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The existence of the Boltzmann—Grad limit is proved for equilibrium
states of infinite systems of hard spheres for different normalization of dis-
tribution functions.

1. Introduction

The problem of derivation and mathematical justification of the Boltzmann
equation permanently attracts attention of mathematical physicists. The problem
is as follows: to derive the Boltzmann equation from the fundamental equations of
classical statistical mechanics — the BBGKY hierarchy (Bogolubov-Born-Green—
Kirkwood—Yvon). In recent time, significant progress connected with solution of
this problem has been achieved, namely, the rigorous justification of derivation
of the Boltzmann equation has been given for a system of hard-spheres in the
Boltzmann—Grad limit [1-3]. It has been shown that for nonequilibrium distri-
bution functions the Boltzmann—Grad limit exists and these functions are equal
to the product of one-particle distribution functions which satisfy the Boltzmann
equations.

In this paper, we consider a simpler problem, namely, a problem of the exis-
tence of the Boltzmann—Grad limit for the equilibrium distribution functions of
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way finished during the stay May—June 1995.
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The Boltzmann—Grad limit for equilibrium states of systems of hard spheres

a system of hard spheres in the framework of the canonical ensemble. (Note
that the same problem was solved earlier in the framework of grand canonical
ensemble [4].) It is proved in the paper that the equilibrium distribution functions
normalized on unity tend to zero if one simultaneously passes to the Boltzmann—
Grad limit and to the thermodynamic limit. The nonzero limit distribution
functions with this normalization can be obtained only for the systems of particles
located in a bounded domain.

The system of particles located in the whole space was also investigated for a
case of the distribution functions normalized to the number of particles. In this
case, the limit distribution functions are nonzero only if the diameter of spheres
tends to zero and their density tends to infinity so that their product is constant.

2. The existence of the Boltzmann—Grad limit for normalized
equilibrium distribution functions

Statement of problem. Let us consider N hard spheres in a domain A C R?
with the volume V(A) = V. Denote by DWN)(¢, 2, ..., 2x) a distribution function
in the phase space of N hard spheres, normalized to unity, z = (p, q) is a point
of phase space, p is momentum, ¢ is position of the center of hard sphere. Let us
denote by F(M)(t) the sequence of reduced distribution functions

F(N)(t) = (FI(N)(t,$1)7F2(N)(t,$17$2),...,

FS(N)(t,;rl,...,:vs),...,F](VN)(t,.rl,...,mN),O,...) (2.1)

which are defined trough the function DWY) (t,z1,...,zn) by the following for-
mula:
FS(N)(t, T1yeo,Ts) = /N dzgqy .. .dmND(N)(t, T1yevoy Ty Toglye-y TN),
AN=—s
1<s<N, (2.2)

where

/dm:/dq dp.
A A R?

The distribution function defined according to (2.2) are called normalized (nor-
malized to unity).

The function FS(N) (t,z1,...,zs) satisfy the following equations [5], known as
the BBGKY hierarchy (for ¢t > 0):

LT u 0
v ) = —;pia—tis(N)(t,$1,...7$5)

oF ™M (¢, 21, ..
ot
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HV = 5)a Y [ dndpus1O((pi = poss) - wn - (pi = pesr)
=1

N
X {Fs(+1) (t7x17 e Gy Pp — NN (pz _ps+1)7 ey Ty g — an,
Ps+1 + 00 (Pi — Ps+1))
N
_FS(_|_1)(t7$17"'7$57Qi+an7p5+1)} ) (23)

where © is the Hewiside function, @ is the diameter of sphere, n is unit vector,
|n| = 1. The integral in (2.3) is carried our over unit sphere |n| = 1 with respect
to n and over whole three-dimensional space with respect to psy1.

The functions FS(N)(t, r1,...,%s) are symmetrical (invariant under permuta-
tions), equal to zero on forbidden configurations

Ws(q17-"7QS||qi_qj|<a7 (27])6(1778))
and satisfy the boundary conditions

N
FS( )(t,ml,...,mi,...,mj,...,l‘s)

:FS(N)(t,ml,...,mf,...,m?,...,ms), if|¢; — ¢;| = a.

Here z} = (qi, p; — nn - (pi — p;)), JU; = (gj,p; +nn - (pi — p;))-

They are also equal to zero outside of A, FS(N)(t,JL‘l, oaxs) = 0,0 ¢ € A,
1=1,2,...,s.

