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We obtain the following characterization of Hilbert spaces. Let F be a

Banach space the unit sphere S of which has a hyperplane of symmetry.
Then E is a Hilbert space iff any of the following two conditions is fulfilled:
a) the isometry group Iso E of E has a dense orbit in S;
b) the identity component Gg of the group Iso E endowed with the strong
operator topology acts topologically irreducible on E. Some related results
on infinite dimensional Coxeter groups generated by isometric reflections are
given which allow us to analyse the structure of isometry groups containing
sufficiently many reflections.
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Introduction

Let E be a real Banach space, S = S(F) the unit sphere in F, Iso E the
isometry group of ' endowed with the strong operator topology, and Gy = Go(F)
the identity component of Iso F. A reflection in F is an operator of the form
Seer = 1p — 2e* ® e, where e € F,e* € E* and e*(e) = 1. If s = 5. .+ € Iso F,
then one may assume also that ||e||g = ||€*||g* = 1; in this case we will call e the
reflection vector and e€* the reflection functional; regarding as sphere points, e and
—e are called reflection points. The unit sphere S is symmetric with respect to the
mirror hyperplane Ker e* of s. It turns out that this imposes strong restrictions
on the isometry group Iso F.

We say that a proper subspace H C F is biorthogonally complemented in F
if there exists a bicontractive projection p of F onto H, i.e. such that ||p||g =

=|1g-pllg = 1.
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Theorem 1. Let s, .« be an isometric reflection in IJ. Let H = span(Goe) be
the minimal closed subspace of E containing the orbit Gpe. Then

a) H is a Hilbert space and H is biorthogonally complemented in F or H = F;
b) furthermore, there exists a projection p of E onto H such that

i) 1z —2p€lsoF,
ii) (1g —p)+up € Iso F for any u € O(H) = IsoH, and
iii) any g € Iso F such that g|H = u € O(H) has the form g = v(1g —
p) + up, where v = g|Kerp € Iso Ker p;

c) either Goe = e, or the orbit Gy e coincides with the unit sphere S(H) of H.

This subject is related to the following Banach-Mazur rotation problem (3,
p. 242]):

Let E be a separable Banach space such that the group Iso E acts transitively
on the unit sphere S. Is it true that F is a Hilbert space?

Recall (see [23, Ch. IX, §6]) that the group Iso L,, where L, = L,[0;1] and
1 < p # 2 < o0, has exactly two orbits on the unit sphere S, = S(L,). One of
them consists of the functions in S, with the zero set of a positive measure, and
the other one contains the rest. Thus, both orbits are dense in S5,,. One says that
the group Iso F acts almost transitively on S if it has a dense orbit in 5. This
is the case in the above examples and also in the anisotropic spaces L,,. In a
non-separable L,—space the second of the above two orbits is empty, and thus it
is a non-Hilbert Banach space with the isometry group acting transitively on the
unit sphere. This shows that the assumption of separability in the Banach—Mazur
problem is essential.

Observe that Iso I is a Banach—Lie group. If this group is transitive on
the unit sphere S, then S is a homogeneuos space of Iso F. If in addition S
has a hyperplane of symmetry L, it should be a symmetric space. Indeed, L
is a mirror hyperplane of an isometric reflection. The unit sphere S having a
reflection point, by transitivity each point z € S should be a reflection point of
an isometric reflection s = s, ,«. Furthermore, z is an isolated fixed point of the
involution —s|S which acts as —1 at the supporting hyperplane z* =1 to S at
z (we are grateful to J. Arazy for this remark). From Theorem 2 below it follows
that S being a symmetric space of the group Iso /, F should be a Hilbert space.
In fact, in Theorem 2 more strong criteria for F to be a Hilbert space are done.
They hold without the separability assumption.

Theorem 2. Let the group Iso £/ contains a reflection s. . along the vector
e € S. Then F is a Hilbert space iff either of the following two conditions is
Sulfilled:
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a) Iso F' acts almost transitively on S;

b) e is a cyclic vector of the strong identity component G of Iso £ (i.e.,
FE =span(Goe)).

The second statement is a corollary of Theorem 1; the first one, being much
simpler, is proved along the same lines.

By a theorem of Godement [9], any isometric operator in a Banach space
has a non-trivial invariant subspace (see also [28] for a more general fact). From
Theorem 1 one obtains the following

Corollary. Let E be a non-Hilbert Banach space. If there is an isometric
reflection s, .+ in F, then all operators in Go(FE) have a common non-trivial
invariant Hilbert subspace H, biorthogonally complemented in E. Moreover, if
Go(FE) #{e}, thendim H > 1. In particular, in this case there is a biorthogonally
complemented euclidean plane in E.

Note that, by a theorem of Yu. Lyubich [20], if a finite dimensional Banach
space has an infinite isometry group, i.e., if the group Go(F) is non-trivial, then
F has a euclidean plane L with a contractive projection p : £ — L (in this
case L is called orthogonally complemented in F) (see also [16, 21]). On the other
hand, there are Banach spaces of infinite dimension with big isometry groups, but
without any orthogonally complemented euclidean subspace of dimension greater
than 1. Indeed, L, = L,[0;1], where 1 < p # 2 < oo, contains no such a sub-
space, whereas the group Gy is non-trivial. Furthermore, there is no bicontractive
projection of L, (p # 2) onto a hyperplane [13, 14]; in particular, there is no iso-
metric reflection. The same is true in general for rearrangement-invariant (r.i.)
ideal Banach latticies, or symmetric spaces, of (classes of ) measurable functions
different from Ly [14, Theorem 4.4]. Recall [17, 19] that a r.i. (or symmetric)
space F on the interval [0; 1] satisfies the following axioms:

1) 1€ F and ||1]|g = 1.

2) For any measure preserving transformation « of the interval [0;1] the shift
operator T,, : z(t) — z(a(t)) acts isometrically in F.

3) I o(t) € B and [y(t)] < |o()] a.e., then y(t) € E and [[y(®)ll5 < lla(t)ll5-

If F is a r.i. space different from L, then every g € Iso F has a weighted
shift representation g : z(t) — h(t)z(¢(t)), where h = ¢g(1) € E and ¢ is a
transformation of [0;1] preserving measurability (see [30, 31] for the complex
case and [13, 14] for the real one; see also [1, 18, 22, 29]. As for symmetric
sequence spaces, see [23, Ch.IX; 2, 6, 8]). Furthermore, ¢ should be measure-
preserving except in the case where I coincides with some of the L, probably
endowed with a new equivalent norm [30] (see also [14, 18, 22]). In particular,
this shows that L, are the only r.i. spaces where the orbits of the isometry group
are dense in the unit sphere.
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The content of the paper is the following. Section 1 contains a preliminary
finite dimensional version of Theorem 1. The proofs of Theorems 1 and 2 are
given in Section 2. Besides, Section 2 contains a version of Theorem 1 where no
operator topology is prescribed (see Theorem 2.10). In Section 3 we classify the
Coxeter groups in infinite dimensional case (probably, this classification is not
new). In Sections 4 and 5 we consider Banach spaces possessing total families
of isometric reflections. A kind of a structure theorem for isometry groups is
proven (Theorem 5.7). It addresses to the notions of Hilbert and Coxeter partial
orthogonal subspace decompositions, introduced earlier in this section. In the
last section we give an application to isometry groups of the ideal generalized
sequence spaces.

Some results of this paper were previously announced in [26, 27].

1. Isometric reflections in finite dimensional Banach spaces

Let A be a set of reflections in a real vector space F and W be the group
generated by the reflections in A. Denote by I'w, 4 the Coxeter graph of W.
Recall [5] that T'w 4 has A as the set of vertices; two vertices are connected by
an edge iff the corresponding reflections do not commute. By 'y we denote the
full Coxeter graph of W, i.e., 'y = I'wr, where R = R(W) is the set of all the
reflections in W.

1.1. Lemma ([5, Ch. V, 3.7]). A group W generated by a set A of orthogonal
reflections in R™ is irreducible iff the origin is the only fixed point of W and the
Cozeter graph I'w 4 is connected. In particular, 'y is connected iff its subgraph
I'w, 4 is connected.

Let E be a finite dimensional Banach space. Then Iso ' is a compact Lie
group, and there exists a scalar product in F invariant with respect to Iso . It
can be defined, for instance, by averaging of any given scalar product over the
Haar measure on Iso F. In general, such an invariant scalar product is not unique.
Being orthogonal, two isometric reflections in £ along the vectors eq,e; € S(F)
commute iff either e; = £ey or e; L es.

The proof of the following lemma is simple and can be omited.

1.2. Lemma. Let a connected submanifold M of R™ be invariant under a

reflection s. .« which fires a point x € M and acts identically on the tangent space
T.M. Then M is contained in the mirror hyperplane Ker e*.

The main result of this section is the following

1.3. Proposition. Let F be a real Banach space of dimension n. Let
G C IsoFE be a closed subgroup of a positive dimension which contains reflec-
tions ty,...,t, along linearly independent vectors ey, ...,e,. Then there exists a
subspace H C FE such that
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a)dimH > 2, H is euclidean and biorthogonally complemented in F;

b) the unit sphere S(H) of H coincides with an orbit of the identity component
Gy of G;

c) there exists a projection p of E onto H such that 1 —2p € G and p
commutes with any reflection t € G. Furthermore, (15 — p) + up € G for any
uweO(H).

P r oo f. Fix an invariant scalar product in F and identify F with R” in
such a way that Iso ¥ C O(n). Let uq,...,u, be the system of vectors in R"
biorthogonal to the system ey,...,€e,. Since dimG > 0, the orbit Gu; has a
positive dimension for at least one value of 7, say for : = 1. We may also assume
that uy € ™', where S”~! is the euclidean unit sphere in R™. Let M be the
connected component of the orbit Gu; which contains uq. Since wu; is fixed by
any of the reflections ¢;,7 = 2,...,n, M is invariant under these reflections, and
hence the tangent space 7" = T,, M is invariant, too. Thus for each : =2,...,n
either e; € T or e; L. T. Put

A={i1e{2,...,n}|e €T}

and
B={ie{2,...,n}|e LT} .

Since G C O(n) and u; € S™ !, we have M C S"7!, and so T C T,,5""!.
Therefore 7" L uy. It follows that " C L, where L = span(ey,...,€,), and
therefore 7' = span(e; | i € A) (hereafter span means the linear span).

Thus, dim M = dimT" = card A. Since M is ¢;-invariant for ¢ € B, by Lem-
ma 1.2, M is contained in the subspace H = {v € F|v L e,i € B}. It is
easily seen that ¥ = dim H = cardA +1 = dim M + 1. Thus M is a closed
submanifold of each of the unit spheres S,(H) = S, (£) N H, where r = ||u]|g,
and S*~1 = §"~1'N H, of the same dimension dim M =dim H —1 = k—1. Hence
M coincides with both of them. At the same time, being connected M coincides
with the orbit Gou;. Here k > 2, since dim M > 0. Therefore, H is euclidean
and the unit sphere S(H) coincides with the orbit Go(uy/r).

