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We compute the asymptotic distribution of zeros and the weak limit of
orthogonal polynomials on the whole line whose weight contains a large pa-
rameter in the exponent. The techniques used and the results are motivated
by recent studies on the eigenvalue statistics of random matrices.

1. Introduction

The study of asymptotic properties of orthogonal polynomials is a branch of
analysis which goes back to classics, has numerous links with various areas of
mathematics and related fields, and which is still actively developing, especially
for the case of polynomials that are orthogonal on the whole real axis (see, e.g.,
the books [1-6] and references therein).

One newer useful link is with the theory of random matrices, where orthogonal
polynomials provide a powerful tool for the study of the eigenvalue statistics of
random Hermitian matrices whose probability distribution has the form

pu(M)dM = 7  exp{—nTrV(M)}dM , (1.1)

where M is a n X n Hermitian matrix,

dM = [] dM;; ] dSM;pdRM;y,
J=1 i<k
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is the ” Lebesgue” measure for Hermitian matrices, the symbols ®z and Sz denote
the real and imaginary parts of z, 7, is the normalization factor and V(}) is a
real valued function (see Theorems 1,2 below for explicit conditions and [7] for
the physical motivation of (1.1)).

We denote by p, (A1, ..., A,) the joint eigenvalue probability density, which we
assume to be symmetric without loss of generality. From random matrix theory
[8] it is known that

P, An) = Q70 T (/\j—/\k)zexp{—nzn:‘/(/\j)}v (1.2)

1<j<k<n j=1

where (J,, is the respective normalization factor. Let
DAy ooy A) = /pn(/\l,...,/\k, Akt oo An) A1 oond A (1.3)

be the k-th marginal distribution density of (1.2). The link with orthogonal
polynomials is provided by the formula (see [8])

" n—k)!
P (Ao A = . P det k(i M) [ (1.4)
where )
k(o) = 3 2 ()™ () (1.5)
=0

is the reproducing kernel for the orthonormalized system
UM () = exp{-nV (A)/2 ), 1= 0,1, .., (1.6)

and Pl(n)()\),l = 0,1,... are orthogonal polynomials on R associated with the
weight

wy(A) = eV (1.7)
- / P (0) PO (A1 (A)dA = 61 (1.8)

Our goal is to study asymptotic properties of the polynomials PT(Ln) (A) and related

quantities.

Let us notice, that the weight (1.7) has an unusual form from the point of
view of the traditional theory of orthogonal polynomials associated with weights
on the whole R. Indeed, in that theory the study of asymptotic properties of the
orthogonal polynomial P, for n — oo is carried out for a weight of the form

w(z) = e @) (1.9)
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that does not contain the large parameter n.* In this case the most nontrivial
asymptotic properties of P, (z) manifest themselves for z = O(a,,) where a,, — o0
as n — oo (a, are known as the Mhaskar-Rakhmanov-Saff numbers, e.g., a, =
const\/n for the Hermite polynomials corresponding to Q(z) = z?%). Therefore
the parts of Q(z) in (1.9) that contribute to the asymptotic behaviour of P,(z)
are the 7tails” of Q(z) and that is why one needs to impose certain regularity
conditions on the tails behaviour, requiring roughly their power law form (see,
e.g., [2]). In our case of (1.7) it suffices to consider A = O(1) as n — oo and
no conditions on the tails V() are needed in order to study the asymptotic
properties of P7(Ln). Therefore the mathematical mechanisms which determine the
asymptotic properties of the orthogonal polynomials associated with (1.7) and
(1.9) are different, especially for ”strictly” nonpower law (e.g., nonconcave) V’s.
There is, however, a class of weights that belongs to both cases and for which
we can reduce (1.7) to (1.9) and vice versa. This class consists of monomial
weights
Qz) = |=|°, V(X)) = |9, a>0. (1.10)

In this case the rescaling
nt/oN =z (1.11)

transforms (1.9) in (1.7) and gives the simple correspondence
Pl(n)(/\) — Pl(/\nl/a)nl/Qa

between the orthogonal polynomials associated with the weights (1.9) and (1.7).
We shall now return back to the discussion of random matrices, in particular,
to formula (1.4).
(