Let us stress that the multiplier (N — s) appeared in the second term of
right-hand side of equations (2.3) due to definition (2.2). If one employs an usual
definition of reduced distribution functions

FN(t zy,. . 2) = N(N=1)...(N —s+1)

></ dms_H...dacND(N)(t,acl,...,$5,$5+1,...,$N), (2.4)
AN—s

then the multiplier (N — s) will be absent in the second term of right-hand side
of equations (2.3) and the equations for the distribution functions (2.4) will have
the following form:

(N)

an (t,iCl,...,xs) . id ' 8 (N)
ot - _;pzatis (t7$17...,$5)

+a? Z/dndszrl@((pi = Pst1) - )0 (Pi = Pst1)
=1

N
X {Fs(-}-l) (t7‘r17 sy Gy Pp — NN (pz _ps+1)7 ey Ty g — an,
Ps+1 +nn - (Pi — Pss1))
N
_Fs(+1)(t7$17"'7$S7Qi+an7p5+1)} . (25)
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If we define the reduced distribution functions according to formula [6]

FS(N)(t7$17---7$s):‘/s/ d$5+1...d$N

AN=—s
XD(N)(ta‘rh"'73357335—}-17---733]\7)7 (26)

then the multiplier N‘/TS will be present in the second term on the right-hand

side of (2.3) or(2.5). This multiplier is equal to density in thermodynamic limit.

(We use the same notation ) (t,z1,...,z,) for distribution functions under all
normalizations.)

The equilibrium distribution functions defined according to (2.4) or (2.6) are
well investigated in the thermodynamic limit when A /* R3, V(A) — 0o, N — oo,
% = % = const. For details, we refer readers to article of Bogolubov, Petrina
and Khatset [7] or to monograph [8]. In the present paper, we carry out analo-
gous investigations for the equilibrium distribution functions defined according
to (2.2).

Definitions (2.2) and (2.4), (2.6) are equivalent for finite N and V(A), be-
cause we can pass from one to the other using different normalizations. But this
is impossible in the thermodynamic limit when N and V(A) tend to infinity.
Therefore the case (2.2) requires an independent investigation. It is obvious that
definitions (2.4) and (2.6) are also equivalent in the thermodynamic limit because

. VE(A) 1
W la 2o N(N 1) ( )~ v
o0 V(A) oo —1)...(n=s+1) v
V(A) =

Kirkwood—Salsburg equations. It is well known that in order to investi-
gate the equilibrium states it suffices to restrict oneself to equilibrium distribution
functions in configuration space. The equilibrium distribution function of N par-
ticles distributed in a domain A is defined as follows:

N
DM (qy,....q )Z;exp{—ﬂ ¢(Q¢—Q')}7
! N Q(‘NvA) Z’<JZ;1 !

N
Q(N,A):/ANexp{—ﬁ Z @(qi—qj)} dgi,...,dqN, (2.7)

1<j=1

where @ is the interaction potential of hard spheres

_ ) o, |4 <a,
‘I’@—{o, 4 > a.
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The s-particle reduced distribution functions are defined, according to (2.2):

Fs(N)(q17"'7QS) — /AN—S D(N)(qh"'7QS7QS+17"'7QN) qu+1---dQN7
1<s<N,
FO = (B (@), FN g1, 000, FO (1,008,050

They satisfy the following Kirkwood—Salsburg relations:

Fs(N)(QM H '7qs)

_ QIN-1LA) - ' (N-1)
— QN A) exp —ﬁ;é(ql—qz) X [Fs_l (g2,---,qs)
N-—s 1
+ H(N—s)(N—s—1)...(N—s—k—}—1)
k=1
u N-1
X /Ak HSOQl(yZ) Fs(—l_—}—lc)(q27 e ls Yt - 7yk) dyl .. dyk} s
=1
(N>s>1)
Q(N —1,A N=ly
Y (q1) (Q(NA) ) [H—ZE(N—D(N—Q)...(N—k)
b k=1 "
k
8 /Ak | DL A TR dyl--'dyk] :
=1

N
— Mexp{_ﬁz@(ql —%)} X F](V]\:l)((J%qu)v

Q(N7 A) 1=2
P (y) = exp{—BP(q1 —y)} — 1. (2.8)
For details of derivation, we refer to monograph [8]. Note that, for the func-

tions Fé(N)(ql, ..., (s), defined according to (2.4) the multipliers (N —s)(N — s —

1)...(N — s —k+1) are absent in relations (2.8) connecting FN) with F(N=1)
(see § 3).