Since ' C H and e; € T for each ¢+ € A, where cardA = k — 1 > 0, there
exists ig € A such that e;; € S(H), and thus S(H) = Goe;,. Let wy,...,wr € H
be an orthogonal basis in H with ||ws||g = 1,i = 1,...,k, and ¢1,...,9x € G
be such that g;(e;,) = w;. Then s; = gjtiogj_l € G is the orthogonal reflection

along the vector w;,7 =1,..., k. By the same reasoning as above, for any vector
w € S(H) the orthogonal reflection s, .+ along w belongs to G.
The reflections s;,7 =1, ..., k, pairwise commute, and so p = %(IE — Hle s;)

is the orthogonal projection of F onto H such that 7 = 15 —2p = Hle s; € G C
IsoE. Thus, ||p|lg = %||1g — 7|lzg = 1 and either £ = H or ||1g — p||g =
211+ 7| = 1. Therefore, H is a biorthogonally complemented subspace of E.
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Any orthogonal reflection s in H coincides with the restriction to H of some
reflection s € G actually, s = (15 — p) + sp. The same is true for any orthog-
onal operator u € O(H); indeed, the group O(H) is generated by orthogonal
reflections.

Let t € G be a reflection. The mirror hyperplane of ¢ intersects with H in
a subspace of H of dimension £ — 1 > 0. Therefore, ¢ has a fixed point on the
sphere M = S¥=1 C H, and so (M) U M is connected and contained in the orbit
Guy. It follows that (M) = M, H is invariant with respect to ¢ and so ¢ and p
commute. This completes the proof. [

1.4. Corollary. Let W be a group generated by isometric reflections in
a finite dimensional Banach space E. If W is irreducible and infinite, then F is
euclidean and W is dense in the orthogonal group Iso K ~ O(n),n = dim F.

Proof. Let G be the closure of W in Iso £ and Gy be the identity
component of G. Since W is irreducible, by Lemma 1.1, it contains n reflections
along linearly independent vectors, and the Coxeter graph I'yy is connected. Let
H be the euclidean subspace of F constructed in Proposition 1.3. Since by (c),
H is invariant with respect to the reflections from W, for each s, .« € W either
e € Hore l H. If Aresp. B is the set of reflections from W of the first resp.
second type, then each element of A commutes with every element of B. By the
connectedness of the graph ['yy, one of the sets A and B should be empty. This
shows that H = E. By (c), u € G for any u € O(H). Therefore, G = O(H) and
we are done. ]

R em ark. Related results can be found, e.g., in [6; 10, (1.7); 23, 25].
2. Proofs of Theorems 1 and 2

2.1. Definition. Let E be a real Banach space, and let sy, s3 be two isometric
reflections in F along linearly independent vectors ey, e; € S = S(FE). Denote
by «(s1,s2) the minimal positive angle between the lines containing e; and eq,
measured with respect to an invariant inner product in the plane L = span(ey, e3).
Put a(s1,s2) = 0iff 1 = +es.

2.2. Remarks. a)ltis easily seen that the above definition does not
depend on the choice of an invariant scalar product in L.
b) An isometric reflection s = s« in £ is uniquely defined by the reflection
point e € S(F). Indeed, this is true for the restriction of s to any finite dimen-
sional subspace F' containing e, since the mirror hyperplane Kere* N F’ of s|F is
orthogonal to e with respect to an invariant scalar product on F. Thus, this is
true for s itself.
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c) Two isometric reflections s; and s; commute iff either a(s;,sz) = 0, ie.,
e1 = tep or a(sy,s7) = 5, i.e., e; Legin L.

2.3. Lemma. Let s; = s, ..*,1 = 1,2, be two isometric reflections in F.
Then

cos® a(s1, 89) = €17 (ez)ex (e1).

P r oo f. This is evidently true if ey = de3. Assume, further, that e;
and ey are linearly independent. Let an invariant scalar product in the plane

L = span(eq, e3) be given by the bilinear form B = ( z (é ) with respect to

the basis (e1, ez) in L. Consider the orthogonal projection p; = %(1L +s;|L) of L
onto the mirror line /; of the axial reflection s;|L,7 = 1,2. Since p;(e;) L ¢; for
Jj # i, we have

0= B(pi(ez),e1) = Blez — e1™(e2)er,e1) = a — e (ez)b

and
0= B(pz(e1),e2) =a—ex"(eg)c .
Thus
a® = e1"(ez)ex"(e1)be
and so
a2
cos? a(sy, 53) = e e1™(e2)ex™(e1) .
|
2.4. Corollary.
cosa(sy, s2) > 1 — |ler — ez]|E.

In particular, if e; # e3 and ||e; — es]|g < 1, then sy and sy do not commute.
Proof. Since s; € Iso , and so ||e;||g = ||e}||g+ = e (e;) = 1, we have
|1 = ei(ea)] = [ei(er — e2)| < [lex — €2l
and
1= e3(er)] <ller — el
We can assume that ||e; — ez||g < 1. Then from the above inequalities we obtain
lei(e2)] 2 1 = [lex — eallE

and
lez(e1)] > 1 —|ler — eal|E -
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The desired inequality follows from the latter two by multiplying them and mak-
ing use of Lemma 2.3. ]

2.5. Lemma. Let s = s. .+ € Iso F/. Consider the function on Iso I/ X Iso I/

¢s(g1,92) = sin® a(sy, s3)

where s; = ¢;5¢;”', 1 =1,2. Then

a) ¢s is left invariant, i.e.,

bs(91,92) = ¢5(991,992) = ¢s(1E, 917" 92)
for each g, ¢1,92 € Iso F.

b)

bs(91,92) = 1 — €*(g17" g2(€))e* (927" g1 (e)) -
Therefore, ¢ is continuous on (Iso E)? in the strong operator topology.

c) For any two elements ¢, g" € Go such that ¢4(g',¢") > 0, and for any e,
0 < € < 1, one can find a finite chain of elements hg = ¢', hy,...,h, = g"
with the property 0 < ¢ (hi, hiy1) < ¢, so that the reflections t; = h;sh;”" and
t;+1 do not commute for all + =0,1,...,n — 1.

Proof. (a)isevident. The identity in (b) easily follows from the equality

s(g1,92) = 1= (917" g2(€)) (917" 92)"(e7) (e)

which follows from (a) and Lemma 2.3. The second statement of (b) is true since
Iso ' is a topological group with respect to the strong operator topology. To
prove (c), consider the covering of Gy by the open subsets

Uc(g) = {h € Go| ¢s(g,h) < ¢} .

Since G is connected, any two of them U, (g’) and U,(¢"”) can be connected by a
finite chain of such subsets, and the assertion follows. [

2.6. Proposition. Let s = s..» € IsoF, ¢1,...,9, € Go and H' =
span(ey,...,e,), where e; = g;(e),i=1,...,n. Then

a) H' is euclidean;

b) there exists a unique projection p' of E onto H' such that 15 —2p € Iso E;

c) the unit sphere S(H') of H' is contained in the orbit* Gge, and for each
vector v € S(H') there exists a reflection s, ,» € Iso E' along v commuting with p’.

P roof. First we construct a finite dimensional subspace F containing H’
which satisfies all the properties of a), b), ¢) above.

*Of course, except of the case where dim H' = 1.
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Put go = 1g, and for each pair (g;,¢;4+1),i=0,...,n—1, find a chain {hij}?éo
as in Lemma 2.5.c) above. The proposition is evident in the case where dim H' =
1, and so we may assume that g;(e) # e for at least one value ig of i. Since
the continuous function ¢, takes all its intermediate values on (G, we can also
choose the element h = h;, 1 in such a way that the angle (s, hsh™!) is irrational
modulo 7, and thus the group generated by the reflections s and hsh~! is infinite.

Put ' = span(h;(e)|j=10,...,n;¢=0,...,n). Let W be the group gen-
erated by the reflections {t;;|F'} in F, where t;; = hijshi—jl,j =0,...,n4,1 =
0,...,n. It is clear that the origin is the only fixed point of W in F. Since, by
the construction, the Coxeter graph I'yy of W is connected, by Lemma 1.1, W is
irreducible. W being infinite, by Corrolary 1. 4, the subspace F is euclidean and
the closure of W coincides with the group Iso £ = O(F).

Let vy,...,v;, where [ = dim I, be a basis of F' chosen from the system
(hij(€)), and ty = ty, 4,*, k = 1,...,1, be the corresponding reflections from the
system (¢;;). Put M = NL_, Kerv,*. Tt is easily seen that E = M@ F. Let F' be
a finite dimensional subspace of F containing F', endowed with an invariant scalar
product. Then for each k = 1,...,/ the restriction ¢} = ¢;|F" is an orthogonal
reflection in I, and so vy L (Kervy* N F'). Therefore, F L (M N ). It follows
that each of the vectors h;;(e) € F is orthogonal to M N F’, too, so that the
restriction t;;[(M N F’) is the identity mapping. This yields the presentation
ti; = (1g — p) + ti;p, where p is the projection of E onto F' along M. Thus,
each element g € W can be presented as the restriction to F' of the isometry
g= (1g—p)+gp € Iso E. If a sequence g; € W converges to an element h € O(F),
then the sequence of extensions g; converges to the extension h = (1g — p) + hp
of h, where h € Iso E. In particular, in this way each orthogonal reflection in F
extends to a unique isometric reflection in F, and each element u € O(F’) extends
to the unique isometry v = (1 — p) + up € Iso E. It follows that S(F’) C Gy(e).

Let fi,..., fi be an orthogonal basis in F and $sp,...,5; be the orthogonal
reflections in F’ along these vectors. It is easily seen that then p = %(1};—]_[5»:1 i),
and thus 1 — 2p = [I'_, s; € Iso E. If s’ € Iso F is a reflection along a vector
v’ € S(F), then as above s’ = (1g — p) + s'p = (1g — p) + ps'p, and so s' and p
commute.

It is evident that the subspace H' C I has the same properties as I’ itself,
and therefore a), b), ¢) are fulfilled. |

2.7. Remar k. Itis easily seen that if H' C H" are two subspaces as

in Proposition 2.6, then for the corresponding projections p’, p” we have p’ < p”,
! o 1

ie., p'p" = p'(=p"p').

28 Proof of Theorem 1l.a). Let z,y be two arbitrary vectors
in H. Then for any ¢ > 0 in the linear span of the orbit Gge there exist two
vectors z.,y. such that ||z — z.||g <€, ||y — ye||lp < €. Let z. =Y 7 a;gi(e) and
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Ye = Y iy bigi(e), where g; € Go,i=1,...,n. Put H =span(g;(e)|t =1,...,n).
By Proposition 2.6, the subspace H' is euclidean, and therefore the norm in H’
satisfies the four squares identity. In particular,

llze + yell” + lJze = yell* = 2(|lael* + [yl ).

Passing to the limit, we see that the same identity holds for z,y € H. It follows
that H is a Hilbert space (see [7, Ch.7, §3]).

