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It 1s shown that there exist solutions for a class of retarded partial dif-
ferential equations describing the problem of oscillations of a plate in a
quasistatic setting. A long-time behaviour of the solutions is studied. The
main result is the existence of a finite-dimensional global attractor for a
wide domain of system’s parameters. The connection between attractors for
dynamical and quasistatic cases is investigated.

1. Introduction

This paper is devoted to a problem of nonlinear oscillations of an elastic plate
in a potential supersonic gas flow. This problem can be described by a class of
retarded quasilinear partial differential equations (PDE)

17}
piiky it A2u— f / Ve, O] de | Autpg=—q(ur) = pola),z € 2t >0 (1)
L1
Q

with the boundary conditions
ulgq = Aulyg = 0. (2)

Here  is a bounded domain in R% z = (z1,23), t,7, p are positive parameters
of the system, o = %, A is the Laplace operator. Assumptions on the scalar
function f (s) will be given below, depending on the statement we prove. We
rely here on the Berger approach to large deflection [1] (in [1] f(s) is a linear
function).
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The retarded term has the form

o(u7) = 5 / dg/de [<a@—+b@£2)2ul*

X <€7$2 - xlk_gcose7t_ H@(‘rl _5)) )

vsinf —1 B k- cosf

ag =

ko(§) = ki (v —sin8), (3)

where U*(z) is the extention of W(z) by zero outside of €, and the parameter
v > 1 represents the gas velocity, ¥ = V2 — 1. Formula (3) shows that the
value of retarded term at time ¢ uses values of u(s) for s € (¢ — t.,t), where
te = Il(v —1)71 is a time retardation, [ is the length of Q along z; axis. That is
why here and below we use the notation u; = u(0) = u(t +6),6 € (—t.,0).

The retarded character of the equation (1) requires initial conditions (cf. [2])
in the form

N 6= — .~
v—sinf’ v—sing’

Ulymoq = Ui Uly—gq = U3 ulte(—t*,o) = p(z,t). (4)
The investigation of the considered problem was begun in nonretarded setting
(¢(ut) = 0). The existence and uniqueness theorem have been obtained in [3],
the long-time behaviour for one dimensional case investigated by various authors
(see, e.g., [4—6] and the references therein). The analysis of influence of potential
supersonic flow carried out in [7, 8] leads to the retarded equation (1). The
Cauchy problem for (1) have been investigated in [9, 10], where the existence and
properties of solutions for (1)—(4) in different spaces were studied. It was proved
[9, 10] that system (1)—(4) has an attractor which is upper semi-continuous with
respect to system’s parameters.

The present paper is focused on a singular limit (4 — 0) dynamics for (1).
The case when the inertial forces are essentially weaker than the resistance ones
is called a quasistatic case (u << 7) and we arrive to the following equation by
taking =0 1in (1):

yi 4+ A%u— f (/|Vux t)] dm) Au—l—pé9 (u¢) = po(z),z € Q,t >0 (5)

with the boundary (2) and initial conditions

Uli—gy = o} u|t€(—t*70) = p(z,1). (6)

In this paper we study the long-time dynamics of the problem (5), (6), (2) and
establish connection between attractors for dynamical case (1)-(4) and quasistatic

one (5), (6), (2).
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The paper organized as follows. In Section 2, we give necessary definitions,
prove the existence theorem and construct an evolution operator for the system
(5), (6), (2). The main results are contained in Section 3, where we prove the
existence of an global attractor of finite fractal dimension for problem (5), (6), (2).
We also prove that attractor for problem (1)-(4) goes to attractor for problem
(5), (6), (2), when p — 0.

We rely on methods used in [2, 8] in questions related with retarded type of
the system, general methods from [11, 12, 5, 13] (see also [14] and the survey
[15]), and methods used in [11, 10, 16] in questions related with dependence with
respect to parameters.

2. The existence of strong solutions

In this section we give the definitions of the function spaces we use, prove
the existence and uniqueness theorem and construct an evolution operator for
problem (5), (6), (2).