The simplest case of pnl)(Ai) is already of considerable interest. Indeed, if

/\gn), e /\;n) are eigenvalues of a random Hermitian matrix M, then N,, defined
by
RS ()
NnA:—E A, A = (a,b), < b, 1.12
(A) anIXA(] ) (a,b) @ ( )

is their normalized counting measure (empirical eigenvalue distribution). Here
and below the function xa(A) is the indicator of the interval A and the symbol
E{...} denotes the expectation with respect to the probability measure (1.1). We
have

E{Nn(A)}:/Ap(ln)(/\)dAE/Apn(A)d/\, (1.13)

*See, however, the book [5], devoted to polynomial approximations with weights of the form

(1.7).
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where, according to (1.4) and (1.5),

3|

o) = 2k, 2) = LS P (2. (1.14)

The function
A = [k (A, ]

is known in the theory of orthogonal polynomials as the Christoffel function.
In the recent paper [9] it was proved that if V() is bounded from below for
all A € R and satisfies the conditions

VA2 2+ e)log|A], [Al > Ly (1.15)
for some Ly, € > 0, and
V(A1) = V(A2)l S C(L2)|Ar = Ao, [Ar] < Ly (1.16)

for any 0 < Ly < oo and some v > 0, then:

(i) pn(X) converges to the limiting density p()) (called the density of states
of the random matrix ensemble (1.1)) in the Hilbert space defined by the energy
norm

(= [1og 1A= optini) (1.17)
(ii) p(A) can be found either as the unique solution of the equation
cuppp € {A £ u(Y) = maxu(y)} (1.18)
where
u() =2 [ dup(u)log |\ — ul - V(N (1.19)

or as the density of the unique minimum of the functional (the electrostatic
energy) defined on the set of all probability measures v by the formula

Uv) = —/y(dA)z/(d,u)) log | A — p| /J/(d/\)V(A) . (1.20)

R em ar k. Note that equation (1.18) after simple transformations gives
the singular integral equation

% —V'(V/2, A€ suppp. (1.21)

If we know the support of p, we can find it by using well-known formulae of the
theory of singular integral equations [11]. Unfortunately, information about the

266 Matematicheskaya fizika, analiz, geometriya , 1997, v. 4, No. 3



On asymptotic properties of certain orthogonal polynomials

support of p cannot be obtained easily from equations (1.18)—(1.20). We can say
only that the number of intervals of the support is not more then the number of
extremal points of function V. To find the endpoints of these intervals we have
to solve the system of certain algebraic equations.

Let us denote by Aj,..., A, the zeros of the orthogonal polynomial Pén)(/\)
and introduce their normalized counting measure

N;@A):é%ﬁéXA(Ap, A= (a,b). (1.22)

Theorem 1. The normalized counting measure (1.22) converges weekly as
n — oo to a limiting measure which is absolutely continuous with respect to
the Lebesgue measure on R and whose density coincides with the function p(X),
described above, i.e. can be found from formulae (1.18)-(1.20) (the density of
states of the random matriz ensemble (1.1)).

Remark. A similar statement is known for orthogonal polynomials with
n-independent weight [1]. Its proof is however based on different ideas.

Theorem 2. Let the function V(X) satisfy condition (1.15) and (1.16) o be
the support of limiting distribution p(X). Assume that

[V"(N)] < C < o, Aeo, (1.23)

and I
—— < (1< 1.24
/p(A) = (1.24)

for some constants C' and C. Then:
(n)

(i) if o consists only of one interval (a,b), then [y (N)]* converges in the
energy norm (1.17), as n — oo, and

Jim [P = @—iﬂA—a

)X(a,b)(/\) : (1.25)

where X(a3)(A) is the characteristic function of the interval (a,b);

(ii) if V(X) is an even function and the support o consists of two intervals
o = (a,b) U (=b,—a), then [gb?(f)(/\)]? converges in the energy norm as n — o0
and

nh_gféo[é/)r(zn)(’\)]z = /(0% — ,l\/ll)(AQ —a?)