The Boltzmann—Grad limit means that number of particles tends to infinity
N — oo, diameter of particles tends to zero a — 0, but the product Na? = X is
fixed. Our objective is to investigate the sequence of distribution functions F(V)
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in the Boltzmann—Grad limit. For this aim the Kirkwood-Salsburg relations (2.8)
will be used.

Define the numbers A = \g = Na?, Ay = (N — 1)d?,...; \; = (N —i)d?,...,
t < N. According to definition of the Boltzmann—Grad limit, the numbers A; are
bounded and A; < A, ¢ > 1. It is easy to transform relations (2.8) to the following
form:

FS(N)(Qh-- ,qs) = a(N, A exp{ ﬁZ(I) (1 — q:) }X [Fs(ivl_l)(qg,...,qs)

k
/ H Pagr yz 5 1+k)(q27"'7qs7y17"'7yk)dy1---d‘yk}7

N-Lqkly k (vo1)
X 1+ —,H—QJ/ I 0 wi) x B 7wy yyw) dy - dyge |
=k j=o @ JARE

F™M(q1,...,qx) = a(N, A)

N
Xexp{—ﬁZ@(ql —qi)} XF](\,JYII)(qQ,...,qN), (2.9)
=2
Q(N —1,A)
Q(‘N7 A) ‘
Relations (2.9) hold for N > 2. For N = 2, one has

a(N,A) =

F®(q1) = Jaexp{-B®(¢1 — ¢2)} dgo
PO e exp{—0®(ar — ¢2)} darday”
FO (g, g2) = exp{—fP(q1 — q2)}

Jro exp{=B®(q1 — q2)} dqndgy
Kirkwood—-Salsburg operator. Consider a Banach space E¢ of sequences

= (filq1),.-., fs((¢)s),...) of bounded functions fs(q1,...,q5) = fs((q)s),
q1,---,qs = (q)s with norm

£l = sup = sup |fi((g)s)],  €>0.
521 € (9);
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Define in F¢ operator KW) in the following way:

(K(N)f) ((9)s) = xal(q)s) exp{ ﬁZ‘I’ @ = ) }{fs—l((Q)i)

5 =2
N=sq &
+§::k—

) fomrs (03 WRAW)]

—
kol

0%

[ e @@ s,

??‘|H

N-—
(K1), (@) = xa(0)) Y-
k=1

N
(K(N)f)N((q)N) =xal(@)n exp{ ﬁZ:@ 0 — ¢) } v-1((9)N)

(K™F) (@) =0, s>N, (2.10)

S

(q)i‘:(‘?%---y(h)v d(y)k:dyldyk7

where xa((¢)s) is the characteristic function of domain A®.
Taking into account that

. _ _17 |q_y| S a,
eq(y) = { 0 lo—yl>a (2.11)

we have the following estimate for the norm of the operator KM):

N-—s
[|[KMN)| < ?;1)55_1 kz:% </\§7ra§) % < & lexp (%ﬂ'afA) . (2.12)

It follows from (2.12) that the operator KW) is uniformly bounded with respect
to N and a if the parameter a lies in the finite interval 0 < a < ag. In what
follows we assume that this condition is satisfied.

By using the operator K ()| relations (2.9) can be represented as single ope-
rator relation, namely

FO) = o(N, A) (KM P01 4 g1 (2.13)
where FéN_l) =(1,0,...) = Fo.

Our aim is to prove the existence of the thermodynamic and Boltzmann—Grad
limits for F(N), To do this, we first need to estimate the value a(N,A).
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Estimation of the value a(N,A). To estimate the ratio %, we use

the following trick. Represent Q(N, A) in the following way:

Q(N,A) = /A eXP{ g Z 4% — q; }dqld(q)}v

1<j=1

- /AN_l{eXp{ ﬁz —q]}

1<j=2

X

N
/A H(exp{—@(ql —¢)}—1+1) dql} dlg)y. (2.14)

The value a; = exp{—p®(¢1 — ¢;)} — 1 is nonpositive and 0 > a; > —1. Thus
(a; +1) > 0. Hence the following inequality holds:

N N
[TO+a)>1-3"|ail
=2 =2
or, which is the same,
N N
H(exp{—ﬁq)(ql —¢)-14+1)>1- Z lexp{—0P(q1 —¢;)} —1]. (2.15)
=2 =2