Let {ex}22, be an orthonormal basis of L?(f2) consisting of the eigenfunctions
of the Dirichlet problem for €2 :

Aep +dper=0; ex(z)=0ifz2€0Q, 0<A <A< ...
We use the following scale of spaces:
Fo=A{u= Z uper || u ||2= E Ajui < o0}, s€ER. (2.1)
We denote by || . || and (.,.) the norm and the inner product in F, = L*(Q). The
next assertion is of importance to us (see [8,9]):

Lemma 2.1. If u(t) € L*(~t«,T; Fat2,), then

1

1

laCu) Bo< Cte [ () 340 dr, 0o < 7, (22)
t—1tx

and the map u — q(u,t) is linear and continuous from L*(—t.,T; Fara,) to
LZ(O,T;fgg).

Definition 2.1. A strong solution of problem (5),(6),(2) on an interval [0,T]
is a vector-function u(t) € L°(0,T;F1) N L*(~t«, T; F2) with derivative u(t) €
L2(0,T; F_s) if u(8) = ©(8), for 8 € (—t.,0), and the equation (5) is satisfied

almost everywhere int on [0,T] as an equality in F_,.

The main result of this section is the existence and uniqueness
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Theorem 2.1. Let ug € Fy, ¢ € L*(—t.,0;F3), po € Fo and f be a local
Lipschitz and satisfying the condition

inf ILm f(s) > =Cy, (2.3)

with some constant C'y. Then the problem (5), (6), (2) has a strong solution on
any interval [0, T]. This solution is unique and satisfies the properties

u(t) € C(0,T;F) N L*(0,T; Fs).

P r oo f. Define an approximate solution of (5), (6), (2) of order m:

U (z,t) = i gr(t)ex,
k=1

Oy,

(it + A% = (] Vit [Pt + p 5% 4(1) = prves) =0,

(U (04), €i) = (o, €), (um(7), €) = (p(7), €), 7€ [, 00 (24)

Here i = 1,...,m and gx(t) € C'(0,T; R)N L} _(—t., T; R) such that gi(¢) is an
absolutely continuous function.

The local existence theorem can be proved if we rewrite the corresponding
retarded system for ¢x(f) in the integral form and use the idea of the proof of
Theorem 2.2.1 from [2].

Multiplying (2.4) by X;g:(t) and summing these relations for ¢ = 1, ..., m, we
obtain

7(um7 _Aum) + (A2um7 _Aum) + f (H Vi, ||2) (Aum7 Aum)
Oy,
3:61
Hence using the Cauchy—Schwartz inequality, the Lipschitz property of f, Lemma

2.1, (2.3) and denoting by —Ap the Laplace operator with Dirichlet boundary
conditions, one obtains

(G, At) + (), ~ M) + (po, Aty = 0.

v d

s IV 1P+ 1 (=2p) 2w |P< Co 4 Co || A |

1
Ot / | Au(r) ||? dr,
—t

t
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where constants C; do not depend on m. Note that
1 3 C?
Co || Aw [P S 11 (=2)2um P+ || Ve |I*

So
d

Y | Vet [P 4 1| (= A) 2w 7€ 21 + CF || Vs |

¢
e / | Au(r) ||? dr.
—tx
Using || Au,(t) [|?°< \Ll I (—AD)%(t)um ||, for ¢ > 0, and denoting by

w(t) =) V(@) 12+ [ 11 (~Ap)Fun(7) | dr,

we obtain .
d
S(t) < O (1 + / 1| Ay () |2 dr) + Chu(t).
—t

—Cat

Multiplying it by e and integrating from 0 to ¢, we have

| V() 12+ [ 1 (=A0) () | dr

0
<Cy (|| Vi, (0) ||* + / | At (1) |2 dr + 1) et teo,T]. (2.5)
Zt
The estimate (2.5) with conditions ug € Fy, ¢ € L?(—t,,0; F,) give boundedness
of a family {u,,(t)}°°_, in the space L>°(0,T; Fy)NL*(0,T; F3), where [0,T] is an
interval of local existence. From this we also obtain the continuation of solutions
on any interval ([2, Theorem 2.3.1]). Hence the estimate (2.5) holds for all 7" > 0.