(X(a,b)(/\) + X(_b,—a)(/\)) . (1.26)
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Remark. Fromequation (1.21) and the standard facts of theory of singular
integral equations (see, e.g., [11]) it is easy to obtain that the density p(A) in the
neighbourhood of any endpoint a; of the spectrum ¢ has the form

p(A) = /1A = ail¢(A)

with some bounded (even smooth if we assume (1.23)) function ¢(A), depending
on V. For certain values of the parameters, that determine V', one can obtain
the case when ¢(a;) = 0. Thus the second condition in (1.23)) in fact means that
we consider only generic case, when ¢(a;) # 0.

2. Proof of Theorems 1, 2

Proof of Theorem 1. It follows from the orthogonality relations
(1.8) that for j =0,1,2,...

AP;(A) = a;Pi(A) + riPipa(A) + rja Pioi(A),  ro1 =0, (2.1)
where
a; :/AP]2(/\)6_“V(A)dA, r; _//\P Pig (Ve ™V ax. (2.2)
Here and below we omit the superscript (n). Denote by J = {J; k}]k o the
Jacobi matrix, corresponding to (2.1)
J]‘JC = a]‘5]‘7k + ijsj-}—l,k + Tj_15j_17k. (2.3)
Let
Jp=J — rn—lAn7 (24)

where [A,];x = 6;40kn—1 + 6;,—10k,n. Then J, consists of two blocks .]T(Ll) and
.]7(12), where the upper block .]T(Ll) is an n X n Jacobi matrix and the lower block
72

Jy’ is the semi-infinite Jacobi matrix whose first row consists of a, and r,.
n
According to (2.1), the zeros {/\;‘} ) of P,(A) are the eigenvalues of I,
]:

Thus, according to the spectral theorem, the Stieltjes transform g}(z) of the
measure N*(A) (1.22) can be written as

nE=1y

where R;l) = (Jy(Ll) - z)_l is the resolvent of .J(1). Since J,, has a block structure,
R, = (J, — 2)7! has also a block structure, and then

1 1 &
T R = — 2.5
r njzz:l n 1717 ( )

1 1<

=Y (R = - SIRM,
7=1 7=1

3
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Set R = (J — 2)7!. According to the resolvent identity, we have
R—-R,=R(J—-J,)R,.

Thus

n

1 n
n Z_: 53 E RS)L‘J

] 1

A = S (RRu)jo + (RRa)m1,)
n 2|Tn_1|
2 2 2 2
3 (IRl + (Bl + 1 Bos P 4 |(B)joal?) < Sz (26

because ijl |Rjnl? = (RR*)pn < ||R||* < |Sz|7! and because the analogous
inequality is valid for R,,.

On the other hand, according to representation (1.14), the Stieltjes transform
gn(z) of the measure F{N,(A)} can be written as

n(2) z/% = %i/@ = %an(Rn)m- (2.7)

Thus, we obtain from (2.5)—(2.7) that

9:() = 62)1 < 5T (23)

To estimate r,_; we use the result of [9], according to which there exist
positive numbers Lg, L, A, and a such that

pr(A) < Ae™ VNN > L. (2.9)
This bound and identity (1.14) imply
P21 < mpe(N) < AV, 2 L. (2.10)

Then, by using the Schwarz inequality, we get from (2.2)

el < [ [ vt [ fuzona] " <. (2.11)

Relations (2.8), (2.10) and results of [9] prove Theorem 1.
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Proof of Theorem 2. The proof of Theorem 2 is based on a well
known identity of random matrix theory (see, e.g., [7])

E { <%TrG(z))2} + E{ TG (= )V’(M)} 0, (2.12)

where G(z) = (M —z)~! and M is distributed according to the distribution (1.1).
We use also the result [10]

o (meo)} - (o) =0 (s

and the spectral theorem, according to which for any integrable and polynomially

bounded function f(X)

B{ (5T} = [ romar.