Substituting inequality (2.15) in (2.14), one gets

Q(N,A) > /AN—l {exp{ Ié; Z ¢ — ¢; }
N i<j=
X /A( ZleXp{ ﬁq)(‘h_%)}_u) dQI}d(Q)Jl\T
B N
> /AN_1 exp{—ﬂ'z QI>(qz'—qy)}d(q)}v‘/(/\)
~
- /AN_leXp{—ﬂ_Z; (i %)}d(‘I)Jl\f
x (N=1) [ exp(-p(e) — 1ldg
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It is obvious that V(A) — (N — 1)3ma® > 0, because N spheres are situated
in the volume V' (A). Thus one obtains the desired estimate

Q(N —1,A)
a(N,A) 7@(17\7, A
< Q(N —1,A) _ 1
T QN -1L,A)(V(A) = (N -1)irad)  V(A)— (N - D)ira®

(2.16)

Let us suppose that the thermodynamic and Boltzmann—Grad limits are per-
formed simultaneously. The value Na? = ) is fixed and therefore Na® — 0 in the
Boltzmann—Grad limit. It follows from estimate (2.16) that the following lemma
is true.

Lemma The ratio a(N,A) = % tends to zero if the following parame-

ters tend to their limits simultaneously:

N — 00,a — 0, Na? = X\ = const,

AV 1
AR V(A) = oo, = — = const, (2.17)

VA) v
i.e. if the thermodynamic and Boltzmann-Grad limits are performed simultane-
ously.

It is easy to see that the ratios a(N — i, A) = % also tend to zero in

the limit (2.17) uniformly with respect to 0 < ¢ < N — 3 according to estimate

1 1

a(N —1i,A) < V(A)—(N—i—l)%ﬂas < V(A)_(N—l)%ﬁag.

(2.16')

The limit of F(N),
Theorem 1. The sequence FN) tends to zero in the norm of the space Ey
if the thermodynamic limit and the Boltzmann-Grad limit (2.17) are performed

simultaneously.

P roof. To prove this, we consider relations (2.13). Using them many
times, one gets

N-3
FM = 3 (N, A)KMa(N =1, A)KNV=D (N =i 4 1, A) KN+
=1
a(N —i,A)Fy+ a(N,A)KN)
a(N — 1L, A)KWN=D . a(3, AV KPIF® + o(N,A)F. (2.18)
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For the operators K(N=9, 0 < i < N — 3, estimates (2.12) hold. The value
a(N — i, A) satisfies estimate (2.16") which implies that this value tends to zero
in limit (2.17). For the sake of simplicity, we take V' (A) so large and @ so small
that, according to (2.12) and (2.16), one can put

IKN=#D]|a(N —i,A) <k <1, 1<i<N-3. (2.19)

Let us estimate F(2). It is easy to see that

V(A) (2) 1
F .
VNI VA 1 ) < o Gy
(2.20)

F1(2)((11) <

It follows from (2.20) that ||K®)||[|F(?)|| < k < 1 for sufficiently large V (A). By
using estimates (2.12), (2.19), (2.20), we get from (2.18)

N=-2 1

(N) i -
IO < (N, ) 3 K < N, M) (2.21)

According to (2.16), |[F(M)|| tends zero in limit (2.17). Note that,
on formal level, this property of F) immediately follows from expression for

D(N)(ql, ..+, qN), because exp{—ﬁ Ef\;jzl S(q — qj')} <1, and Q(N,A) ~ VN,

thus DM (qq,...,qn) ~ Vl—N For the same reason FS(N)(ql, ceys) ™~ VL .

Thus, if one performs simultaneously, according to (2.17), the thermodynamic

limit N — 0o, A /' R3, (V(A) = o0), &¥ = L = const, and the Boltzmann-Grad
limit N = oo, @ — 0, Na? = \ =const, then the sequence of the equilibrium
distribution functions FN) defined according to (2.7) tends to zero in the norm
of space FE.

Note that the functions FégN)(ql, ..., qs) satisfy the compatibility conditions

/A Fs(ivl)(Qh < Qs qs-l—l) qu+1 - FS(N)(QM ey (15)7 /AFl(N) ((]1)d91 =1 )

for all N and A.

To avoid this extremely undesirable phenomenon of tending to zero of the
distribution functions, it is necessary to fix bounded domain A and only consider
the Boltzmann—Grad limit.