T
Using (2.4) and (2.5), we get [ || @m(7) |25 d7 < Cr. Hence, denoting by
0

Z = L0,T; F) N L2(0,T; F3) N LA (—t,, T; Fy) x L*(0,T; F_y),

we have {(wn, (t); 4 (t))}oo_,, which is bounded in the space Z. Then there exist

m=1"

a function (u(t);u(t)) € Z and a subsequence {u,,, } C {u,,} such that

*

(U s Uy ) -weak converges to (u; @) in the space Z. (2.6)
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In order to show that any *-weak limit is a strong solution of problem (5), (6), (2)
we use standard argument (see, e.g., [13]). Using convergence (2.6), we pass the
limit m — oo in all linear nonretarded terms. To pass the limit in the nonlinear
and the retarded terms we use the local Lipschitz property of f, (2.5), Lemma 2.1
and strong convergence u, — u in space L?(0,T;F3), which follows from (2.6)
and the U.A. Doubinskii theorem. To show that a strong solution u(¢) belongs
to C(0,7;F1), we rewrite (5) in the form vi + A%u = M (t). Since

du(t)
P 8:61

M(t) = f(I| Vu(t) [|*) Au(t) - —q(ue) +p, € L*(0,T; F_y),

using standard methods (see, e.g., [17]), we obtain the mentioned continuity

property.
Let us prove the uniqueness of the strong solution. Let u; and u; be two
solutions of problem (5), (6), (2). Then for w(t) = uy —uz € L*(0,T; F3) we have

. 0
v+ APw + g(wy) + pa—w
T1

= f(I Vur [F)Aur = £(I| Vuz [|*) Auz € L*(0,T; F_o). (2.7)
Then we can multiply (2.7) by w(t) in Fy and integrate from 0 to ¢:

t

7/(1b7w)d7'—|—/t | Aw ||2d7'—/(q(w7),w)d7'

0

= [1H01Vu [P (@us,w0) = £ Vo [P (A, w)}r = [ Gls)ds

From the Lipschitz property of f and (2.5) we get G(s) < Cr || Vw(s) ||? . Using
I Veo(s) [P< e || Aw(s) |2 +5; || w(s) [|* and

i
/w.r dT<Ct6/||Aw||2dT+C/||w||2dT
0

—tx

we have

anquuW+a/WAme+@/nme

—tx

The Gronwall lemma gives the uniqueness of strong solutions and completes the
proof of Theorem 2.1.
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Theorem 2.1 enables one to define an evolution operator S; = S, in the
space

Hy = Fy x L*(—t.,0; Fy)

with the norm

0
ol =N Vul®+ [ Ae(s) IPds, w0 = (u9)

—tx
by the formula
Si(uo; ¢(5) = (ult);u(t +5)), s € (~t,0), > 0.
Here u(t) is the strong solution of problem (5), (6), (2) with initial conditions
(uo; p(s)) € Hu.
The notation S;"” emphasizes that we have different dynamical systems by

choosing different values of the parameters v and p. Note that owing to depen-

dence of the interval of retardation t, = # on the gas velocity v, we see changes

of the phase space H; when the parameter v varies. Below we will choose the
phase space Hy = Hy (1) for all cases v > vg. In this case the only restriction to
7 € [-=1£,0] of the initial function ¢(r) is used.

3. Long-time dynamics

In this section we prove the existence of a compact global attractor for problem
(5), (6), (2) and show that an attractor for problem (1)—(4) goes to the attractor
for problem (5), (6), (2) in the case of singular limit p — 0.