Therefore (2.12) can be rewritten as follows

)= O ( 4) (2.13)
Set z = A+ in, A,n € R. Then it is convenient to rewrite (2.13) as
9n(2) + V' (\)gn(2) + Qu(2) = ( 4) (2.14)

where

@ute) = [ =T ya,

According to [9], for any differentiable function ¢(u) growing not faster then

eV (1) as || — oo, we have the inequality
[ etpnterdi— [ spturdn < U6 0 og 2
Here the symbol ||...||2 denotes the Liy-norm on the interval (=L, L) and L is

some fixed number depending on the function V' and such that suppp € (=L, L).
Thus we get for = O(n~'/3)

Qn(2) = Q) +0(n), (2.15)
where
Q) = / AL (’2 — ‘A/ A wyan. (2.16)
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Therefore for n = O(n='/3) (2.14) can be rewritten as

9n(2) + V'(N)gn(2) + Qu(z) = O(n),

which implies

gn<A+m>=—@+J(@) QW tom, @)

where the branch of the square root is real and positive as A — oo. Since,
according to the the inversion formula for the Stieltjes transform [11], p(A) =
limy,—0 limy—ye0 (17) 7189, (A + 1), we get from (2.17) that

VN
2

suppp C {A: < )Z—Q(/\)SO}

and

p(A)zw-v@(A)—(@)Q, if (‘”2(”)2—@<A)<o. (2.15)

Thus (2.17) takes the form
V(Y

gn(A+1in) + =1mp(A)+O(n). (2.19)

To proceed further we introduce the density
1 n+1

pE(, e Ang) = e Al Z V(Aj) H (N — )2, (2.20)
n i=1 1<j<k<n+1

The difference of this density from the density (1.2) written for the n+41 variables
A1, .- Ap41 is that in the former we have the factor n in the exponent while in the
latter we would then have n 4+ 1. Set

n+1 1 &
pr(A) = T /pTT(Ay A2y oy Ang1)dAg.dApyy = o 2%2(/\) : (2.21)
j=0

Then

Ua(A) = nlpif (V) = pa(V)].
Furthermore, by using the analogue of identity (2.12) for the density p} and
arguments similar to those used for proving (2.13), we obtain the relation

2, (Ve 1
g7 (2)] +/ﬁdu_0(n2—n4) (2.22)
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for the Stieltjes transform g;f(z) of pjf (i) and z = XA+ in, n > 0. Set

zbi(u)du
W=z

An(z) = n(gf (2) = gn(2)) = (2.23)

Then, subtracting (2.13) from (2.22) and multiplying the result by n, we obtain
that
V(1 1
An(2)(gn(2) + g5 (2 +/ =0(—). (2.24)

nn

-1/5

Set n=n . Then this relation takes the form

2n()29(2) + V') +O()) = [ TR W 4 o). (225)

- &

Since the r.h.s. of (2.25) is real valued and according to (2.17) and (2.18) 2¢(z) +
V’(X) is also real valued for A ¢ o, we get from (2.25) that A, (2) - 0asn — oo
and then derive easily that

VEA) =0, Ao (2.26)

in the energy norm (1.17).
On the other hand, according to (2.19) for A € o relation (2.25) takes the
form

) ‘//I ‘//
An(2)2rip) +0(g)) = [ A=A g, 4 o
which implies
BALO i < C (2.27)
A+ in)| < , €o. .
! p(A)
Assume now that o consists of £ > 1 intervals:
o=U"_(a;,b)). (2.28)

Integrating (2.27) with respect to A, we conclude that there exist dy, ..., d; (de-
pending on n) such that if we consider the function

k
= diX(a, ) (V) (2.29)
j=1

then
((Ap2) () —d)| < Cn7P, xea, (2.30)
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where the operator A is defined by the formula
1
(AN = / f(p) log md/h Aeo. (2.31)

On the other hand, from the theory of singular integral equations [11] it is known
that the solution of the equation