Consider further the family of all finite dimensional subspaces H' which belong
to the linear span of the orbit Gge. Let P = {p’} be the corresponding partially
ordered family of finite dimensional projections ¥ — H’ such that 1z — 2p’ €
Iso E. For a fixed vector v € S(FE) and for each p’ € P consider the subset

Yy =w{p’(v) | p" € P, p' <p"},

where w denotes the closure with respect to the weak topology in F. The family
{Y,#} has the property that for each finite system of projections p{,...,p}, € P
the intersection ﬂ?zlng is non-empty. Indeed, let Hy = span(Impf,...,Imp)),
and let p;, € P be the corresponding projection of E onto Hy. Then p! < pj,
and hence pj(v) € Yp; for each ¢ = 1,...,n. Since H is a Hilbert space, the
unit ball B(H) of H is weakly compact. It follows that the centralized family
{Y,'}prep of weakly closed subsets of B(H) has a non-empty intersection. By the
Barry theorem [4], the generalized sequence of projections P = (p) converges
in the strong operator topology to its upper bound p which is a projection of F
onto H, and which satisfies the condition ¢) 1z — 2p € Iso F. In particular, H is
biorthogonally complemented in E. This proves a).

Proof of Theorem 1.b),c). Let ' = s, ,+ € Iso E, where v € Gge.
Then s’ commutes with any projection p’ € P such that p'(z) = z, which means
that Ker p’ C Kerz*. Passing to the limit, we see that p commutes with s’ and
Kerp C Kerz*, too. It follows that s’ = (15 — p) + s'p.

Let zg € S(H) be the limit of a generalized sequence of vectors z, € Ggpe N
S(H). Then the corresponding sequence of isometric reflections s, = Spa,zt =
Jasg5 Y, where g, € Gg and g,(e) = z,, is strongly convergent to the reflection
80 = Sugax € Iso . Indeed, from the representation s, = (15 — p) + s,p it easily
follows that the generalized sequence {s,} converges to s = (1g — p) + sop on
each of the complementary subspaces Kerp and H.

Let w € O(H) and z € E. Consider the extension v = (15 — p) + up of
u to FE. Since ||p(z)||g = ||lup(z)||E, there exists an orthogonal reflection 5 in
H such that sop(z) = up(z). Let so = (1g — p) + Sop € IsoE. Then we have
o1l = lIso(@) |5 = [|(15 - )(@) + 50p(@)ll& = lu(@)|| Therefore, u € Iso B,
and thus i) is fulfilled.
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Now it is clear that the orbit Gge C S(H) contains the orbit of the strong
identity component of the orthogonal group O(H), and so it coincides with the
unit sphere S(H) if dim H > 1. This proves c).

Let g € Iso £/ be such that w = g|H € O(H). We will show that g leaves the
subspace Ker p invariant and thus v = g|Kerp € Iso(Ker p) and g = v(1g—p)+up.

Suppose that g(Kerp) ¢ Ker p. Consider the operator g; = gu™! € Iso E. We
have g;|H = 1 and ¢;|Ker p = g|Ker p. By our assumption, there exists a vector
z € Ker p such that ¢y (z) ¢ Kerp, and so pg;(z) # 0. Denote 21 = (15 — p)g1(z)
and 29 = pgi(z). Then gi(z) = z1 + zo, hence gy (z1) = g1 (g1(2) — 22) =
r — I9.

Consider two functions ¢(t) = ||z1 + tz2||r and ¥(¢) = ||z + tzz||E. Since

g —2p € IsoF,z,2; € Kerp and 23 € Im p, we have ||z + tzz|| = ||z1 — ta2]]
and ||z 4 tzo|| = ||z — tas||. Thus, both ¢ and % are even functions. From the
equalities

gl_l(;rl ttzy) =z —z1+tze =+ (1 —1t)z,
and

gi(z +tag) =21+ (14 t)zg,

and the fact that ¢g; € Iso E' we obtain that ¢(t) = (1 —¢) and ¥(t) = ¢(1 4+ t).
It follows that ¢(t) = ¢(—t) = (1 +t) = ¢(t + 2). Therefore, being convex and
periodic function on R, ¢(t) should be constant. This is possible only if 23 = 0,
i.e., g1(z) € Kerp, which is a contradiction. Thus, 7i7) is fulfilled as well. This
completes the proof of Theorem 1. [

It has been already noted that the statement of Theorem 2.b) is a direct
corollary of Theorem 1. Thus, it is enough to prove Theorem 2.a).

29. Proof of Theorem 2.a). Itisenough to show that the four
squares identity holds in E. For this it is enough, as it was done in the proof of
Theorem 1, to approximate an arbitrary pair of vectors z,y € E by a sequence
{(za,Ya)} of pairs of vectors belonging to finite dimensional euclidean subspaces
H, of F. In turn, it is enough to show that any pair of vectors in the linear span
of the orbit Ge of the group G = Iso F/ belongs to a finite dimensional euclidean
subspace H' of F. Indeed, it is easily seen that under our assumptions any orbit
of G in the unit sphere S = S(F) is dense in S. In particular, the orbit Ge is
dense in S.

Fix such a pair z,y € span(Ge) and consider a subspace H' = span(g;(e), .. .,
gn(€)), g € G,i =1,...,n, containing this pair. Since the orbit Ge is dense in
S, for any two vectors ¢'(e) and ¢”(e) € G e one can find a finite chain of vectors
hj(e) € Ge,j=0,...,k, such that ho(e) = ¢'(e), hi(e) = g”(e) and ||h;41(€e) —
hji(e)llr < 11—0, j=0,1,...,k—1. Find such a chain {h;;(e)};=1,.k foreach of the
pairs (g;(e),gi+1(€)),1=1,...,n— 1, and put F =span(h;;(e),7=0,...,k;,i=
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1,...,k—1). We may assume that F is infinite dimensional (otherwise the proof
is simple), and that dim L > 8. Let {t;; = h;;sh;; "'} be the system of isometric
reflections along the vectors h;;(e),7=1,...,k;,i=1,...,n—1, and let W be the
group generated by the restrictions ¢;;|F'. By Corollary 2.4, the Coxeter graph 'y
is connected, and since the system of vectors (h;;(e)) is complete in F’, by Lemma
1.1, the group W is irreducible. For a pair of vectors (v’ = h;;(€), v" = hij41(€))

we have 0 < |[v' — v”|| < {5, and so, by Corollary 2.4,

9
0 < af(tyj, tij+1) < arccos 0

From the classification of Coxeter groups [5, Ch.VI, Sect. 4] it follows that the
group W is infinite. Thus, by Corollary 1.4, the subspaces F' and H' C F are
euclidean. The theorem is proved. [

A priori, the strong operator topology could be still too strong in order that
the identity component Gy be big enough to apply Theorem 1 in an efficient
way. Next we give a version of Theorem 1 which does not involve any operator
topology.

Recall that a group G is locally finite if every finitely generated subgroup of
G is finite.

2.10. Theorem. Let s = s. .+ be an isometric reflection in a Banach space E.
Denote

U={g€lsoE|[s,g7 " sg] # 15} .

Let Gy be the subgroup of Iso ' generated by U, and H = span (G1€). If any of
the following two conditions 1), ii) is fulfilled, then all the conclusions a), b), c)
of Theorem 1 hold:

i) The group W generated by the set of reflections IRy = {g™'sg},eq, is not
locally finite.

ii) The orbit Gy e contains three linearly independent vectors ey, eq, €3, where
[ler — e2||r < 1 —cosm/5.

P roof. Repeating the arguments used in the proofs of Theorems 1 and 2,
it is enough to show that for each finite subset ¢ C IRy there exists another finite
subset o1 C IR; such that o C o1 and the group generated by the reflections from
o1, as well as its restriction to the subspace span (v|s,,* € IRy), is infinite. In
other words, each finite subgraph v of the Coxeter graph 'y, should be contained
in a finite connected subgraph v; C 'y, with the following property: the group
W (v1) generated by the reflections which correspond to the vertices of vy, is
infinite. The latter holds as soon as the Coxeter graph ['yy, is connected and
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contains a finite subgraph vy such that the group W (o) is infinite. If the first
of these conditions is fulfilled, than the second one follows from each of the
assumptions ¢) and 7i) above. Indeed, as for i), it is clear. As for i7), by the
connectedness of the graph 'y, , one can find a finite connected subgraph vy C
'y, which contains three vertices corresponding to the reflections sy, s9, 53 € IRy
with the reflection vectors ey, €, €3, resp. From the classification of finite Coxeter
groups [5, Ch.VI, Sect. 4] it follows that the group W (o) is infinite. Eventually,
if V(7o) is the subspace generated by the reflection vectors of the reflections
from W (vo), then dim V' (y9) > 3 and, by Corollary 2.3, the order of the rotation
s182 € W(7o) is greater than 5.

Thus, it remains to check that the graph 'y, is connected. Let the ver-
tices v, v’ of 'y, correspond to the reflections s, s’ = A~!sh resp., where h =
gnGn—1...91 € Gy is arbitrary and g; e U, ¢ =1,...,n. Put h; = ¢;gi—1 - ... g1
and s; = h;lshi,i =0,...,n, so that hg = 1g,h1 = ¢g1,h, = h and s5 =
s, s, = s'. Since g1 € U, the reflections sy = s and s; do not commute, and thus
0< ¢(lg,h1) < 1. By Lemma 2.4.a),0 < ¢(1g, h1) = ¢(g1,91h1) = ¢(h1,ha) < 1
, and therefore the reflections s; and s do not commute, too. By induction, we
see that s; does not commute with s;41 foralle =0,...,n—1, and so the vertices
v, v’ of the graph 'y, are connected by a path. This concludes the proof. ]

3. Infinite Coxeter groups

In Sections 4-6 below we will use the classification of infinite Coxeter groups.
Although it should be well known, in view of the lack of references we reproduce
it here in all details.

By an infinite Cozeter group we mean an infinite locally finite group W gen-
erated by reflections in a real vector space V' which is algebraically irreducible in
V. We fix the following notation and conventions.

3.1. Notation. Denote by R? the linear space of all the real functions
with finite support defined on a given set A, and by Rj the subspace of functions
with the zero mean value. Let

Aa be the group of finite permutations of elements of A acting in R§;

Ba be the group of finite permutations of A and changes of sign of values at
the points of finite subsets of A acting in R?;

DA be the subgroup of Ba which consists of finite permutations and changes
of signs of even numbers of coordinates acting in R*.

If A is infinite then Aa, Ba, Da are infinite Coxeter groups. Let €5 be the
characteristic function of the one-point subset {4} of A, so that (e5]4 € A) is
the standard Hamel basis of R®. Let R® be endowed with the standard scalar
product. Then Aa (resp. Ba, Da) is generated by orthogonal reflections along
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vectors from the infinite root system (es —e€s/) (resp. (fes, *estes), (festes))
(6,8 € A, 6 £8).

In the category of pairs (W, V), where W is a group generated by reflections
in a real vector space V, there is a natural notion of isomorphism. We will also
use a notion of subpair. Namely, we will say that (W', V') is a subpair of (W, V)
if W' is the restriction of a subgroup of W generated by reflections to its invariant
subspace V’. An embedding of pairs is an isomorphism with a subpair. In the
proposition below isomorphism of Cozxeter groups means isomorphism of pairs,
rather then isomorphism of abstract groups.

