), m(3) and the measure do (o)
corresponding to the Weyl function n(z), then solve equation (3.34) for all z €
(—o0,00) and define the potential according to formula (3.35).

4. Solvability of the fundamental equation

Let us first prove that the boundedness of the functions r(a), m(«), p(«)
and p(a)~! is a consequence of condition B). According to (2.8), (2.6), (2.5) the
equalities

W+ (@) = |[P(a )|, Imn* (@) = 2m4(@),

are fulfilled almost everywhere, so

p (=) _ |P(=a,n)|[sing(-a)
f(e)  |P(ayn)| sing(a)’
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and since
P(z"1 ) = P(z, =V (1)) = P(z,n)P(z, =1~ V(1))
we have
|P(—a,n)| = [P(a, n)||P(er, = = V(n))]
and
pa) o sinn(~a)

In view of condition B) we have almost everywhere on the set Q4
e<nla)<m—c¢

and in some neighborhood of it the function n(a)+ V(n)(a) = n(a) + n(—a)
satisfies the Holder condition. Hence

essS max
aEQg

= €88 max

aGQg

sin p(—a) ‘
— . 3
sine

sin 7(«) ‘ < 1
sin n(«)

sin n(—a)

and according to (2.7)

sup [Plas=(n+ V()| = sup [P(=a,=(n+V(m))| =M < oo,

from which it follows that

! !

- M

ess max <,u ( a)) = ess max < () ) < — < oo. (4.1)
a€Qd \ (o) aeQs \ i/ (—a) sine

From the geometric point of view it is clear that if the arguments of complex
numbers lie inside some convex angle, then the argument of their sum lies inside
this angle too. According to condition B) for almost all & € QF the arguments

n(a) and 7 —n(—a) of the functions nt(a) and —n~ (—a) lie between € and 7 —¢.

Hence the argument v(a) of the function N*(a) = $(nt(a) — n7(—a)) lies in

the segment [¢, 7 — €] and the function
1
|p2(@)] = Slv(lal) = x(al)7]

satisfies the inequalities

Therefore the inequalities
€ €
tan 3 < tan |gz(a)| < cot 3 (4.2)

hold almost everywhere on £25.
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Furthermore, since V (¢2)(a) = —p2(a) we have
Ra(z71) = P(z71, —¢2) = P(2,V(#2)) = P(2, —¢2) = Ra(2)
and in view of (2.28) it follows that

[R(-0)| _ [Ro(~0)| [Ra(~a)]
[R@)] o) [Ri(@)]

On the set Q% and in its neighborhood the functions Ry(z) and R;(z) are holo-
morphic and do not vanish. So on the set QF the functions |Ro(a)|, |R:i(a)| are
continuous and are separated away from zero. It follows that

= sup

R(—
a€flf

aegl R(a)

R(—a) ‘ =M, < . (43)

The boundedness of the functions r(a), m(a), p(a) and p(a)~! is the direct con-
sequence of the estimates (4.1)—(4.3) and of the formulas (3.21)-(3.23), (3.31).
From the boundedness of these functions it follows that the left-hand side of equal-
ity (3.34) defines a bounded linear operator in the Hilbert space L*(Qq, do(a)).
From the results of the previous section it follows that the components of the
vector-functions x%(a)g*(«, z) belong to the space L?(—n, 7). In view of (3.27),
(3.28), this implies that the components of the vector-function u(a,z) belong
to L%(Qo;do(a)). Thus the unique solvability of this equation is equivalent to
the invertibility of the corresponding bounded operator which acts in the Hilbert
space L%(Qp, do(a)).