Define the domain of variation of parameters

D(uo,po) = [vg, +00] X [0, po). (3.1)

Definition 3.1[12]. A closed bounded in Hy setU is said to be a global attrac-
tor if it is strictly invariant (S;U = U for anyt > 0) such that 7flim h(S¢B,U) =0
—00
for any bounded set B C Hy. Here we have set

h(B, A) = sup{distg, (y, A) : y € B}.
The main result of this section is

Theorem 3.1. Let pg be any fized number and function f is a local Lipschitz
satisfying the conditions

sf(s)—a/f(r)dTZ—Cfffor some o > 0, Cyy > 0, (3.2)
0
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lim inf f(s) > 2—3. (3.3)

s—+o0o

Then there exists vy large enough such that in D, ,,) the dynamical system
(S;"", H1(vo)) has a compact global attractor U of finite fractal dimension. The
attractor is a bounded set in the space Fay. X L= (—ty,0; Faqe) for any e < %

P r o o f. The proof follows usual plan used for an abstract dissipative
dynamical system [11,5] and relies on four lemmas. Lemmas 3.1, 3.2 show the
existence of an attractor, the next two Lemmas 3.3 and 3.4 are used to prove the
finite dimensionality of the attractor by help of the Ladyzenskaya theorem [14].

Lemma 3.1. Let f be as in Theorem 3.1. Then for any ¢; < %, e >0,T>0
and bounded in Hy set B there exists constant C., 7(B) such that for any strong
solution begun in B we have

[ u(®) late < Cer(B), - fort € (e, T7. (3-4)

Proof of Lemma 3.1. Rewrite (5) in the form
w(t) + Au(t) + M(u(t); us) = 0. (3.5)
Here A = (—Ap)? and

du(t)
—F 8$1

M (u(t); u) = —f(|| Vu(t) [I*)Au(t) — q(us) + po-

Write the variation of constants formula for solution of (3.5):
t

u(t) = e Aug — /e_(t_T)AM(u(T); u,)dr.
0

Denote A; = A? eigenvalues of the operator A, and using estimate (see, e.g., [12])

_ a-f3
Jare s (S5 e ar) et At

we have
| A%u(t) || <|| A% g ||

1
+ [ A ) 1 dr < (S 480) e o |
0
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t
_ a—pf
+/ <M+A1> MU=V AP M (u(r);uy) || dr.
=

Theorem 2.1 gives || M(u(7);u,) ||-1< Cp(B), for 7 € [0,T]. Then the last
integral converges with g = —i and o — 8 < 1. Hence for a < % we obtain

(o} o 3
I A%u(t) (=l (AB)* (@) =]l w(®) l1a< Cery @ < 7.

Now taking initial time moment ¢35 > 0 instead of 0, we can repeat the con-
sideration above using obtained smoothness property and complete the proof of
Lemma 3.1.

The following lemma gives the property of dissipativeness of dynamical system

(St,Hl).

Lemma 3.2. Under conditions on f as in statement of Theorem 3.1 there
exist constants vo and R = R(po;v) such that for any bounded in Hy set B, any
(,0) € Dy, pq) » exists t1(B;v):

| Au(t) [[°< Ra(pos v), t > t1(B;v),

where u(t) is the strong solution of problem (5), (6), (2) with initial conditions
(u(0);u(s)) € B, s € (—t«,0).

Proof of Lemma 3.2. Multiply (2.4) by ¢;(¢) and sum fori =1, ..., m.
Then for u = u,, we get

~vd

o el 1 Aw P+ £ Vu ) | Vu |* = (q(w), w) = (po, w). (3.6)

Multiply (2.4) by ¢; and sum for i =1, ..., m.