3.2. Proposition. Any infinite Cozeter group W is isomorphic to one and
only one of the groups An, Ba, DAa.

P roof. In the sequal v denotes a finite connected subgraph of the Coxeter
graph ['w, G/(v) denotes the finite subgroup of W generated by reflections s; =
Se;er € v,i = 1,...,cardy, V(y) = span(e;,i = 1,...,cardy) and n(y) =
dimlv('y). By Lemma 1.1, the restriction G(v)|V(7y) is irreducible, so it is a
finite Coxeter group. The full Coxeter graph I'g(,) can be naturally identified
with a finite connected subgraph ¥ of 'y containing +; in fact, 7 is the maximal
subgraph of I'yy with the properties that V(¥) = V() and G(¥) = G(y) (but
the first one alone does not determine ¥). If n = n(y) > 8, then G(v) is one of
the Coxeter groups A, By, D, [5, Ch. VI, Sect. 4].

Let A be a set with card A = dim V, where dim V' is the cardinality of a
Hamel basis in V. The proposition follows from the assertions i)-iii) below.

i) (W,V) =~ (Ba,R?)if (G(70),V(70)) = (B, R") for some 7o C ['w;

i) (W,V) ~ (Da,RA) if there is no ¥ C T'w such that (G(y),V(y)) ~
(Bn,R™") and (G(70), V(1)) =~ (D,,R") for some v9 C 'y with n =
n(v0) > 4;

i) (W,V)~ (Aa,R§) in the other cases.

From now on we consider Coxeter graphs as weighted graphs. As usual, the
weight of an edge (s',s”) is the order of the product s's”. Since W is a locally
finite group, the weights on 'y take only finite values. Recall that the Coxeter
graphs of types A, and D, have only edges of weight 3, while in any of the
Coxeter graphs of type B, there are edges of weight 4. Thus, if the assumption
of 1) holds, then (G(¥), V(")) & (B, R™) for any 7' D 7o with n’ = n(y') > 8,
and thus (W, V) is the inductive limit of some net of pairs (B,, R").

Next we show that for v C 4/, where v D vy and n(y) > 8, the embedding
(G(7),V(y)) C (G(Y), V(7)) is coordinatewise. This means that under the
isomorphisms (G(7), V(7)) & (B, R") and (G(7"),V(y')) & (Bu, R™) the pair
(B,,R") is a coordinate subpair of (B, R"). Indeed, identify (G(y"),V(y))
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with (B,, R”/). Then V(v) C R™ is spanned by a subsystem of the root system
(e, e+ €), 1 < i < j < n',and G(y) is generated by the corresponding
orthogonal reflections. A plane in R™ spanned by roots may contain reflection
root vectors of 2, 3 or 4 different reflections from B,:. It is a coordinate plane
precisely when it contains 4 reflections. Since (G(v),V(v)) = (B,,R"), the

g ) planes of the latter type which span it. At the

same time, these planes should be coordinate planes of R™. Therefore, Viy)
is a coordinate subspace R"” C R”,, and so G/(7) coincides with the group B,
generated by reflections along those roots of the above root system which belong
to V(7).

For any of the graphs v D v with n = n(y) > 8 all the vertices of the full
Coxeter graph 7 (see the notation above) are divided in two types: those which
correspond to sign change reflections, i.e., reflections along the roots of the form
€,2 = 1,...,n, and others. Being coordinatewise, embeddings of pairs respect
this division. Thus, it is well defined in the inductive limit I'yy. Note that the
vertices of change sign type in I'yy are those which are incident only with edges
of weight 4. Denote by A the set of all the vertices of 'y of change sign type.
Fix 69 € A N~, and let ¢ = €5, be one of the two opposite roots in V(vg)
which correspond to the reflection &y. It is easily seen that for any v D v with
n = n(y) > 8 the orbit G(v) ¢p consists of the roots of coordinate type +¢; in
V(v), and so the class of conjugates of g in W coincides with A. Choosing one of
any two opposite root vectors in the orbit W (ep), we obtain a Hamel basis of the
W-invariant subspace span(W (¢g)) which coincides with V since W is assumed
to be irreducible in V. Thus, we obtain a Hamel basis of V formed by roots
of coordinate type. This yields an isomorphism V a~ R”. The root system of
W, which consists of the vectors of the two orbits W (ep) and W (¢ + €1), where
€1 # g is another coordinate vector in V' (vq), corresponds under this isomorphism
to the root system (Fes, +es +e5]0,8" € A, 6 # 48') of the group Ba. Therefore,
(W,V) = (Ba, R®). This proves i).

Next we consider the case (ii), where there is no subgroup G(y) C W of type
B,,, but at least one of them, say G(v), has type D, for some n = n(yg) > 4.
First we show that any subgroup G(y) D G(7o) is of type Dy, and all the
embeddings G(y) — G(7') are coordinatewise.

The group D4 contains 4 pairwise commuting reflections along the root vectors

subspace V() contains (

€1 ke, e3teq. If v1,...,v4 are 4 mutually orthogonal root vectors from the root
system (£(¢; —¢;) |1 < i< j<n)of type A, and L = span (vy,...,v4), then
the only reflections in A, | L are the orthogonal reflections along vy, ..., v4, and

so A, | L does not contain Dy. Therefore, the Coxeter group G(v) D G(vo) is
not of type A,(,), and thus it must be of type D, ).
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Let F be a subspace of dimension 4 of R" generated by 4 mutually orthogonal
root vectors from the root system (de; +¢;), 1 < i < j < n', of type D, and
G(F) C D, be the subgroup generated by the orthogonal reflections along the
roots in /. Then G(F) is irreducible (and of type Dy) iff I’ is a coordinate
subspace of R™. Thus, if (G(7),V(y)) C (Dn, R") is of type D, where n =
n(y) > 4, then V (v) is a coordinate subspace of R™.

Fix a reflection vector vg of a reflection from G(vo). If G(v) D G(70), then the
orbit G(v) vo is a root system of type D, (. of the Coxeter group G/(v). Consider
the infinite root system W (vg) in V. Since W is irreducible, this system is
complete in V. Note that two roots v’,v” of D, are contained in the same
coordinate plane in R™ iff the sets of their neigborhooding vertices in the full
Coxeter graph I'p,, coincide. In this case the vectors (#) = (+e, t¢5), 1 # 7,
are contained in the coordinate axes which are the intersections of coordinate
planes. The same pairing is defined on the above root system of W. In this way,
fixing one of any two opposite vectors (#) arbitrarily, we obtain a Hamel
basis A in V', which in turn provides us with an isomorphism (W, V) ~ (Da, R?).
This proves (ii).

Assume further that any subgroup G(y') C W with n’ = n(y’) > 8 is of type
Ay, where A, acts by permutations in R? *'. Let (G(y), V(7)) C (A, REH
be of type A,. We will show that V (y) is a coordinate subspace of RZ *!. Let
s;; be the orthogonal reflections (transpositions) along the roots £(¢; —¢;) ,1 <
1< 7<n" +1. Put

I={ie{l,...,n +1}|s;; € G(v) for some j€{l,...,n +1}} .

Thus, if si € G(v), then k,I € I. Vice versa, sy € G(v) for any pair k,[ €
I,k # . This follows from the connectedness of the Coxeter graph I'g(,) and
the following remark: if s;; € G/(v) and sj; € G(v), then s;; € G(7). Indeed,
sik(€i — ¢;) = ¢ — ¢ and thus s;; = s;;5;;5;5. Now we see that V(y) = R} =
span (¢; — ¢; | 4,7 € I) is a coordinate subspace of Ry, and G(y) C A, is a
subgroup of permutations of the set I.

On the set of edges of the full Coxeter graph ['4, consider the following
equivalence relation: (S, j,,Si5.5) ~ (Ski i1, Sko,l») iff these four transpositions
have an index in common. Then this index is the same for the whole equivalence
class, so that the set of classes is {1,...,n}. Since this equivalence relation is
compatible with the embedding of pairs (G(v),V(v)) — (G(v'),V (7)), it can
be defined as well on the whole graph I'yy. Let A be the set of the equivalence
classes. Let v € I'yy be a vertex. Then all the edges incident with v belong to
two different classes &,¢" € A, where each class § € A consists of the edges of
a complete subgraph of 'y, and each pair of these complete subgraphs which
correspond to some §,8" € A, § # ', has exactly one vertex v(4, ') in common. It
is easily seen that the action of W on I'yy by inner automorphisms is locally finite
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and compatible with the equivalence relation, and so it induces the action of W
on A by finite permutations, such that the reflections in W act as transpositions.

Fix a reflection sqg = s(§,8") € W which corresponds to the transposition
(6,8"), with the reflection vector eq = €(8,¢’). Then the orbit W (eg) is a root
system of W which spans V. Fixing one of the each two opposite roots, we
obtain a Hamel basis of V' which corresponds to the basis of RS consisting of
the root vectors €5 — €5 (8,6’ € A, 8 # &) of Aa. This gives an isomorphism
(W,V) =~ (Aa,R§). The proof is complete. |

4. Total families of isometric reflections

Denote by IR(£) the set of all the reflections in Iso £, and let W = W (E) be
the subgroup of Iso £ generated by the reflections from IR(£). In this section we
assume that IR(£) contains a total subset of reflections {s, = sc, c* }ac4, Which
means that the family of linear functionals 7' = {eX},ca C E* is a total family.

4.1. Lemma. Let g1,92 € IsoFE. In the notation as above assume that
g1(ea) = g2(eq) for all o € A. Then g1 = g,.

Proof. Putgg= gl_lgg. Then go(e,) = e, for all @ € A. Since s, is the on-
ly isometric reflection in the direction of e, (see Remark 2.2.b)), it coincides with
! x—1/

_ -1 _ % *( ok % : .
So = 05agy = S, gr=1(en); and so g5~ (€}) = ek, i.e., g5(er) = € or, in other

words, €% (go(v) —v) = 0 for all @ € A. Since T’ is total, it follows that go = 1. =

Let, as before, Gg be the strong identity component of Iso ', and let W be
the group generated by the reflections in Iso F.

4.2. Lemma. W is locally finite iff G is trivial.

P roof. Suppose that Gg is trivial. To prove that W is locally finite it
is enough to show that each subgroup W' of W generated by a finite number of
reflections {s; = Seqe? Yi=1,..n C IR(E) is finite. Suppose that W' is an infinite
group. Put I = span(e;|t = 1,...,n). Let G’ be the closure of W' in Iso K
in the strong operator topology. It is easily seen that the closed subspace M’ =
M=, Ker €* is a complementary subspace of F',i.e., K = M'& I, and it coincides
with the fixed point subspace of W’. Hence, it also coincides with the fixed point
subspace of G'. 1t follows that G’ = 13y & G, where G’ C O(F') is the closure
of W'| F" in Iso F'. Thus, G’ is a compact Lie group, and being infinite it has a
non-trivial identity component. This is a contradiction.

Assume further that Gy is non-trivial. Then, as it was shown in the proof of
Proposition 2.6, there exist reflections s’, s” € IR(E) such that the angle a(s’, s”)
is irrational modulo 7w, and so the subgroup of W generated by these two reflec-
tions is infinite. ]
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Recall that a group G of operators in a Banach space F is called topologically
irreducible if it has no non-trivial closed invariant subspace.