AN\ =d\), A€o, (2.32)

can be written as follows

_ 9 _
fn(A)— kR(/\)v R(/\):,

J

(A—a;)(b; — N), (2.33)

k
=1

where q](cn)(/\) is a polynomial of degree (k—1). From (2.30) and (2.32) we obtain
the inequality

(A(IPZ - fn)7 (1/12 - fn)) < C’I”L_l/5
which implies

[2(A) = fu(A)] = 0, as n— 0o, (2.34)

in the energy norm (1.17). Now, substituting 92 in (2.24) by f,(\), we get for z
with Sz > 0 and n — oo:

gt (V) dx
o VRA)(A = 2)

_ (Ve e / VI (@ () = g (2)d
s VRN -2) Lo VR (A - 2)

According to [9, 11], the existence of a bounded p(\) implies that

9(2)

+o(l).  (2.35)

V/(OMdA

. VRN

RO N V'(A)dA
o) =V | e

Therefore the second term of the r.h.s. of (2.35) is zero and

i=0,1,. k-1,

and then

(n) ().,
1 q (A)dA _ % (2) +o(1), n— 0o. (2.36)

o VR(A)(A—2) R(z)
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Thus, taking into account that [ ©2(A)d\ = 1, we obtain

k—1
o)) =77 TLO - ). (2.37)

where p; € (b;,a;41) is a point from the jth gap of the support o of p. Therefore,
in the case of one-interval support o = (a,b), (1.25) follows from (2.26), (2.33),
(2.34) and (2.37). In the case of the even V()), ©2()) also has to be an even
function and thus if k¥ = 2, ¢ = (a,b) U (=b, —a), then g3 = 0 and (1.26) also
follows from (2.26), (2.33), (2.34) and (2.37). Theorem 2 is proved.

Remarks.

(i) In the one-interval case the limits of entries a,, and r,, of the Jacobi matrix
J defined by (2.2) exist. Indeed, according to (2.2), the existence of the limit of
a,, is a direct corollary of the weak convergence of 12()) and one has

(2.38)

To obtain the limit of r, let us note that it follows from (1.25) that the
following limits exist

lim [r2 +72_, +a2] = lim [ A22(N)dX

n—00 n—>00
a+b\? 1 /a—0b\?
- - 2.
< 2 ) +2< 2 ) (2:39)

nli_gréo[(ri‘l‘r,ﬁ_l+ai)2+(rnan+rnan+l)2+(rn—1 Up_1+Tn-1 an)2—|—’f‘i’f‘i+1 +r721_17q3l_2]

3 /a—b\* a? — b2 ? a+b\?*
=1 A2 (N)d = —( ) : ( ) . 2.4
nggo/ n(A) i) 31— +{— (2.40)

From the limiting relations (2.38)—(2.40) it is easy to derive that

b — 2
lim r2 = ( 1 a) . (2.41)

n—oo

and

(ii) In the two-interval case the limits of the entries of J with odd and even
indices exist:

: 2 : 2
Nim ryp=Hh,  lim ry, =1, (2.42)
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and we have

b—a\? b+a\? b+ a\? b—a\?
11:< 5 ),lQ:( 5 ) 07‘11:< 2 )712:< 9 ) . (243)
Indeed, since in this case we assume that V() is an even function we have a,, = 0
(see (2.2)). Moreover, on the basis of Theorem 2, we conclude that

. 2, .2 2 a? + 6%\
lim [r; +r._;] = lim //\ VE(AN)dA = 5 (2.44)

n—o0 n—oo

and

m [(r2 4+ 2 ) +riri g +riri_g] = hm //\4¢

n—00
a? + b2 ? 1 {a%— b2
= — . 2.4

Combining the limiting relations (2.44) and (2.45), we get (2.42) and (2.43).

(iii) The above statements solve an analogue of the Freud conjecture for the
weight (1.7). This conjecture concerns limits of entries of the Jacobi matrix
associated with the corresponding orthogonal polynomials and was formulated by
G. Freud for the n-independent weight (1.9) with the monomial Q(z) = |z|*. The
conjecture was solved in a number of important papers (see, e.g., [3] for references,
results and discussions). However, for the case where ()(z) is a monomial only the
case (i) in the above remark is possible, i.e., the limit of the properly normalized
entries of the Jacobi matrix exists but not the different limits of the even and
odd coefficients like we have in the case (ii) above.