1d . 1 d
L A [ 2 £ B P
ou . . .
P i)~ (afu), i) = (po, ) (3.7
T1
Note that ) J L d
= t) %) t)IP=——F t) |
A 1)) V() (2= L (vt 1),
where F(r) = [ f(s)ds. Choose constant C'r such that
0

1
W) = |+ | Au |+ F (|| Va|?) +Cr > 0.
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Add (3.6) and (3.7), taking into account the Cauchy-Schwartz inequality,

1d 2,7 2 2 2
-z L < -
SO+ | Aul +2 | alP< —£() Vul?) | Va |
2
p 1 1
el u PV (o) P4 0 1) (g +2)- 389)

Condition (3.2) gives F (|| Vu ||?) < %{—ﬁ + 170 Vu ) || Vu %
Add term BWU(t) to the both sides of inequality (3.8):

Ld

Yo 2 2
SV + 500 + TP+ | A

Bl °
<J| vu |? (f(ll Vult) [-1+ 5] + S+

e+ By
Ay
1

Cis u) |I? ANEN
to 4 (L@ I+ 11w 1) (5o + ).

We can see that under condition (3.3) one can choose 3 > 0 and ¢ small enough
such that the term || Vu |[|? <f(|| Vu ||) [—1—1— %} + ’;—2 + %) is bounded.

Therefore we can find

%q;(t) +BW(t) <Cr+Co || q(u) |-

Using the Gronwall lemma, one can easily check that

to

w<t>sc(w<to>+ Jal Aun%h) exp{~(t = to) (3 — Cae™ 1)} + C,

to—tx
Lemma 3.1 (see (3.4)) gives for any tg > ¢, that

to
W)+ [ Aul dr < Cy(B),

to—1x

for any bounded in Hy set B. Hence we can choose vg large enough (¢, small
enough ) such that 8 — Cye®*t2 = 35 > 0 and obtain

I Au(t) ||°< Cio(B) exp{—Po(t —to)} + B, ¢ >0 > t.

Lemma 3.2 is proved.
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Lemmas 3.1 and 3.2 give that for any pg there exist R;(pg) and vy such that

1
u(@®)|51. < Rs(po), fort>t(Bjwr), €< 3 (3.9)

Here u(t) is any strong solution of problem (5), (6), (2) with parameters (v, p) €

D1y ,00) such that (u(t);u(r)) € B, 7 € (—tx,0).
Appeal to (5) and use (3.9). It gives
1
l@IE < Bipo), fort > t(Biv), e < 2.

Hence we obtain that for any strong solution begun in bounded in H; set B,
there exist a compact set K and ¢(B;vg) such that for ¢ > ¢(B;vp)

(u(t);u(t+s)) € K, CC Hy. (3.10)

Here we set

. ) 1
K, = (<v;so>:||v||i+e+ess sup (Il ()] 34, + 11 6()]]) SRS) <

SE[—tx,0]

It means that the dynamical system (S, H;) is dissipative and compact. Hence
[11] it has a compact global attractor.

To complete the proof of Theorem 3.1 we have to prove the finiteness of
attractor’s fractal dimension. We will rely on the Ladyzenskaya theorem [14]
and on the approach presented in [9] for dynamical case. We need the following
lemmas

Lemma 3.3. Let uy and uy are two solutions of problem (5), (6), (2) belong-
ing to the attractor. Then there exist constants C' and & such that for function
v(t) = ui(t) — ug(t) we have

VoI + [ 11a0()|dr

<C (||Vv(0)||2—|— / ||Av(7‘)||2dr) exp{2&t}, t>0. (3.11)

—tu

The estimate (3.11) gives

Corollary.

|Stw1 — Stw2|H1 S Ce£t|'w1 — ’U)QlHl, t> 0. (312)
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Proof of Lemma 3.3. The function v(¢) satisfies the equation
o4+ Ao — f([|Vui|[})Av

ov
+ (FUVl) = £ 0l?) Aus - po = gt =0,

Let us multiply it by —Awv. Using [|Av;||?> < C and Lemma 2.1, we have

t
d
2 IVOlE 4 11(=2p)Foll* < CHlaolP+ Ct. [ [|Av] .

t—1tx

Going just as in proof of (2.5), we obtain (3.11).
We need several new definitions. Define the space

1
Hyp = Fou x L}(~t.0; Foyop), B< T 28 < a<2+28.

Let us define by Py the orthoprojector in the space F, (see (2.1)) onto the
subspace spanned by {ej,...,en}, and we set Qn = [ — Py. Let Py be the
orthoprojector in H, g onto the subspace

Py F, X LQ(—t*O; PNfg_}_gﬁ) and QN =1- PN.