The Boltzmann—Grad limit for fixed bounded domain A. Let us return
to relations (2.9) or, in a operator form, (2.13) and fix the domain A in them. In
this section, it is useful to introduce the notations

Q(N —i—1,A)
Q(N —1i,A)

= a;(N), N-3>i>0, ao(N)=a(N), (2.22)
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where the dependence on A is omitted because A is fixed.
The sequence a;(N) is bounded according to (2.16") (for fixed ¢). Therefore
one can select a convergent subsequence a;(N;)
li ; N:) = Ai7 Ag= A.
W ) = Ay A
By using the diagonal procedure, one can do it for all 2. We conclude that the
following limits exist:

li J(N;) = A 2.23

Jim (V) (229

forall i =0,1,2,... . Of course, this does not mean, that there are no other con-
vergent subsequences with limits Agl), .. .,Agk), ...,2=0,1,2,... . Let restrict

ourselves to the subsequence a;(N;) (2.23). By using this notation, relations
(2.13) for FIN=9 take the form

FON=9 = g,(N) (K(N—z')F(N—i—l) n Fo) . i=0,1,2,.... (2.24)

Let formally pass to the limit as N; — oo (2.24), assuming that all required
limits exist. Then we obtain

F = AKF'+ F),

F'o= A(KFY 4+ FR), i=0,1,2,..., (2.25)
where
Fi= lim FN=9 K= Jim KW= O=F, (2.26)
Nj—o0 Nj—o0
Determine the operator K. To do this, we represent the operators KV) in
the following form:
KN = kM 4 (M
where
(K17) (@) = xal(@)y) eXP{—ﬂE‘th —q»}fs_l((q);),
=1
(N) S N-—s 1 k—1A+_
(Kg f)s ((@)s) = xal(a)s) exp{—ﬂsz(ql - Qi)} a1l =7
=1 k=1 7=0
k
[ T e feman(@k )
=1
f € E{ 3 fO =0 3
(K1) (@) = 0, s>N,
(K§N>f)s (9)) = 0, s>N-—1. (2.27)
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The following estimates are obvious:

kM) <o,

() e N SR L 1
I[Ky V] < € ];E 57”15/\ <& [exp 57”15/\ -1,
which implies that the operator KéN) tends to zero in norm as N — oo, @ — 0,
Na? = X\ =const (in the Boltzmann—Grad limit),

lim KM =0.
N —00,a—0
Na2=2x

It is obvious that operators KgN_i) tends to zero in norm as N — oo, a — 0,

Na? = X =const uniformly with respect to ¢ > 0. Taking into account that for
ql_%| > a, Z.:27"'787

C{iglOeXp{—ﬂsz(ql - Qi)} =1,

=1

one obtains that the operator K acts in F¢ in the following way:

(K1)s((9)s) = xa((9)s) fs=1(()s) - (2.28)

For the sake of simplicity, we require that numbers A; satisfy the conditions
A; < 1. It is easy to see from (2.16) that this condition is satisfied for sufficiently
large V' (A) and sufficiently small Nira® = Ajar.

Now we are able to formulate the problem, which should be solved in order
to justify the existence and uniqueness of limit (2.26). For this, it is necessary:

1) to prove that the limits A;, F' (2.26) exist in certain sense,

2) to prove that they satisfy relations (2.25),

3) to show that the limits A;, F' do not depend on i:

A=A, F=F i=12,....

The similar problem arose in the paper [7] devoted to justification of the
existence of the thermodynamic limit for equilibrium distribution functions in
framework of canonical ensemble. Therefore we will solve these problems by
modification of methods developed in [7] (see also monograph [8]).

By using relations (2.24), (2.25), we get

(N-3) '
FN = N a(N)KMay (N KN gy (N) KN =0y (N) Fy + a(N) Fy
=1
+ a(N)KMay (NYKN=D oy _g(N)KOF®)

F = Y AKA|K.. A KAFy+ AFy. (2.29)

=1
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The following estimate holds:

no
Xao (F = FIN < [IXay (Z AKAK .. A1 KA Fy + Yag AR
=1
no

— Z a(]\f)I((N)al (N)K(N—l) iy (N)K(N—Z'H)

1=

X ai(N)Fo+a(N)F°) [ +7, (2.30)

where ag is arbitrary fixed number and y, is an operator in space F¢ defined
according to the formula

(Xaf)s((@)s) = Xa((0)s) f5((@)s), [ € Ek,
where x.((g)s) is characteristic function of admissible configurations, i.e., |¢; —
¢;| > a for all (7,7) € (1,...,s). Obviously that ||x.|| = 1.

Series (29.2) representing FN) and F' converge in the norm of the space Fj
if |a,EN)| |[KN=9|| < k < 1, |A;] ||K|| < k < 1 and therefore for sufficiently large
no, ||n]] < &, where ¢ is as small as desired. These inequalities for ||KV=]|,
[|K|| hold if £~ exp {%71'(15)\} < k,ie., if &1 < k and a is sufficiently small.