(iv) Returning to our notations with superscript (n) which we used in the

Introduction, we can rewrite our results as lim,_ . cﬁf) = ¢, where ¢ is any
of the Lh.s. of (2.38), (2.41), and (2.42), and c is the respective r.h.s. of the
(n)

formulae. In fact we have proved more, namely that the limits of all ¢, such

that lim, ., — = & > 0 exist, i.e., the function
n

c(z) = 11}3/1 ™)
n—oo.k/n—x

1
exists. To see this it suffices to replace V(A) in (1.7) by —V(A) and to repeate
z

our arguments for this case.

(v) The results presented above were obtained in 1994-1995 and published in
Preprint No. 277 of the E. Schréodinger Institute, Vienna, October 1995. Since
that time there appeared two papers [13, 14] devoted to the asymptotic properties
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of orthogonal polynomials of the form (1.7) and (1.8). In the paper [13] the
polynomials with the weight

B tAZ g\t

Y=

g >0, (2.46)
were considered. Here for ¢ < —2,/g the support of the density of states consists
of two intervals (see, e.g., [10]). For this case in [13] the asymptotic formula for
the respective orthogonal polynomials is established. In particular, the formula
yields relations (1.26) and (2.42)—(2.43) for the weight (2.46). In the paper [14]
the asymptotic formulas for the polynomials (1.7) and (1.8) with an arbitrary
real analytic function V(A) with sufficient growth at infinity are established. In
the case when the support of the density of states consists of one or two intervals,
these asymptotic formulas imply the limiting relations (1.25)-(1.26) and (2.42)-
(2.43). The methods of these papers are completely different from ours and are
based on the techniques of the theory of completely integrable systems and on a
powerful version of the steepest descent method developed previously by authors
of [14]. We note in the conclusion that our proofs of (1.25)-(1.26) and (2.42)-
(2.43) are valid under more general conditions, requiring only local boundedness
of the third derivative of V() (see (1.15), (1.16) and (1.23)).
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Acumnroruuyeckue cBoiicTBa HEROTOPbIX OPTOrOHAJ/BHBIX
INOJIKNHOMOB

C. An6esepuo, JI. ITactyp, M. [llepOuHa

HaiineHo acuMnToTHUYecKkoe pacnpefiejeHue Hyldell U caabblil mpeea A/
HEKOTOPOro cemeiicTBa TOJAWHOMOB, OPTOTOHAALHBIX HA BCeH OCH OTHOCH-
TelbHO Beca, KOTOPbIH co/lepskUT GoabIloit mapaMeTp B »KcrnoHeHTe. MeTtoj
Hccie/JoBaHUSA U TOMYYeHHbIH pe3yabTaT MOTHBHPOBAHbI HeJABHUMHU HCCe-
NOBaHMAMM B 06JacTH pacnpepeileHnusi coOGCTBEeHHBIX 3HAYeHUH caydaiiHbIX
MaTpHIl.

ACHUMIITOTHUYHI BJACTUBOCTI JeAKHX OPTOroHaAbHHUX
MOJ1HOMIB

C. An6egepio, JI. ITactyp, M. Illep6una

3Hali/leHO aCUMITOTUYHUN PO3NOJLI HYMIB Ta cllaBKRy TPaHUIIO JIJIA Jefl-
KOI CcIM’T MOJIHOMIB, IO € OPTOTOHAJLHUMHU Ha BCiH Bicl BIJHOCHO Baru, fika
Mae BeJIUKHIl mapaMeTp B eKcnoHeHTi. MeToj jfocaifizeHHs Ta 3/100yTi pe-
3Y/JIbTATU MOTHBOBAHO OCTAHHIMU [OCIII#AEHHSIMU B Tajly3i po3nojiily Biac-
HUX 3HAYEHb BHUNA/[KOBUX MATPHUIIh.
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