Consider the trigonometric basis in L*(—t.,0; R) : {¢;(5)}72:

1 2 . 27k 2 2rk
Yo(s) = t—;go%_l(s): S sin t—s,cpgk(s): S cos——s,

k=1,2,...,
and the finite dimensional subspace in H, g:

PnF, x Lin{p;(s)ex(z):k=1,..,N;5=0,..,M}.
Denote by Py ar the orthoprojector in H, g on this subspace.

Lemma 3.4. Let wy, wy € U-attractor of problem (5), (6), (2), then there
exist constants a > 0, C > 0 and v large enough such that

| (1 —Pna)(Siwr — Syws) |my

5
1 A2
<C (e—af + /\Teff + M—Le’if) | wy — wy |7, - (3.13)
N+1
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Proof of Lemma 34. Consider the following linear problem:
v
31‘1

Note if uq(t) and uq(t) are two solutions of (5), (6), (2) then v(t) = uy(t) — ua(t)
is a solution of (3.14) with b(¢) = f(||Vu1||?) and

0+ A% — b(t)Av + p (ve) + pv = h(t). (3.14)

h(t) = po + (F(IVw]2) = F(I|Vual[2)) Aus. (3.15)

Hence we have from Lemma 3.2 that supp, [b(t)| < C < co on the attractor. Let
us study the properties of solutions of (3.14) with A(¢) = 0. Multiply (3.14) by
(—Ap)u:

~vd
2dt
< Cl((=Ap)F v, (=Ap) o) +1((-AD) g (v), (~Ap)* o).

Hence assuming 8 < +,a < 24 28, using |[(=Ap)*~Pv]|? < C|l(=Ap)'*2v|?

and Lemma 2.1, we have

1(=2p) 7 vl* + ||(=Ap) 2 v||* + ull(~Ap) 7ol

v d a o C .
2 N=A0) ol + (1= 20)1(=2) ol + (u = T)lI(~Ap) ol

4de
t

t
Ct,
<= [ =ap) o fdr.
—tx
Take o = %(1 —2¢) > 0 and g such that %(u -8 >a>o0:

d a a a
Zl(=Ap)20[]* + all(=Ap) 2ol [* + al| (-Ap) 2ol )*

t
< ct. / (= Ap) 50| 2dr.
t—1x

Multiply it by exp{at} and integrate from 0 to ¢:

t
e'll(=Ap)2o()]1* ~ lI(~=Ap) 2 0(0)]|* + a/emll(—AD)”ﬁvIIQdT
0

1
< Cf2ents / || (= Ap) By 2dr .
—tx
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Choose t, so small a — Ct2e®** = z > 0. Hence

t
I=Ap) oI + = [ = (~Ap)+u) dr
0

sc(||<—AD>%v<o>||2+ / ||<—AD>1+%||2dr) exp{-at}.  (3.16)

—tx

Denote by U(t, 7; h, w) the evolution family of maps defined as follows:
Ut,T;h,w) = (u(t);u(t+0)) € Hy g, 8€ (—t.,0),

where u(t) is the strong solution of problem (3.14) with right-hand side A and
initial condition (u(7);u(r+0)) =w.If h=0 we set U(t,7;h,w) = U(t, T)w.
The estimate (3.16) gives the existence of constants C' and a > 0:

U, Tywlh, , < Ce*Dwlg, . (3.17)

As in [9], write the variation of constants formula for problem (3.14):

U@mh@:U@Mw+/U@ﬂKMﬂM, (3.18)

where
o= {11 40

Apply to the formula (3.18) the projector Qn in H; = Hi , using (3.17):
t
ONU (1,03 w) s, < Ce™F ol + [ 1QNU(E,7) Xoh() 1.
0