4.3. Lemma. Let W' be a group generated by a set of reflections {s, =
Seqet Yacar C IR(FE). Then W' is topologically irreducible iff the following two
conditions are fulfilled:

i) The system of vectors (e, |« € A’) is complete, i.e., ' = Span(e, |a € A').
it) The Coxeter graph 'y 41 is connected.

Proof. Since the closed subspace E' = spani(e, | @ € A’) is invariant with
respect to W', the first condition i) is necessary for W’ being irreducible. Let 1"
be a connected component of 'y 4. It is easily seen that the closed subspace
F" = span(e| scex € [') is invariant, too. Thus, the second condition ii) is also
necessary.

Suppose further that i) and ii) are fulfilled. Let I’ be a closed invariant
subspace of W/. Put A ={a € A'|e, € "} and B={a € A’|e, ¢ F'}. Being
invariant I is contained in Ker e for each 3 € B. It follows that a(s,, sg) = 7/2,
and so [s,,s3] = 1p for any @ € A, € B. By ii) this implies that either
A =0 or B=7{. From i) it easily follows that the system of linear functionals
(e |a € A) C E*is total. Thus, if A =@, then I C N{Kere* |a € A’} = {0},
and if B =0, then F’ D span (e, |a € A’) = E. In any case, F’ is not a proper
subspace. This shows that W' is topologically irreducible. ]

Let things be as in Lemma 4.3. Consider the algebraic linear subspace V' =
span (e, | @ € A’). The group W' is algebraically irreducible in V"’ iff the Coxeter
graph Ty 4 is connected. In this case, W' is topologically irreducible in the
closed subspace E' = V' = span (e, |a € A’). If W' is finite and the Coxeter
graph ['wy is connected, then dimV’ = n < co and W’| V' is a finite Coxeter
group, i.e., a finite irreducible group generated by orthogonal reflections in R"
(here we identify V'’ with R™ by choosing an orthonormal basis with respect to
an invariant scalar product in V’). Let the group IsoE be discrete in the strong
operator topology, i.e., Go = {1g}. Then by Lemma 4.3, W' is a locally finite
group. If dimV’ = co and the Coxeter graph 'y is connected, then W' is an
infinite Coxeter group, and by Proposition 3.2, it is isomorphic to one of the
groups Aa, Ba, Da. The next proposition shows that if the pair (W', V') is
maximal, it can not be of type DAa.

4.4. Proposition. Let the notation be as above. If dimV' = oo and
(W', V") = (Da,R?), then the group W' can be extended to a subgroup W" C
IsoF generated by reflections along vectors in V' and such that (W", V') =~
(Ba,R%).
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For the proof we need the following lemma on partial orthogonal decomposi-
tions in Banach spaces.

4.5. Lemma. Let {p;}i=1,2,.. be a sequence of projections in a Banach space
FE such that

a) 1g —2p; € IsoF for all i =1,2,...;

b) the projections p; are mutually orthogonal, i.e., p;ip; =0 for all ¢ # j.
Then limsup,_,., ||[(15 — p:)(2)||g = ||z||g for all z € E.

P roof. By a), we have ||pi|lz = ||[1g — pillz = 1 for all i = 1,2,....
From a) and b) it follows that [[%, (15 — 2p;) = 15 — 235, p; € IsoF, and so

Il pille = 11 = iy pills = 1, as well,
Suppose that there exist zo € F and ¢y > 0 such that

|(lg — pi)(z0)|lE < ||zol|z — €0 for all i=1,2,... .

Then
1&E 1&E
IIEZ(lE = pi)(zo)|lm < EZ |(1e = pi)(zo)llE < [|zollE — €0 -
=1 =1
Therefore
1&E 1&E
0 < [|zollE — IIEZ(lE = pi)(zo)|lE < |lzo - gz(lE = pi)(zo)lle
=1 =1
1 & 1
= (Pl < leolls -
=1
This is a contradiction. ]

Proof of Proposition 4.4. Identify V/ with R? via an isomorphism
(W', V') = (Da,R?), and consider in V' the root system {+es fesn} of type Da.
Denote by 8;75,, the isometric reflection along the vector v§75,, =5 +esn, 0 ,08" €
A,é" # 6", and by S5 s the isometric reflection along the vector vy s = €5 —€gn.
Put dsr s = 3375,,55_,75,, € W', so that ds s» is the operator of change of signs of
the coordinates &' and §”.

Choose a countable subset {d;};=12,... C A and put d;; = ds, 5,. Then the
involutions d; ; pairwise commute and dy, ydj,, = d, . The orthogonal projec-
tions p;; = %(1E — d; ;) onto planes also pairwise commute. For each triple of
different indices n, m, k consider the one-dimensional projection p®™ = DnkPrm -

Since p®™ and pi/ commute and have the same image, they coincide; indeed,
phm = phipkm — pkmypid — pid Denote by p,, their common value, and consider

the corresponding reflection s, = 15 — 2p,, along the coordinate vector ¢5,,. It is
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easily seen that s,s,, = d, ,, and s, (15 — pm k) = 1g — pm k. By Lemma 4.5, for
a fixed n € N and for any @ € I, ¢ > 0 there exist £, m € N such that

[sn(@)llz < 1(1E = Prm)sa(@)l[E + € = [[5n(1E = Prm) (2)]|5 + €

= [I$n8m (15 = Pem) (2)|E + € = ||dn,m (15 = Prm) (2)]| 5 + €
= [1(0E = pem) (@)ll5+ e < lzllE + € -

It follows that s, € IsoF. Since §, € A is taken as arbitrary, this implies that
for any § € A there exists an isometric reflection along the vector ¢5. Thus, the
group IsoF contains the subgroup W"” generated by reflections along vectors of
the root system {+4es, *e5 + €51} of type Ba. ]

4.6. Corollary. Let dim E = oo, Gy = Go(FE) = {1g}, and let the group
W = W (F) generated by all the isometric reflections in E be topologically irre-
ducible. Then W is an infinite Cozeter group of type An or Ba.

4.7. Rem ar k. Let dim £ = n < oo. Then Proposition 4.4 still holds in
the case when n is odd. Indeed, in this case B, = W" is the subgroup of the
group IsoF generated by the subgroup W’ = D,, and the element —1g. But for
n even the statement of Proposition 4.4 is not true, in general. As an example,
consider ¥ = R", where n = 2k > 4, with the unit ball B(F) being the convex
hull of the D,-orbit of the point vg = (1,2,...,n). Then the image s, (vg) =
(1,2,...,n —1,—n) of vy by the reflection s, = s, .» does not belong to B(F)
(indeed, it is separated from B(E) by the hyperplane —z, + Y z; = ﬂnz—ﬂl)
Hence B(F) is not invariant with respect to the action of the Coxeter group B,

on R® = F, and so B,, is not a subgroup of Iso F.

5. Hilbert and Coxeter decompositions

Let, as before, F be a Banach space with a total family of isometric reflec-
tions. In this section we construct a partial orthogonal decomposition of E which
consists of two parts: the Hilbert decomposition into a direct sum of biorthogonal-
ly complemented Hilbert subspaces, and the Cozeter decomposition into a direct
sum of closed subspaces endowed with topologically irreducible Coxeter groups
generated by isometric reflections. In a sense, this decomposition is orthogonal
(see Lemma 5.4 and Proposition 5.6). Both of these decompositions are stable
under the action of the isometry group IsoF, and the second one is fixed under
the action of the identity component Gy. The main result of the section, Theorem
5.7, is a kind of a structure theorem for the isometry group IsoF.
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5.1. Notation. Asabove, by IR(£) we denote the set of all the isometric
reflections in £ which is assumed to be total. To each subspace V of F we attach
two closed subspaces, the kernel

Vo=-35pan (e € V|scex € IR(E))

and the hull )
V= ﬂ{Kef €| scex € IR(E),V C Kere'}

we put V = F if there is no Seer € IR(F) such that V' C Kere*. It is easily seen
that
i) VoCcV CV,

i) Voo=Vo,V =V, and
iii) if V.C V', then Vo C V{ and V C V.

Observe that possibly V{ resp. V is a proper subspace of V resp. V. For instance,
this is the case when F =1, and V = ¢ (the subspace of convergent sequences);
indeed, then V=Fand Vo =c (the subspace of sequences convergent to zero).

Denote also IRy = {s. .« € IR(E)|e € V}. Let Wy be the group generated
by the reflections from IRy .

5.2. Coxeter decomposition. This is a partial subspace decomposition
defined on the fixed point subspace I' = FixGy of the group Go = Go(F).
Let I'r = I'w, be the full Coxeter graph of the group W, and let A be the
set of the connected components of I'r. For o € A denote by IR, the set of
reflections in IRF which correspond to vertices of the component a of I'p. Put
V, = spam (e scex € IR,); so, IR, = IRy,. Put also W, = Wy,. Then V,
is a closed subspace of the kernel Fpy, and the group W, |V, is topologically
irreducible. By the discussion after Lemma 4.3, W, is a Coxeter group. If
dim V, = oo, then by Corollary 4.6, W, has type Aa or Ba.

The set A can be devided into equivalence classes which correspond to the
isomorphism types of the Coxeter pairs (W,, V,). Since G is a normal subgroup
of the group Iso F, its fixed point subspace F' is invariant with respect to Iso F;
the same is true for the kernel Fjy and the hull F'. Each isometry ¢ € Iso E acts
(by conjugation) on the set IRr and also on the graph I'r, and so on the set
A. Tt is clear that the above partition of A is stable under this action and its
equivalence classes are invariant.

5.3. Hilbert decomposition. Consider the following equivalence relation

defined on the set IR(E) \ IRp:

Se,e* ™ Sel oix iff ¢ € Gge or — = Goe.
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Let B be the set of its equivalence classes. By Theorem 1, to each 8 € B there
corresponds the unique Hilbert subspace Hg = Span (Goe|Sc .+ € ) and the
unique bicontractive projection pg : FF — Hp satisfying all the properties of
Theorem 1.b). An isometry ¢ € Iso £ induces the action g, on the set B which is
defined as follows: g.0 = 3" iff g(Hg) = Hg. In particular, the orthogonal bases
in Hg and in Hg are of the same cardinality. The following lemma shows that
this partial decomposition into Hilbert subspaces is orthogonal; moreover, all of
the subspaces Hg are orthogonal to the fixed point subspace F'.

Let IRg = IRpg,. Note that IR(E) = IR4 U IRg, where IR4 = IRF =
Uaea IRo and IR = Ugep IR 5.

5.4. Lemma. a) Let s,s' € IR(F). If [s,s'] # 1&g, then s,s" belong either to
the same subset IR, where o € A, or to the same subset IRg, where § € B.
b) The projection pg commutes with any reflection s € IR(E) for any € B.
c¢) Furthermore, pgps = 0 for any 3,5 € B, # (', and pg|F = 0 for any
BeEB.

Proof.a). Lets; = Se;er; @ = 1,2, be two arbitrary distinct reflections from
IR, where 8 € B. Being restricted to the Hilbert subspace Hg the rotation r =
s152 € Iso F in the plane L = span (e, e2) belongs to the connected component
Go(Hp) of the orthogonal group, and so by Theorem 1.c), r € G. Since F =
FixGy C Fixr = Keref N Kerej, we have that ef(e) = 0 for each e € F.
Therefore, if s = s. .+ € IRF then by Lemma 2.3, a(s;,s) = 7, and thus [s;, 5] =
1g, 1 =1,2 (see Remark 2.2.c)).