Let us reduce the equation (3.34) to a more convenient form. The function
r(f) is real and satisfies the equality r(3)r(—8) = 1. So the function

zef 4 I6}
E(8) = r(8) exp{ —5 } (4.4)
satisfies the equalities
EBEB) =r*(B)e",  E(B)E(-) = €7,
which allows to replace equation (3.34) by the equivalent equation

E@)y(B) + m(B)xz(8)E(=B)y(=p)
8

+ (M)_liv.p./ Lﬁﬂy(a)da(a) =1 tan gE(—ﬁ) .

eioz — et
Qo
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Here and further on we will omit the argument z in the functions F(f) and y(3),
for the sake of brevity.
In operator form this equation can be written

D) () = i tan DB (), (4.5

I'= E4+mVY5E + (E)7'A, (4.6)

where the operator V', introduced above, and the integral operator A are defined
by the equalities

itan 2
VB = £ ADG) = [ = 22 f@)dala),  (47)

Qo

and F, m, x4, ... denote the operators of multiplication by the functions F(f),
m(B), x3(0),- -

Let us examine the operators of more common type
'=a+bVx5a+ (E)_IA7

where a(f), b(3) are functions satisfying the conditions

b(B) = ~b(-),
ess max{|a(3)| + [a(8)|~" + (O]} < o0 (1.8)

and do (o) is a Borel measure satisfying the condition

X3 (a)do(a) = c(a)da,  ess gé%)é le(a)] < 00, ¢(a)=c(—a). (4.9)

Lemma 4.1. If the conditions (4.8), (4.9) are fulfilled then I' is a bounded
invertible operator in the space L?(Qq; do(a)) and

-1 -1
< .
[T 1< ess max |a(a)]

Proof. The boundedness of the operators a, bV x% and (@)~! is obvious.
The boundedness of the operator A is the consequence of the boundedness of the
function ¢(a) and of the inequality

dist (€23, ©20\Q3) > 0.
To prove the invertibility of the operator I' we write it in the form I' = T'a, where

T=T1+bVx3+ (@ "Aat.
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If the operator 7' is invertible then so is the operator I', and we have I'"! =
a='T~! and
[T T [ ess max |a(a)] ™
a=€

Thus it is sufficient to prove the invertibility of the operator T" and the inequality
77 <1
The elementary identity
B8 i

ztang €

sin QQ;ﬁ e~
. — = 1-
el — =B 4cos§ sin QQL/B cos g
makes it possible to write the operator (@)~'Aa~! in the form (@)~'Aa™! =
Ay 4+ 1A5, where Ay and Aj are integral operators with kernels
- _—___sin QQ;B
A (B,a) =b(B)b(ar),  As(B,a) =1b(D) Wb(a) :
2

and .
e 'z
bla) = ———.

() 2a(a) cos 5

Since A1 (8, @) = A1(a, B), A2(B, ) = Az(e, 3), A1 and Ay are selfadjoint opera-

tors and A; is obviously non-negative. Hence
T=14A +i(—ibVx5+ Ag),

where A7 = Ay > 0, A5 = A;. We now show that the operator bV x§ is also
self-adjoint. We denote by (f,g) the scalar product in the space L*(Qq, do(a)).
Then

@Vx319) = [ iba)i(a)f(~a)g(a)da(a)

Qo

Il
—
g:‘
2
s
2
=
|
2
S
o
=
R)
2

= (f,ibVx39),
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from which follows the self-adjointness of the operator 6V x3. It follows from the
statements above that
T=T +1iTy

with
Ti=1+M2>1, Ty=T;=—ibVxj+ Ay,
and from the inequality T) > I we get T} = A?, with A = A* > I. Therefore

T=AI+iA"'T,A7H)A

and since A71T,A7! is a self-adjoint operator, the operator (I +iA™'TyA™1) is
invertible and || (I +4A71T,A=1)~! ||< 1. Hence the operator T is invertible:

T = A" NI 4+iA7 A~ AT!

and

IT=HI< AT PN (T +iAT T ATH) TS 1
|

In particular, it follows from the last lemma that the operators (4.6) are in-
vertible and the equations (4.5) have a unique solution in the space L?(Q0; do()).
The collection {r(«), m(«), do(a)} consisting of the functions r(a), m(a) and
the measure do(a) is called reduced spectral data of the Dirac operator. The map

$(2) = n(z) = {r(e), m(a),do(a)}

described in the previous section is the solution of the direct spectral problem,
and the map

{r(e), m(a),do(a)} — ¢(z)
solves the inverse spectral problem.