Note that for g < i and ¢ = 14 23 we have
12— 1A |2 1 2
@nzlh, = 1QN2lE,, < T|$|H1+2w-
N+1
It gives

t

e —o 1 —oa(t—7
QU0 by )l < Ol + —— [ npdr. (319)
N+1 g
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Using (3.15), we can show that on the attractor we have [|h(7)|[} 5 < C|lv(t)]]3-
From this, Lemma 3.3 and (3.19) we get
ONU (1,0, w) By, < Ceully, + —fufiy . (3.20)
N+1

1

Now consider two solutions of problem (5), (6), (2) belonging to the attractor:
Sewy = (w(t), w(t+ 7)), = 1,2, and projector Py ar. Evidently,

(1 = Pn ) Sewr = (Qnwi(t); Qnu(t + s)) + Z /99] T)Pnur(t + 1)dTp;(s)
J=MAL

and

(1= Prmr) (Sewr — Sewa) |3, = |Qn(Sewy — Syws) |,

+Z/\2 3 {/go] (ur(t+7) — ug(t +7), e ) dr}2. (3.21)

= 7=M+1 e

Denote the last item 3. As in [9], we have

0
CNA3 . .
S < G [ ) s ) 2 dr
—t
Oy [ )
< W / |St+7—’lU1—St+7—’£U2|H1dT.

—tx

Using Lemma 3.3, we get

E C ) exp{?ft}|w1 — w2|H1

Using the last estimate and (3.20) and noting that S;wy — Siwy = U(t, 0;
h,wy — wsy), we obtain (3.13). Lemma 3.4 is proved.
Take any ¢ < 1. One can easily check that there exist tg, Ng, My such that
|(1 = P, o) (St,wr = S,wa)|my < qlwr — walm, -

Lemma 3.3 implies

| P (Se, w1 — St we) |m, < lwy — walm, .
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The last two inequality allow us apply the Ladyzenskaya theorem on finite di-
mensionality of invariant sets[14] and complete the proof of Theorem 3.1.

The rest of the paper is devoted to dependence of an attractor with respect
to parameters.

It is proved [10] that if the function f € C'(Ry), satistying (3.2) and

2
liT inf f(s) > z—%, then there exist constants vg, po such that for all (u,v,p) €
S5—4+00

(0, o) X [vo,+00] x [0, pg] the dynamical system (S;""” H;(vp)) governed by
solutions of problem (1)-(4) has a finite-dimensional (#i, H1.)-attractor (for
definition see, e.g., [11, 12]). Here

Hi = {w = (Uo,uh@?) EFaxXxFox W, ug= gp(())}

with
W= (ve L (1, 0:Fy) s &€ (=4, 0;F)).

The evolution operator S;""” is defined as follows:
S0 = (u(0); (0 (e + 7)) € s,

where u(t) is a strong solution [10] of problem (1)—(4) with initial data w € #;.
Using the results obtained above and some estimates from [10], it is possible
to prove the following assertion on closeness of attractors for problems (1)-(4)

and (5), (6), (2).
Theorem 3.2 Let U, be a (M1, H1y)-attractor for system (1)-(4). Then

lim sup{disty (y,Uo) : y € U,} =0, (3.22)
n—0
where
H =Ty x Fo x L*(—t.,0; F)

and

Uo = ((uo; ur; ¢) = (uo; ) €U, ur = —Aug — M (ug; ) -
Here U is an attractor for system (5), (6), (2), and operators A, M defined as
in problem (3.5).

P roof. In [10] was proved that there exists ug small enough such that for
any trajectory of system (1)-(4)

Sty = (wu(t); @ (1); uu(t)),

belonging to (1, H1.,)-attractor U, and for all ¢ € (—o0, 00) the following esti-
mate holds:
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ol i (8) 1% 4 11 A () |17+ || A%u(2) [1°< R; (3.23)

fo?
uniformly in (0, po]. Since (H1, Hiw)-attractor U, is weakly closed in the space
i, there exists element vy, = (uou; w145 ¢u) € U, such that

d(y,) = disty (y,, Uo) = sup{disty (y,Uo) : y € U, }.