Substituting KN) = K{N)—I—KéN) into (30.2), taking into account that al™

Ay, ||K£N)|| —0as N = 00, a— 0, Na®> = )\, and moreover,

Xag AR A KD A KWV AR = xa AK ALK ... A1 K AT,
we conclude that the first term in (2.30) can be also made less than § for suffi-
ciently large N. This means that

lim_ [[xao (F = FM)|| = 0.

N —00,a—0
Na2=2)

Note that Fs((q)s) = const # 0 if ¢ € A, ¢ = 1,...,s for arbitrary (q)s,

but FS(N)((q)S) = 0 on forbidden configurations W. This is the reason why we

consider the difference y,, (F — F(N)) but not F — F(V),
Let us show that A; = A, F* = F. For this purpose, we note that (2.25),
(2.28) yield

Fl(ql):A, Fll(ql):Al,Fll(ql):A“, Q1EA

We also have the normalization conditions

/Fl(q1)dq1:17/ Ff(ql)d(h:La
A A
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which yield
1

V)
This means that relations (2.25) reduce to a single equation

F = AKF + Fp) (2.31)

A=Al == A=

and '

F=F'=...=F=....
The proof of equalities Agl) =...= A,Ek) = ... = A is analogous.

Obtained above results can be summarized in the following theorem.

Theorem II. Sequences FN=9 which satisfy relations (2.24), converge in
Boltzmann—Grad limit N — oo, a — 0, Na®? = X\ =const and with fized domain
A to a sequence F', which satisfy equation (2.31), in the following sense:

: _ p(N=d)N\ —

o dim o (F = )] =0,
Na2=x

where ag is arbitrary small fizred number.

Remark that sequence F can be represented, according to (2.29) by convergent
in norm of space F series

F=> (AK)'AF,
=0
and from this representation it immediatly follows that sequence F satisfies equa-
tion (2.31)

3. The existence of the Boltzmann—Grad limit and
thermodynamic limit for standartly normalized distribution
functions on numbers of particles

The Kirkwood—Salsburg equations. Consider the equilibrium distribution
functions with normalization (2.4). They are defined according to the formulae

FS(N)(q17---,q5) = ]V(]V_ 1) (ZV —S+ 1)
X /AN—s D(N)(ql v sy sy, - -7QN) d(]5_|_1 Ce qu (31)

and satisfy the following Kirkwood—Salsburg relations:

FN (... q) = TEE LY o {—ﬁZ‘D(ql - qz’)} 0 (g, )

Q(N7 A) i=2
N-—s 1 k No1
+ Z E /Ak H Paq (yZ)Fs(_l;k)(q% e sy Y1y - 73/k)d3/1 cee dyk] 3
k=1 """ =1

1 < s <N,
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FO) = St
N—71 1 k N_1
X [I—I—ZH/Akngoql(yi)Flg )(yl,...,yk)d.yl...dyk ,
k=1 i=1
F{ a1, oan) = %
’ N
X exp{—ﬁzq)(ql - qz)} X F](V]\:l)(qg7 ce o qN) - (3.2)
1=2

The distribution functions are normalized on numbers of particles.
Define by a(N, A) the ratio

NQ(N —1,A)
Q(N,A)

and introduce the renormalized distribution functions

a(N,A) =

FS(N)(917---7%) — QQSFS(N)(qh'"qu) ° (33)

(We stress that value a(V, A) (3.3) differs by the multiplier N from value a(N, A),
defined according to (2.9) in Section 2.)

They satisfy the following Kirkwood-Salsburg relations (in what follows, for
the sake of simplicity, we preserve the previous notation for the renormalized
distribution functions):

FS(N)(ql,...,qS) = a(N,A)aQexp{—ﬁZ(I)(ql—qi)}{Fs(ivl_l)(qg,...,qs)
1=2

| —

k
1 N-1
'(IW X /Ak Hﬂoql(yi)Fs(_Hk)(Qm---7%7917---yyk)dyl---d@/k] ;
' =1

N-—s
+ 2.
k=1

=

N>s>1,

-1
11 . (N-1)
X l1+ EW/M [[Soql(yi)Fk (yl,---,yk)dyl---dyk] ;

FO,. . an) = a(N,A)d?