If ' € B and ' # (3, then the subspace Hg is invariant with respect to
the rotation r = s;83 € Go. One may assume that r|L # —17, and so either
Hg C Fixr or L C Hg. The second case is impossible (indeed, otherwise by the
construction, we would have Hg = Hg/, and so = 8'). Thus, Hg C Fixr =
Ker e N Kere3. As above, it follows that [s;, s] = 1g for each s € IRg.

To prove a) it remains to note that the definition of the set A (5.2) yields
that [s,s'] = 1g if s € IR,, s’ € IR, , where a, 0’ € A and a # .

Now b) and ¢) easily follow from a) by the construction of the projections pg
as in 2.8. ]

5.5. Lemma. a) [y = F = F.
b) (Hﬁ)o = ﬁg = Hpg for any 3 € B.

Proof. a). Let s..r € IR(E) be such that Fy C Kere*. Then e ¢ Fyp,
and hence e € Hg for some 8 € B. As in the proof of Lemma 5.4, it follows
that F C Kere*, and so F C Fy = Npen Ker pg. Since the subspace Ugep Hp is
Go-invariant, it is clear that Fg is Go-invariant, too.

If Fy # I, then there exists go € G such that gg | Fy # 1p,, and so go(z) # z
for some z € Fy. Note that both go(z) and  belong to Kere* for each ¢* such
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that s. .« € IR(£)\ IRF (indeed, in this case go(e) = e, and thus gj(e*) = €*).
Therefore, €*(go(z) — ) = 0 for each e* as above, and also for each e* such that
seer € IR(F). Since the system of functionals (e*|s..x € IR(F)) is total, we
have go(z) — = = 0, which is a contradiction. This proves (a).
b). If Hs # Hg for some (8 € B, then (1g — pg)(z) # 0 for some vector z € Hg.
By Lemma 5.4.b), the projection ps commutes with any reflection s = s. .« €
IR(E). Thus, if Hg C Kere*, then also ﬁg C Kere*. Therefore, s(y) = y for all
y € Hp, pps(y) = spp(y) = ps(y) and s(1x — p)(y) = (1z — pp)(y). The latter
means that (1g — pg)(y) € Kere*. Hence, (15 — pg)(Hg) C Hg.

Now we have (1g — pg)(z) € Kere* for any e* such that s..» € IR(E).
This contradicts to the assumption that the system IR(F) is total, since
(15 — pa)(z) £0. .

Put Ro = span (Ugep Hp) and R = Ry.

5.6. Proposition. a) The subspace Ro+F is closed, and if pr, r : Ro+F —
Ryo is the first projection, then lp i — 2pRr, F € Iso (Ro+F). Therefore, the
projection pry F is bicontractive.

b) For any o € A there exists a projection p, : Fo+R — V, such that

i) po commutes with any reflection s € IR (F) and popsr = porpa = 0 resp.
PaPp = PpPa =0 foralla’ € A, o' # a, B € B;

i) ||pallpip £ 2 and |[1; 15 — Pallp, 1p = 1, if the latter projection is
non-zero;

iii) moreover, if the Cozeter group W, is a group of type Ba, then lpin—

2p, € Iso (Fo+R), and so [pall g 1 fey s too-

c) The subspace Fo+R is closed, and if both subspaces Iy and R are non-trivial
and pg 5 Fo+R — Fy is the first projection, then ||1

and ||pp gllpin < 2-

Fo+R — meR”Fo-i-R =1

Proof.a). Let # = 21+ a3, where 21 € Rg and z3 € F. For any € > 0 there
exists a finite subset & C B and a vector 2] € @ Hp such that ||z, — 2]||g < e.

Beo
Since u, = [[ge,(1E — 2pp) € Iso E and uy(27) = —af , u,(72) = w3, We have
5 + 22l 5 = | ~ 27 + aal|g. Thus, if Ro 2 {0} and F # {0}, then ||1p 1r —

2ZURO,F||RO+F = 1, and therefore also ||PR0,F||RO+F = ||1RO+F - pRo,F||RO+F =1,
if both subspaces Rg and F are non-trivial. By the closed graph theorem, this
implies that the subspace Rg+F is closed.

b). If dim V,, < oo, put pl, = (1/card W,,) 3" cw, 9. Then pl, is a projection on the
fixed point subspace F, of the group W,, which coincides with N;,__.emr,Kere®,
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and thus it is a complementary subspace to V,, = Kerp/,. It is clear that ||p/,||z =
1, and so ||1g — p}||r < 2. From Lemma 5.4 and the definition of p/, it follows
that the projection p, = (15 —p/,) | (Ro+F) satisfies i); by the above inequalities,
it also satisfies ii).

Next consider the case when dimV, = oo and the Coxeter group W, is of
type Aa. For a finite subset ¢ C A denote by V, the subspace generated by the
root vectors €5 — €g1, where 6, 8" € 0,8 # ¢, and by W, the Coxeter group of
type A,, where n = dimV,, generated by the isometric reflections along these
vectors. Define the projections p/, resp. p, in the same way as p/, resp. p, above.
It is clear that p, commutes with any reflection s € IR (£) \ IR, and satisfies
all the other properties in i), ii). It is easily seen that the net (p,) is strongly
convergent to the identity on the subspace V,, and that all the projections p,
vanish on the subspace R+V/, where V! = span (Uyea\{a}Var)- Asin (a) above
it follows that Fy = V,+V/. Therefore, this net is strongly convergent on the
subspace Fy+R to the projection p, which has the properties i) and ii).

Finally, suppose that W, is a Coxeter group of type Ba. Then for any finite
subset o C A the product u, = [[s¢, ss of pairwise commuting reflections s5 =
Sesex € IR, is an isometric involution with the fixed point subspace Nse,Kere; D

R4+V!. Similarly as above, the net of the restrictions (u, | (Fo+R)) is strongly
convergent to an isometric involution u, which has V,, and ]A%—I—Vci as its spectral
subspaces. It is easily seen that the projection p, = (1Fo+1% + u,)/2 possesses all
the properties mentioned in i), ii) and iii).

c¢). By the closed graph theorem, it is enough to check the second statement.
For a finite subset ¢ C IR 4 let W, be a finite group generated by reflections
from o, and let V,, be the linear span of the reflection vectors of these reflections.
Then the action of W, in V, is fixed point free, and so the projection p/ =
(1/card W,) 37, cw, g onto the fixed point subspace F, D R of W, vanishes on
V. Consider the net of finite dimensional projections (p, = 15 1 5 —p5 | (Fo+R))
onto the subspaces V. Observe that |J, V, is dense in the subspace Fy. Since
all of p, vanish on R and satisfy the norm inequalities of ii), this net is strongly
convergent to the projection Pry R which also satisfies these inequalities. This
completes the proof. [

R em ar k. For further information on the Hilbert decomposition, see
Proposition 6.2 and Examples 6.8 below.

5.7. Theorem. The subspaces I, Fy, R and Ry are invariant with respect to
the group Iso E, and there are natural monomorphisms Iso ¥ < Iso Ry X Iso Fp

Go(F) <= [I Go(Hg) and T[] O(Hg) < Iso (F+Ry).
peB peB

P roof. The invariance of the subspaces I’ and Fy was already established
in 5.2; the invariance of Ry follows from the remark in 5.3. Similar arguments
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applied to the conjugate action of Iso F/ on E* provide the invariance of R.
Since the set {e € S(F) | s.+ € [R(FE)}is contained in FoU( | Hg) C R+,
BeB

the latter summands being invariant, it follows from Lemma 4.1 that the restric-
tion mappings ¢ — g | Ro, g — ¢| Fo, g — ¢| Hp induce the monomorphisms
Iso E < Iso Ry x Iso Iy and Go(E) — [[ Go(Hg).

peB

As for the last statement, fix arbitrary ¢ = [] ug € [[ O(Hg). For any
BeB peB
finite subset ¢ C B put u, = [] ug, where ug = ugpsg + (1g — pg) € lso &/
Beo
(see Theorem 1.b)). We will show that the net {u, | (F+Ro)} C Iso (F+Ro)

strongly converges to an element u € Iso (F'+Rg) such that | Hg = ug. There-
fore, the correspondence [] O(Hg) 3 g — u € Iso (F+Ro) yields the desired
peB

monomorphism.

By the Banach—Steinhaus theorem, it is enough to show that for any z €
F+Rg the generalized sequence (u,(z)) is convergent. Let z = xy + z2, where
x1 € F and xz9 € Rg. For any ¢ > 0 there exists a finite subset ¢ C B such that
|1z — 3= pg)(z2)||lE < ¢/2. If 0’ and 6" are two finite subsets of B containing

BeEo

o, then uyr — uon = (uyr — uen)(1g — 3. pg), and so
B€o

| (tor = wgn) (@2)l|5 < Nl (15 = D pp) (@2)l|E + |uor (15 = Y ps) (z2)l|E <€ .
B€o BEo

Thus, (u,(z)) is a generalized Cauchy sequence, and hence it is convergent. This
proves the theorem. [

Remark. Ingeneral, the monomorphisms in Theorem 5.7 are not surjective;
see Example 6.8.2 below.

6. An application: Isometry groups of ideal generalized
sequence spaces

6.1. Definitions. Recall the following notions (see, e.g., [17, 19]). Let
(éa)aea be a system of vectors in a Banach space Fy. It is called a generalized
Shauder basis of Fy if each vector e € Fy has a unique, up to permutations,
decomposition e = 372, a;e,,;, where (a;);=1,... is a sequence of pairwise distinct
indicies from A. If this series is still convergent to e after any permutation of its
members, then this basis is called unconditional. In this case for any choices of
signes 0 = (0,)aen, where 8, = £1, the linear operators My(e) = 32 0,,a,€,,
are uniformly bounded. The number supy ||My||g, is called the unconditional
constant of the basis (e,)aea. For instance, any complete orthonormal system in
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a Hilbert space is an unconditional basis with the unconditional constant 1. If
the index set A is countable, we have the usual notion of an unconditional basis.

The generalized unconditional basis (e,)aea is called symmetric if for any
bijection m : A — A the linear operator

o0 (o @]
7 :FEyde= Zaieai — Zaiew(ai) =7n"(e) € Fy
=1 =1

is bounded, and so the infinite symmetric group Sa = Biject(A) acts in Ey, being
uniformly bounded there. The constant supy . ||My7*||E, is called the symmetric
constant of the basis (e,)aea-

For instance, in the classical Banach space ¢o(A) of generalized sequences
convergent to zero, with A as a set of indicies, the system of the standard basis
vectors (€5)sea form a symmetric basis with the symmetric constant 1 (observe
that each vector in ¢o(A) has a countable support). Fixing a generalized uncon-
ditional basis (€4)aea in Fp, we obtain a representation of Ey as a generalized
sequence space contained in c¢g(A). If the unconditional constant of this basis is
1, then Fj is an ideal Banach lattice.