Let y,(t) = (uu(t);a,(t);uu(t+ 7)) € U, be a trajectory of system (1)—(4)
such that y,(0) = y,. The estimate (3.23) gives existence of a sequence {y,,, ()}
and an element y(t) = (u(t);a(t); u(t + 7)) € L>(—00,00;H1) such that for any
interval [a, b] sequence y,, (t) converges to y(t) in *-weak topology of the space
L*(a,b;Hq) when p, — 0.

Hence, using the U.A. Doubinskii theorem, one can obtain

iy ma () = w() lla 4[] i (8) = @(0) [} = 0. (3.24)
The estimate (3.23) gives p || @,(t) |- 0 when g — 0. This fact and strong
convergence (3.24) give possibility to pass limit g, — 0 in the equation (1) and
obtain that the function u(¢) from definition of y(#) is a strong solution of problem
(5), (6), (2). This solution is bounded on R and hence belongs to the attractor.
Therefore, using standard way (see, e.g., [18, 16]), we obtain (3.22).

R e m ar k. Theorem 3.2 supplements the assertion proved in [10] and
together with Theorem 3.2 [10] garantees upper semicontinuity of attractor U, , ,
in the closed domain of system’s parameters

2 ) = [0, o] X [vo, +00] X [0, pol.

(10,v0,p0
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0 nunamuke pemeHuii npu oco6oM nepexone
B HKJlacce HelHHeHHbIX OuddpepeHnHandbHbIX yPaBHEHUT
B YacTHbIX NPOM3BOOHBIX C 3ana3/JblBaHUEM

Anercanyp PesyHeHko

[lorazaHo cymiecTBoBaHUe pellleHU Aad Kaacca AuddepeHNNaIbHBIX
ypaBHeHHUII B 4aCTHLIX MPOU3BOMHBIX C 3ama3fbiBaHHEM, ONUCBLIBAIOMUX 3a-
navyy KojdeOaHuUil MIaCTHHBI B KBasucTaTU4ecKoil mocTtaHoBke. MW3ydaeTcs
acUMINTOTHUYECKOe TOBefleHre STHX pemeHuii. OCHOBHBIM pe3yabTaTOM fiB-
AsieTcAl CyIlleCTBOBaHUE KOHEYHOMEpHOro riao6albHOTO aTTpaKkTopa [as Iu-
poKoii o6acTu U3MeHeHUs TapaMeTpoB cucTeMbl. M3ydaeTcsd cBA3h aTTpak-
TOpOB 75l IUHAMUYECKOTO U KBa3UCTATUYECKOTO CAydaeB.

IIpo nuHamMiky pilieHb NpU 0cOGAUBOMY Tepexoai
y Kiaci HediHilHUX AudepeHNiiHUX PIBHAHD
y 4YacTKOBUX MOXIAHUX 3 3ami3HIOBAaHHAM

Onekcanjp PesyHeHko

IokasaHo icHyBaHHA pillleHb A4 Kaacy AUdepeHMiiHUX PIBHAHL Y YacT-
KOBUX MOXIJIHUX 3 3aMi3HIOBAHHAM, 1[0 OMUCYIOTh 3a7a4y KOJNUBaHK MJIaCTHH
y KBasicTaTHYHOMY BapiaHTi. JlocaiI»KyeThc aCHMIITOTHYHA MOBEIHKA IUX
pitiedb. ['0JOBHUM pe3y/ibTaTOM € iICHYBaHHSA CKIHUeHHOBUMIPHOTO ri106aib-
HOT'O aTpaKTopa I MUPOKOl 06J4acTi 3MiHIOBAaHHS napaMeTpiB cucteMu. Jlo-
CMAMAKYEThCA 3B’ 30K Mi aTpakTOpaMHU [Jf AUHAMIYHOIO Ta KBas3iCTAaTHU-
HOTO BUIA/KIB.
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