N
X eXP{—ﬁZ‘I)(fh - qz)} X F](V]\:l)(qg, .o qN) - (3.4)

1=2
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Let us represent relations (3.4) in an operator form.
It is useful to extract the term with & = 0 and, by analogy with (2.27), to

define the operators K{N) and K{N) in E¢ as follows:

( ) = xa((9)s) eXp{ ﬁZ(D (1 — @) }fs_l((q)i),
N> s z fo=0, -
(KMF) (@) = 0, s>N,
(K5 ) = xa((g)s) eXP{—ﬂZS: (@1 — @) }NZ ki—k
. =2 k=1
<[ T en G femrsnl@h DDA
N-1>s2>1, =
(ﬁ'éN)f)s ((e)s) = 0, s>N-1. (3.5)

The following estimates for the norms of these operators are obvious:

k
(N -
KM=t KM < e 12@( mg) . (3.6)
Relations (3.4) can be written as the single operator equation

FN - = oV, A)e? [(KY) + K§D) FVD 4+ Ry
FIN=) = ;z(N—i,A)azKKfN_i)—I—K( ) FNIED 4 Ry

Iy = '(1,07...). (3.7)

We are faced with the following problem:

1) To show that for N — 0o, a — 0, Na?> = A, V(A) — oo, % = %
(i.e., in the Boltzmann—Grad limit and the thermodynamic limit (2.17) there
exist the limits of the sequences FIN=9  of the operators KiN_Z), KéN_Z), and of
the numbers a(N — i)a?.

2) To show that corresponding limits ', Ky, Ky, A;,1=10,1,2,..., Ag = A,

% = F satisfy the equations

Fi= ALK+ K) PP 4 Rl = AfKFH + Fy), i=0,1,2,... . (3.8)
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The proof of the existence of the limits of F(V), KfN), KéN) and

a(N,A)a®. Tt follows from estimate (3.6) that the operator KgN) tends to zero in
norm in limit (2.17), Ky = 0.
Define the operators K and x,, xa in F¢ as follows

(I(lf)s((Q)s) - fs—l((q)s)a
(Xaf)s((Q)s) = Xa((Q)s)fs((Q)s)7
(xaf)s((@)s) = xal(9)s) fs((q)s), (3.9)

where x4((q)s) is the characteristic function of admissible configurations.
Since for |¢; — ¢;| > 0, (4,j) € (1,...,5s),

ilg%) Xa((q)s) =1 )

i%eXp{—ﬂ;q)(ql - Qi)} =1,

the operator KfN) converges to the operator K in the following sense (in limit

(2.17))

xaxa (K1 = KM) £l =0 (3.10)

for arbitrary finite sequence f € Eg, i.e, fs((¢)s) = 0 for s > n, where n is some
number. Consider the sequence a(N — i, A)a®. The following estimate holds:

LN - ) 2 LN 2
a(N —i,A)a* < ( l?a 7 < - 3
V(A) = (N —i—=1)zma® = V(A) = Na*3ma
A 1 1
AT S (3.11)
V(A) = A3ma v 1--ad*3ma

which implies that, for fixed bounded Na? = X and V(A) — oo, the value
a(N—i,A) =0, ie., a(N -t A) — 0in limit (2.17).

Repeating the proof of the first section, one obtains that |[|[F(N=9|| = 0 in
limit (2.17).

The obtained above results can be summarized is the following theorem.

Theorem III. The renormalized distribution functions (3.1), (3.3) tend to
zero, i.e., ||[FIN=9|| = 0 in the Boltzmann—Grad limit and the thermodynamic
limit.

It is obvious that one can consider the fixed bounded domain A. In this
case, the values a(N — 7, A) are bounded according to (3.11) and one can repeat

the reasoning of the previous section and the theorem II is true for sequence of
distribution functions defined according to (3.1) and (3.3).
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The existence of the limit distribution functions for %(12 = %a2 =

const. One can see from estimate (3.11) that the unique possibility to avoid the
convergence of the distribution functions to zero consists in the substitution of
the condition %aQ = %aQ = const for the conditions Na? = A = const in the
limit transition (2.17).

Now the Boltzmann—Grad limit and the thermodynamic limit mean that
N 1 1
N = o0, A S R?* V(A) = o0, V=05 —00,a—0, —a* =const.  (3.12)
v v
We put %aQ = V](V—AﬂaQ < 1. Then a(N —4,A)a® < 1, A; < 1, for sufficiently small
d. The following t

Theorem IV. The sequences F\N=9 and F' ezist and belong to E¢. The
sequences FIN=9) converge to the sequences F' in the limit (3.12) in the following
sense:

eorem is true.