Recall that an ideal generalized sequence space F is a Banach space of se-
quences defined on an index set A such that if 2 = (2,)aea € FE, then for
any sequence ¥y = (Ya)aea With |ys| < |z, for all @« € A one has y € F and
lyl|E < ||z||g. Tt is called a symmetric generalized sequence space if E is an ideal
generalized sequence space, where the symmetric group Sa of all bijections of A
acts isometrically.

The next simple lemma should be well known; by the lack of references we
give a proof. We say that a family of reflections is orthogonal if the reflections
from the family pairwise commute.

6.2. Lemma. Let E be a Banach space with a total orthogonal family of
isometric reflections (s = 5557%)56& Identify E with a generalized sequence
space with the index set A by posing T = (e5(z))sen for v € E. Let Fy =
span (¢5 | 6 € A). Then we have

a) The system (€5)sen is a generalized unconditional basis in Fy with the un-
conditional constant 1, and so Fy is an ideal generalized sequence space.

b) If the Coxeter group Ba of permutations and sign changes of finite number
of coordinates acts isometrically in Fy, then (e5)sen is a symmetric basis
in Eo with the symmetric constant 1, and so Fy is a symmetric generalized se-
quence space.

Proof. a). Let o be a finite subset of A. Consider the coordinate subspace

E, ={z = (25)sea € Folzs=0forall § ¢ o} .
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Let p, = %(1E0 —u,), where u, = []s¢, 55, be the coordinate projection Ey — F,.
Since u, € Iso Fy, we have ||ps||z, = |18, — pollE, = 1.

Fix an arbitrary vector x € Ey. For any n € N there exists a finite subset o,
of A and y, € F,, such that ||z —y,||g < 1/n. Then also ||p,,(z) — y||g, < 1/n,
and so ||(1g, —Ps,) (2)||E, < 2/n. 1t follows that = has at most countable support
contained in Q = (J&, 0; = {01,...,8k,...}, and ||z — X5 z4¢5,]|m, — 0. Thus
the system (es5)sea is a generalized Shauder basis in Fy. It is easily seen that for
any fixed subset Q@ C A the net of isometric involutions (u, |0 C 2, card o < o0)
strongly converges on Fjy to the isometric involution ug, and therefore the basis
(e5)sen of Ey is unconditional with the unconditional constant 1.

b). Fix a permutation 7 € Sa, a vector z € FEy and € > 0 arbitrarily. Let o
be a finite subset of A such that |[(1z, — ps)(2)||E, < €. There exists a finite
permutation 7' € Sa such that 7’'|c = 7w|o. Since the Coxeter group Ba acts
isometrically on Fjy, we have

17" ps (@)l 5o = 117" po (2)] 26 = lIpo (2)]] 2 -

Thus, the linear operator 7* is well defined and isometric on the dense subspace
R2 of Ey. Therefore, it can be extended isometrically onto Ey, and since the
same is true for (7~1)* this extension does belong to the group Iso Fy. This
proves b). |

R em ar k. Itis not true, in general, that under the assumptions of this
lemma F itself should be an ideal space if all single sign changes are isometries
of F. As an example, consider the space ¢ of convergent sequences, which is not
an ideal lattice.

We return to the Hilbert decomposition, keeping all the notation and the
conventions of Section 5.

6.3. Proposition. There exists an ideal generalized sequence space X with
B as an index set such that the subspace Ry of E is isometric to the Banach sum

(D Hp)x.

peB

Proof. Foreach § € B fix a vector eg € S(Hg). Consider the subspace
X =span (eg|f € B) C F+Ro. Since the system of functionals (e} |5 € B) is
biorthogonal to the system (eg | 5 € B) and the reflections Sep.el | X are isometric,
by Lemma 5.9.a), the latter system is an unconditional basis in X with the
unconditional constant 1, and so X can be identified with an ideal generalized

sequence space on B.

Put Ry = (@ Hp)x. We will show that the correspondence
peB

T:Ro2z v+ (pg(2))sen € Ry
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is a linear isometry of Ry onto Ry. Put ej = IIPZZB(% € S(Hp) if ps(z) # 0.
Let uz € O(Hg) is such that ug(ej) = es if pg(z) # 0 and g = 1p, otherwise.
As follows from Theorem 5.7, there exists u € Iso Ry such that u| Hg = ug for
all 8 € B. Since u(z) € X and w is an isometry, it is clear that 7(z) € Ry and
|7 ()[R, = [l][Ro-

To show that 7 is surjective, fix arbitrary vector z € Ry, 2 = (23 € Hp)gen-
Then 2’ = Y ||zg||peg € X C Ro. For each 8 € Blet ug € O(Hg) be such that

peB

ug(zg) = ||zg||E es. As above, there exists u € Iso Ry such that u| Hg = ug for
all B € B. If zg = u~'(2'), then we have 7(zg) = z. Thus, 7 is an inversible
isometry. This completes the proof. O

6.4. Notation. Consider again an ideal generalized sequence space F/ with
an index set A. Without lost of generality one may assume that ||¢s||z = 1 for all
d € A. For a subset Q C A let E(Q2) be a strip K () = {z = (25) € F'|z5; =0 for
all 6 € A\ Q}. Any such strip is biorthogonally complemented in F; indeed, the
operator of multiplication by the characteristic function of € is a bicontractive
projection po : F — E(Q) with 15 — pa = pa\a-

Put Fo(2) = span (&5)s5eq, so that ' = F(A), Ey = Fp(A) and Fy(R2) =
FEon E(Q2). We also preserve in this particular case all the other notation intro-
duced in Section 5. The next proposition shows that the Hilbert and Coxeter
decompositions of an ideal generalized sequence space yield an orthogonal de-
composition into strips.

A reflection vector €5 of the single sign change ss = Ses,er € IR(FE) be-
longs to a certain subspace V, or Hg. Putting A, = {§ € Als; € V,} and
Ag = {6 € Al|s; € Hg}, we obtain a disjoint partition of A by the sub-
sets {A,, Aglaeca,pes. Put also Ay = |J A, and Ag = |J Ag, so that

a€A peB
A =A4UAE.

Proposition 6.5. In the notation as above one has
a)
i) Vo = Fo(As), Vo, = E(A,) for each o € A and
it) Hg = E(Ag) = Eo(Ag) = 2(Ap) for each B € B;
iii) if card (Ay) = oo, then W, is a Cozeter group of type Ba,;
b)
i) Fo = Eo(A4) and Ry = Eo(Ag), so that Eg = Ro+Fy;
ii) F=FE(A4) and R= E(Ap), so that E = R+F;
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¢)
i) Pa = Pa, | (FO—I—I%) and pg = pa, for alla € A, B € B;
i) PRy F = PAy | (Ro+F) and P2 = Py (FoFR) (see Proposition 5.6).

Proof.a). PutC=.AUBand V, = H, for v € B. By the above definitions,
Eo(Ay)CV,forallyeC. Let y €C, 6 € A, and & € A\ A,. By Lemma 5.4,
851 = Seger, € IR(E) \ IR, commutes with any reflection s € IR, and so V, C
Ker ¢},. Therefore, Vw C Ker¢j,, too, and hence \A/W C N Kerey = E(A,).

S'EA\A,
In particular, each reflection vector e of a reflection s = s, .» € IR(FE) belongs
to one of the strips F(A,), where v € C. Namely, e = (z5) € E(A,) iff z5 # 0
for at least one 4 € A,. Furthermore, in the latter case either e = t¢5 or the
reflections s and ss do not commute.

Let v = a € A. From the classification of the infinite Coxeter groups in
Section 4 it follows that if W is such a group and s € W, then the set of all
reflections in W that do not commute with s contains not more than a finite
subset of pairwise commuting reflections. This means that the reflection vector e
of any given reflection s € I R, has only a finite number of non-zero coordinates,
i.e., e € span (e |8 € A,) C Fo(A,). Thus, V,, C Fo(A,), and therefore, V,, =
Fo(A,), which is the first statement of (a.i). In particular, the reflection vectors
(€5)sen, of sign change reflections (s5)sea, C IR, form a complete orthogonal
system in V.

If card (A,) < oo, then clearly E(A,) = Fo(A,) =V, = V,. If card (A,) =
0o, then by Corollary 4.6, the group W, generated by reflections from IR, is a
Coxeter group of type Aar or Bar. But the Coxeter group Aa+ does not contain
a complete set of pairwise commuting reflections, i.e., there is no orhtogonal
subsystem of the root system (e5 — e5|9,8" € A’, § # ¢') which would be a
Hamel basis of R@l. This excludes the first case, and so the group W, should be
a Coxeter group of type Bas. It is clear that card (A’) = card (A,). This proves
(@.i17).

Let, further, v = 8 € B. Then Ey(Ap) is a subspace of the Hilbert space Hg,
and the system (€s)sea, is an orthonormal basis of Fo(Ag). Thus, Fo(Ag) =
l3(Ag). Assume that Hg # Fy(Ag) . Let z € Hg be a non-zero vector orthogonal
to Fo(Ag). It is easily seen that ¢§(z) = 0 for all § € Ag. This is impossible,
since Hg C F(Ap) and z # 0. Therefore, Hg = Eo(Ag) = 12(Ap).

Let pg : E — Hg be the projection as in Theorem 1.b). Suppose that
Hz # FE(Ag). Then the restriction pg| E(Ag) is a non-identical projection, so
that there exists a non-zero vector z € Ker pg N E(Ag). Fixing § € Ag, consider
the plane I = span(z,€s). There are two commuting isometric reflections in L,
namely (17, — 2pg) | L and ss| L. Therefore, 2 € Kere} for all § € Ag, and so
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z = 0, which is a contradiction. Hence Hg = E(Ap) = Eo(Ag) = 12(Ap). This
proves (a), besides the second equality in (a.7), which is proved below.

b). For any v € C consider the isometric involution u, = 1 — 2pa., with the
spectral subspaces E/(A,) and E(A\ A,). It is easily seen that for any s =
Se e+ € TR(E) the isometries su., and u.s coincide on the total system of reflection
vectors (€5)sea. From Lemma 4.1 it follows that they coincide on F. Thus, the
involution u, commutes with each reflection s. .« € IR(FE). Therefore, one of
its spectral subspaces contains the vector e and another one is contained in the
mirror hyperplane Ker e*. Hence, for any s. .« € I R, one has Kere* D F(A\A,).

Let the set C be devided into two disjoint parts C = C'UC”. Put Q' =

U A, Q"= U A,, so that €', Q" consist of some parts of the disjoint par-
,yecl ,yecll

tition A = |J A,. We are going to show, more generally, that Eo(Q') = E(£),
~veC
which easily implies the equalities in (b.77) and (a.i).
By the considerations above, we have F(€) C N(Kere* | s. . € IR¢#), where
IRe» = |J IR,. On the other hand, E(2) = [ Kere} D N(Kere*|s. . €
seQ!

’YEC”
IRcn). Therefore, E(2) = N(Kere* | scx € [Ren) = Ep(). The last equality is
clear from the definition of the envelope, because s .« € I Ren iff Eg(Q') C Ker e*.
This proves (b) and the second equality in (a.i).