Summing up the results obtained in the preceeding paragraphs, we arrive at
the following theorem:

Theorem 4.1. The Dirac operators satisfying the conditions A) and B) are
uniquely defined by their reduced spectral data. The equations (4.5) constructed
according to this data have a unique solution in the space L?(Qq;do(a)) for all
z € (—o00,00). To reconstruct the potential (z) according to a given spectral
data it is necessary to solve equation (4.5) and then use formula (3.35).
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5. Cauchy problem for nonlinear Schrodinger equation

Let us consider the Cauchy problem

{ P24, t) - — L (a,t) + 2 (Izb(ﬂwﬁ)l2 - i) bz, (5.1)
(2, 0) = o)

with initial data 1g(z) equal to the potential of the Dirac operator Dy satisfying
conditions A) and B). To solve this problem we find the reduced spectral data
r(8), m(B), do(p) of the operator Dy, and consider the equations (4.5) and the
operators (4.6), with

(5.2)

B(B) = B(B;2,1) = r(5) exp (2”6“ 26 tew)

coinciding with the function (4.4) for ¢t = 0.
According to Lemma 4.1 the operators I' = I'(z, t) are invertible for all z,t €
R? and the equations (4.5) have a unique solution y(8) = y(8; z,1).

Theorem 5.1. The function

6—229

v = (14 [0, 0do(5) 5.3

is the solution of the Cauchy problem (5.1).

P roof. Since for t = 0 the functions (4.4) and (5.2) coincide, we have,
according to Theorem 4.1, ¥(z,0) = ¢o(x). It remains to prove that the function
¥ (z,t), defined by formula (5.3), satisfies the nonlinear Schrédinger equation. To
this end we will use the method developed in [5]. It follows from definition (5.2)
of the function F(f) that it satisfies the equations

.0 0? .0 0? S|
(lg—@) E(B) =0, (lg—@) (E(ﬁ)) =0,

_1 o—iB

0 e'f 0 [ /———1 .
SE® =B 5 (W) ) = (FE) " 5

and the equalities

(EG)  =E(=B)E,  E@EH =" (5.4)

Thus the operator-valued function I' = I'(z, t) satisfies the equation

0 0?
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and the equality
0 e E _

where e denotes the operator of multiplication by ¢*?. According to definition of
the operator A (4.7), we have

e—iB _ gia
(eA = Ae}(f)(B) = itan gv.p./mf(a)da(a)

P
= —ztana/f(a)da(a).

Let us introduce the the orthogonal projection P onto the one-dimensional
subspace of constant functions in the Hilbert space L?(Qq;do(a)):

PR == [ f@yo(), o= [dota) (-7
Qo Qo

and let ¢ denote the operator of muliplication by the function tan 8. Then the

2
last equality take the form
eA — Ae = —ito P,
and according to (5.6) we have

0 e iotE !
() =T = TP (5.8)

Following [5], we introduce the logarithmic derivative

. 0
y="T 1@@)

of the operator-valued function I' and find the equation which it satisfies. Differ-
entiating both sides of equality (5.5) with respect to z we obtain

0 0*\ 0 0 0?
0= Qa‘aﬂéﬂ”—Ga‘%ﬁ“W
0 0 0? 0 3} 0?
= <Z§F> v+ an(’ﬂ - (@F) v —2 <8—$F) 8_33(7) 537

0 0? 0 0? 0
= ((2E - w) F) v+ <@§(’Y) ~ 527~ 273?(7)) :
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Since the operator I is invertible and in view of (5.5), it follows that

) )~ 2y () = (5.9

On the other hand, it follows from equality (5.7) that
1 o
v = Z(e—af it(F) P),
and since P is the projector on the subspace of constants, we have
1
v = Z(e —ovP), (5.10)

where v denotes the operator of multiplication by the solution v(3) of the equation

D()(8) = itan 5 (B @) (5.11)
or in expanded form

E@B)oB) + mB)xs(8)E(=B)v(-B)
—— 1 itang ) B = _1
+ FO) v [ e(a)do(a) = itan D (E)

el — e—iB 2
Qo

After complex conjugation and multiplication by e E(3)(F(3))~" we obtain the
equation

EB)ev(B) + m(B)x3(B)E(-B)e” " v(-p)

tan B
+ (m)_lv.p./ %em@da(a) = —itan gE(—ﬁ).
(Here we must take into account that (ei@ — e=#f) = —e™*@e¥ (' — ¢7F) and,
in view of (5.4), (E(3)) ¢ = E(~5), F(=B)E(3)(E@) e = B(-p)e=%.