IXaxa (FF = FO=0)| w0, i=0,1,2,....
The sequences F' satisfy relations (3.8).
Proof. Using (3.7) and (3.8), we get

N-3
FM = 3" a(N,A)a*KMa(N - 1,A)a? KO a(N - i+ 1,A)d?
=1
KWN=4Dg(N =i, A)a’Fy + a(N,A)a* KN
a(N —1,N)a* KN a(N —i+1,A)d?

KW= a3, 0)a®? K@ P 4 o(N, A)a?Fy, (3.13)
F = Y AKAK .. A (KAFy + AF,. (3.14)
=1

Since [|[KN=9| < €' exp (%ﬂ'af), [|K|| < &1, for sufficiently large & and suf-

ficiently small a, one has ||[KN=9|| < 1 uniformly with respect to N and i (it
suffices to consider £ > 1). Moreover, a(N —7, A)a? < 1, A; < 1. Therefore series
(3.13), (3.14) are convergent in the norm of E¢ and the sequences FN) and F
exist and belong to E¢. The following estimate holds:

no

Ixaxa (F = FODIL < 13 Xaxa AR ALK L Ay K Ay
=1
0
- EXaXAa(N, A)aQK(N)a(N - 1,A)a2K(N—1)
=1
eaN =i+ 1, A)a KV — i Aty
+ XA(AF® — a(N,N)a*Fp)|| + 7, (3.15)
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where ng = ng(n) is some bounded number and 7 can be made as small as desired
for sufficiently large ng(n). In sum (3.15) with bounded ng, we perform the limit
transition (3.12) (with fixed %aQ). For this purpose, we represent all the operators
KW=9 in (3.15) as the sum K(V=9) = K{N_Z) + KéN_Z) and take into account
that, according to (3.6), ||K§N_Z)|| — 0 and the numbers a(N — i,A) — A;
in limit (3.12). Since the sequences K()Fy and KN KIN=-1)  gIN=H+1) F) are
finite, using (3.10), we get that the first term in (3.15) tends to zero in limit
(3.12).

Thus it is proved that o xa FY) — x,xaF in norm in limit (3.12). The proof
of the theorem for F(N=9) and F* i =1,2,... is the same. Show that

A=A =...= A, =..., F=F'=... =F'=....
To do this, we use the relations

and the normalization conditions
1 1 1 : 1
—— | K d :—2...—/F2 dgy = =a?, ... . 3.17
V(A)/A 1(q1) dg va’ V(A) Ja @) dg va’ ( )
It follows from relation (3.16), (3.17) that

A=A1=...= A, = —a

and, consequently,

F=F'=.. =F'=....

The sequence I satisfies equation

F=AKF+ F).

It follows from representation (3.14) with A; = A, ¢ > 1. It remains to
consider the case where the distribution functions are not subjected to the scale
transformation.

The proof of the existence of the limit for F) without the scale
transformation. In this case, the proof is almost the same as in the previous
subsection. Estimates (3.6) are valid and it follows from them that ||K§N)|| —0
in limit (2.17). The differences will arise only for numbers (N, A), which satisfy
the inequalities

N 1 1
N -3, A)< = -
o i A) V(A) - Nira® vl-Llirad
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and therefore are bounded for bounded density. According to this, one can select
a convergent subsequence from them. All further proof for % < 1is analogous to
that performed in the previous section. The proof of the estimate (3.15) and of
the uniqueness of the limit distribution functions are the same.
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IIpenea Boabumana—I'paga nJjiA paBHOBECHBIX COCTOAHMIA
cUCTEeMbI YNPYyTUX [IAapoB B paMKaX KaHOHUYeCKOTo
aHcaMb0JanAa

M. Jlamnuc, O. . [lerpuna

B paGote nokaszaHo cymiecTBoBaHUe Tipejieda Boabimana—I'psaa a5 pas-
HOBECHBIX COCTOAHUM GeCKOHEYHBIX CUCTEM yNpYTHUX MIAapOB MpH pasJuuHbIX
HOPMUPOBKAX QYHRKIHUH paclpejeeHus.
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I'panuua Boabimana—I'pena niA piBHOBa)kHUX CTaHIB
CHCTEMH MNPYHMHHUX KyJb B paMKaX KaHOHIYHOro aHcamG6.io

M. Jlamuic, JI.f1. ITeTpuna

B poGoTi noBeneHo icHyBanHA TpaHuli boasnMana—I'pena 111 piBHOBa#-
HUX CTaHiB Ge3MeMSHUX CHCTeM MNpYMHUX KylIb OpU pI3HUX HOPMYBaHHSAX
GYHRIIH po3noiTy.
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