¢). The isometric involutions ug = 15 — 2pa, and 15 — 2pg coincide on vectors
of the system (€5)sen, so by Lemma 4.1, they coincide on E. This proves the
second equality in (c.7). By the same reasoning (see Proposition 5.6.b).i77) the
first equality in (c.i) holds. The equalities (c.i7) follow from (b), just by the
definition of the projections involved. By Proposition 5.6.(b.7), the projection p,
commutes with any sign change reflection ss. By the same type of arguments
as those used in the proof of (b), it follows that Kerp, = Ker (pa, | (Fo+R)).
Since the images also coincide, we have the first equality in (c.7). This proves the
proposition. [

This proposition, together with Theorem 5.7 and the remark that the union
of the subspaces Hg, 3 € B, is invariant with respect to the group Iso F, leads
to the following

6.6. Corollary. a)

Go(E) C @Go(IQ(Aﬁ)) and lIso E C Iso E(Ay) EBISOE(AB) ;
peB

b) each element of the group (Iso )| E(Ag) is of the form (zg) — (ug(zg)),
where T5 € 12(Ag), ug :12(Ap) — 12(Ar(p)) is an isometry of Hilbert spaces for
each B € B, and 7 is a permutation of the set B.
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6.7. Remark. Let o« € A besuch that card A, = co. Then Iso V, contains
a Coxeter subgroup of type Ba,. It is not true in general that it contains also the
symmetric group Sa, of shift operators. In fact, this latter group is contained in
Iso V,, but probably in some other representation of V, as an ideal generalized
sequence space. Indeed, consider any symmetric generalized sequence space M
on A,, such that the system (€5)sea is a Shauder basis in M. Fix a disjoint
partition of A, into pairs (4,4'). Then by Lemma 6.2.a), the corresponding
subsystem (€5 & ¢5/) of the root system is an unconditional Shauder basis in M
with the unconditional constant 1, and this basis is not symmetric. Thus, using
the dual system of functionals, one can represent the strip component M = V,,
as an ideal generalized sequence space which is not symmetric and such that
the isometry group does not act as permutations and sign changes (the image of
a basis vector under an isometric reflection might be a vector with 4 non-zero
coordinates!). Recall that a symmetric basis is unique; moreover, a basis which in
a sense is symmetric enough, is unique [11]. Thus, here we have an unconditional
basis with a relatively small group of symmetries.

Conversely, if g € Iso F' is such that g(V,) = V,/, where a € A is as above,
then one can represent V, resp. Vs as a symmetric generalized sequence space
on A, resp. A/, and then g should be an operator of the form (z,) = (£2r(q)),
where m : A, — A, is a bijection (indeed, m must transfer the sign change
reflections from IR, into sign change reflections from IR,).

In [24, 25] certain conditions on an ideal generalized sequence space are given
which guarantee that its isometry group acts by permutations and sign changes.
This is always the case in a symmetric sequence spaces different from 1, [23, Ch.
IX, 6] (see also [2, 8] for the complex field).

Next we give several examples related to the results of Sections 5 and 6.
6.8. Examples.

1) ([24, 25]). Fix a sequence of real numbers p, > 1,k =1,.... The Orlicz—
Nakano space E = [({py}) consists of all sequences of real numbers z = (&),
such that the following norm is finite:

|l2[|z = inf {A> 0] Y |&/AP* <1} .
k=1

It is an ideal sequence space.

Put A, = {i € N|p; = ¢}, where ¢ = ¢1, ¢z, ... are pairwise distinct. Then
A={q|i#2}and Ay = {i|p;i# 2}, B={2}if Ay # 0 and B = () otherwise;
E(A,) =1,(A,). The group Iso E is the direct product of the groups O (I2(Ag))
and Iso A 4, where Iso A 4 is the group of all permutations of coordinates &;, i €
A 4, preserving the partition Ay = [JA,,, and arbitrary sign changes of these
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coordinates. Indeed, this direct product evidently is a subgroup of Iso F; the
converse inclusion follows from the results of [24, 25] in view of the decomposition
from Corollary 6.6.

In a similar way one can describe the isometry groups of more general modular
sequence spaces or of Banach sums of (symmetric) ideal sequence spaces.

2) Let F be the space of all convergent complex sequences with the supremum
norm. Then F is a Banach sum of the real euclidean planes H;, ¢ =1,.... We
have that £ = IA%, and Fp = Rg is the subspace of sequences in F convergent
to zero. The group Iso Ey is the semi-direct product of O(2)“ and the infinite
symmetric group S, while Iso F' is its proper subgroup (indeed, if ¢ € Iso F,
then the corresponding sequence of orthogonal plane transformations from O(2)“
is convergent). This shows that all the inclusions in Theorem 5.7 are strict.
Observe that here F is not an ideal sequence space.

3) Consider £ = R* with the norm

lellE = 116, €251, )18 = (6 + €)' +lal)? + 1'%

It is easily seen that here R = Ry = H = {t€eF|gg=¢=0}and F=F =
{z € E|& = & = 0}. Furthermore, F = Fy+Rq is an ideal space, and both
strips Iy and Ry are euclidean planes. Thus, Go(F) # Go(Fp) @ Go(Rp), and so
Iso E # Iso Iy & Iso Ry (cf. Corollary 6.6.a) ).

4) Slightly modifying example 4, consider ' = R® with the norm

lellE = 116 €2, m2,s1,2)l 1B = [(EF )2l )P+ (0 +03) 2+ [T /2.

Being the direct sum of two euclidean planes H; and Hy, which are strips invariant
under Go(E), the subspace Ry itself is euclidean. Thus, Go(Ro) # Go(H1) &
Go(H3) = Go(E) (cf. Corollary 6.6.a) ).

5) Let, further, ' = ¢ @ c & ¢ with the norm ||(z,y, 2)||z = sup;—;_ {(& +
2 46|}, where . = (§)2, €c,y = ()2, €c¢, 2 = ()2, € c. Consider
the hyperplane £ = {(z,y,2) € F|lim; 4o 7 = lim;o}. Here we have
R~ cPeg , I~ cg. Thus, RiFisa hyperplane in F, and there is no contractive
projection of F onto R and onto F, in contrary to the case of ideal sequence
spaces (cf. Propositions 5.6 and 6.5.b), ¢) ).

The following questions are directly related to the subject of this paper.

For a given Banach space F, consider the constant

c(F) = inf Sg.on ‘
( ) eEE,e*EE*,e*(e)zl{H s ||E}

It is clear that 1 < ¢(F) < 3, and ¢(F) = 1 in the case when there exists an
isometric reflection is £. It is easily seen that ¢(L,) is a convex function of p
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which takes the value 1 only for p = 2 and the value 3 only for p =1 and p = co.

For any given finite set of reflections in E one can find an equivalent norm ||-||" on
F in such a way that the group generated by these reflections will be a subgroup
of the isometry group of the new norm. In particular, ¢(E,||-|") = 1.

Consider, further, the constant

S(E)=sup {c(E,[l-[[)}.

I~ &

By the definition, ¢(#) € [1, 3] is a numerical invariant of isomorphism. Is it
non-trivial?

Let ¢(n) = ¢(R™) = ¢(13). Let M, be the Minkowski compact of classes of
isometric norms in R"”, endowed with the Banach—-Mazur distance. Denote by
A, the subset of M,, which consists of the classes of norms having an isometric
reflection (or, the same, a hyperplane of symmetry). It is easy to show that
logs(n) coincides with the radius of the metric factor space M, /A, with respect
to the distinguish point which corresponds to A,,. It is known that the radius of
the M, centred at the class of euclidean norms is log v/2 (F. Behrend, 1937; see
[12, Sect. 7] for this and for some further information). Thus, ¢(2) < /2.

6.9. Problem. Isit true that
s(3) <37

¢(n) < 3 for any n ?

limsup,,_,., s(n) <37

C(lg) <37

If the answer to any of the above questions is “yes”, which seems to be less
plausible, then, of course, the exact value of the corresponding constant ¢ would
be worthwhile to find.

Added in proofs. Interesting generalizations of some results of the present
paper® have been recently obtained (after the paper of A. Skorik and M. Zaiden-
berg) in the preprint by J.B. Guerrero, A.R. Palacios, Isometric reflections on
Banach spaces, the University of Granada, Spain, 1996, 14 p. We are grateful to
Prof. Palacios for sending us this preprint.

*Or, to be more precise, of the English version of the preprint [27].
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06 H3OoOMeTPpUYeCKUX OTpasKeHHuAax B 6aHaxoBbIX
IIpocrpaHcTBax

A. Cropuk, M. 3ailifenGepr

[Momyuena caegytonas xapakTepusanus ruJab0epTOBEIX MTPOCTPAHCTB.
[lycts F — 6aHaX0BO NPOCTPAHCTBO, eAUHNUYHAA cdepa S KOTOporo obaagaeT
TUTEPNAOCKOCTRIO CUMMeTpUn. B 3ToM caydae E aABageTcd ruiabOepTOBBIM
MPOCTPAHCTBOM TOTIa U TOJAbKO TOTTa, KOT/la YIOBAeTBOpAeTCA KaKkoe-a1ubo
U3 cAeYIOMUX ABYX YCIOBUIL:

a) rpynna usoMetpuii IsoF npocrpanctBa E nmeer mIOTHYIO op6uTy Ha S';
6) enuHuYHas koMioHeHTa Go rpynnsl IsoF, HajleleHHON CHILHON onepa-
TOpHOIT TomoJjoruei, AeficTByeT TONOAOTHYECKU HEMPUBOAUMO Ha F.

[IpuBoaATCA HEKOTOPBIE pe3yAbTaThl 0 6eCKOHEYHOMEPHHIX Tpynnax Kok-
ceTepa, MOPOK/IeHHBIX U30METPUYECKNMHU OTparkeHUAMH, KOTOphIe MO3BOA-
0T aHAMU3UPOBATh CTPYKTYPY TPy U30MeTpHil, colep#alinX A0CTaTOYHO
MHOTO OTpaeHuii.

ITpo izomerpuuHi BifoGpaskeHHA y 6aHAX0OBUX MpocTopax
A. Cropuk, M. 3aiinen6epr

OTpumaHo Tary XapakTepUCTHURY riinGepToBux mnpoctopiB. Hexait E —
f6aHaxiB MpOCTip, ONUHUYHA cepa S AKOTO Ma€ TUNEPIIONUHY CUMETPil. ¥
bOMY BHNAAKY F € riib6epTiB NpOCTip TOAl 1 TIABKH TOMl, KOJH B/IOBOMb-
HSIEThCH Oy/Ib-fIKe 3 HACTYNHUX [TBOX YMOB:

a) rpyna isoMeTpiii IsoF npocropy E Mae miibHy opGiTy Ha S’;
6) onnHU4YHA KOMIOHeHTa G rpynu IsoE| 1Mo HajlilieHa CHIbHOIO onepaTop-
HOIO TOINOJOTI€I0, 116 TONOJOT1YHO He3BIJJHO Ha F.

HaBojifATbes fefki pedyabTaTH Mpo HeCKiHYeHHOBUMIpHI rpynu Kokcere-
pa, Mopo/sKeHl 130MeTPUUHUMU BijjoGpazmeHHAMU, K1 JO3BOJAIOTH aHAII3y-
BATU CTPYKTYPY TPyl i30MeTpiii, 0 MICTAThL IOCUTH GaraTo BifioGpaeHb.
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