Hence the function —e*?v(3) and the solution y(3) of the equation (4.5) satisfy
the same equation. By the uniqueness property for the solution of this equation
we get v(B) = —ePy(3) and according to (5.9)

ﬂ) . (5.12)

'y:%(l—l—ayP):—ie( 5

Let us now express the derivative ~, = aa—z('y) of the operator-valued function
in terms of the operators e, y and P. Differentiating the equalities (5.12) and
(4.5") with respect to z, we get

eo

=% p 5.13
Yo = 579z (5.13)
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and -
e~ {tan ﬁ(E(ﬁ))_l

La(y) + T () = itan & B(-p) = O

or

itan 2(E(3))!
D) + ) = = 2(5@) :

In view of (5.11) it follows that

1 P —
1Y) (B) +y=(B) = 5-v(B) = —5-y(B).
Furthermore, since we have according to (5.12)
e
1)) = S+ 07P) ) (9),
we have
o8 _
vo(B) = —5 AU+ oyP)(y)(B) +y(B)},
e
BB = SAU+ PG +uB)

and in view of (5.13)
1
Ve = —%{(1 +oyP)gP+yPt = — Al +oyP)(I+0oyP) =1} (5.14)

Substituting the right-hand sides of (5.12), (5.14) in (5.9), we obtain
. { 0 0? <I+ayP) <1+ayp) (I—I—UyP) <J+ayp)
e li——=— | |——— ) +2
ot 0x? 2 2 2 2

()0

Finally, we note that it follows from formula (5.3) and from the definition of the
projector P that

P (@) = % <1 + /Mda(ﬂ)) P =(z,t)e P

Hence multiplying from the left both sides of equality (5.15) by ¢P€, we obtain

o 0%\ - B :
. _ ; bl 22k — -2 p _
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and from this follows that the scalar function ¥ (z,%) = 7 indeed satisfies the
equation

0 0? 1
i—th = ——— w2 — =) .
igr¥ axgaﬂr?(lzbl 4)v
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3anaua Komu nnA HeauHeiiHoro ypaBHeHuA IlIpeaunHrepa
C OrpaHUYEeHHBIMU HavalbHbIMHU OJaHHBIMH

Anna ByTte ne MouBenb, Bragumup MapueHko

llas omepaTopoB, ABAAIONIUXCA CUABHBIMH TpejleiaMu Ge30TpamaTelb-
HBIX omepaTopoB [upaka, BBOOUTCA aHaJOT JJAHHBIX paccesHUA W pellaeT-
cfl coOoTBeTCcTBYyIOIMas o6paTHasd 3anavya. PasBuBaeTcs OCHOBAHHBIN HA HTOM
MeTo]l pemieHus 3agad Komu aas Henunelinoro ypaBHenus Illpenunrepa c
HavyalbHBIMU TaHHBIMU M3 MUPOKOTO MHOKECTBA HeHcyezamomux Ha 6ecKo-
HEYHOCTH (YyHRIUIA.
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3anaua KRomu naa Heniniiinoro piBuanuA Illpeninrepa
3 o6MemeHUMH N04YaTKOBUMM JaHUMHU

AnHa Byrte ne MouBeinb, Bonoaumup MapueHko

[lasi omepaTopiB, 10 € CUILHUMHU TPAHUNAMHU Ge3Bi/IGUBHUX ONEpaToOpiB
lipaka, BBOJJUThCA aHAJOI JAHUX PO3CIAHHA Ta pO3B’A3YEThCS BI/INOBIIHA
oGepHeHa 3ajjaya. Po3BUBaeThcs MOGYI0BaHUN HA [IbOMY METO/ PO3B’si3aH-
HA 3agad Romwu aas HemiHiifiHoro piBHAHHA Illpepinrepa 3 o6MemeHUMH TI0-
YATKOBUMHU [IAHUMHU 3 HMUPOKOI MHOKUHU HE3HUKAIOUUX HA HECKIHYEHHOCTI

GYHRIH.
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