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The main result states that every surjective isometry between two ideal
Banach lattices of mesurable functions which satisfy certain conditions, can
be represented as composition of an operator of mesurable change of variable
and an operator of multiplication by a mesurable function.

Introduction

This paper contains a proof of a theorem previously announced in [Zal] and
of its generalization to a class of ideal spaces. Namely, we prove the validity
of a weighted shift representation of the surjective isometries between Banach
function spaces which satisfy some minor restrictions. This class includes at least
all rearrangement-invariant (r.i.) spaces. Qur proof follows Lumer’s scheme [Lu]
and uses some ideas due to A. Pelczynski (see [Ro]; cf. also [BrSe] and [SkZal,
2]). Recall that in [Zal] all the spaces are considered over the field C of complex
numbers.

Due to a recent revival of interest in the isometric theory of Banach function
spaces, | have been asked several times during the last few years by my colleagues
working on the subject about the proofs of the results announced in [Zal]. As
a matter of fact, the proofs of Theorem 1 and Proposition 1 from [Zal] were
published in [Za2], a Russian journal with a rather limited circulation. An English
translation of that journal though prepared has never appeared due to some
circumstances. Nevertheless, a translation of my article [Za2] was circulating
among a small number of experts (see, e.g., references in [KaRa2]). In order to
satisfy numerous requests of my colleagues | am reproducing here this translation,
certainly updaiting and modifying it.

Let me briefly mention some further development. A generalization of The-
orem 1 in [Zal] to the real case was obtained in [KaRal, 2]. Papers [KaRal, 2]
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also contain a new proof of Theorem 4 in [Zal], which yields a characterization
of the L,-spaces as r.i. spaces with non-standard isometry groups (my original
proof of this theorem covered both the real and complex cases but it was never
published). Certain corollaries of the main results of [Zal] are extended to the
real case by different methods in [AbZa]. New proofs of the remaining statements
from [Zal], as well as some generalizations, can be found in [PKL], [Ral, 2]. See
also the survey article [[lJe] for additional information.

Hermitian operators

A Banach space E of measurable functions on a measure space (2,3, u) is
called an ideal space if f € E, |g| < |f] and g € L°(Q, %, p) imply that g € E
and [lg]) < || Il

If additionally, the equimeasurability of functions |f| and |g|, where f € F
and g € LY implies that ¢ € F and ||g|]| = ||f]|, then the space E is called
symmetric or rearrangement-invariant (see, e.g., [KPS, Ch. 1], [LT]).

Set 3o ={0 € ¥ | p(o) < co}. We will always assume that the characteristic
function x, of every set o € ¥y belongs to F. Let p, be the projector p,(z) =
XoZ, ¢ € F. The image p, F is called a band, or a component of the space F.

Definition 1. An ideal space E is called projection provided, if for each finite
collection o = {w; }7_, of disjoint setsw; € ¥g, i = 1,...n, there exists a projector
pS of norm 1 of F onto the subspace of step-functions

n
En(@) = {ZCiXu)m c;eC, 1= 1,...,71}
=1
which commutes with the projectors p,,, 1 =1,...,n. -

Any symmetric space is projection provided; we can take for pS Haar’s pro-
jector of the conditional expectation ([SMB, p. 95; KPS, 11.2]).

Definition 2. We will say that the space E is free from Ly-components if for
each component the norm of E does not coincide with the norm of Ly(v), where
v 18 a positive measure on ..

An operator H on F is called Hermitian if ||e"H|| = 1, Vt € R. The set of
Hermitian operators is denoted as Herm(FE). By LM (FE) we denote the subset
of the operators of multiplication by bounded real functions. [ |

For simplicity, we assume in the paper that Q is [0,1] or a line with the
Lebesgue measure p.
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Proposition 1. Let ' be a projection provided Banach ideal space. If F is
free from Ly-components, then Herm(E) = LM (F).

Proof. Itisenough to prove that any Hermitian operator H on F holds
the following property:

XQ\w'HXw:07 Vw € Xo. (1)
Indeed, if (1) is true, then

Xw * HXWQ = Xwsz * Hle (: Hleﬂw2)7 th“? € ZO- (2)

So, the equality
th - HXwa wE E0 (3)

determines a measurable function A on €2 such that
e (xw) = xwe™. (4)
By Theorem 2 of [Za3], (4) implies that
(=™ f VI ER, (5)

and therefore
H(f)y=h-f, VfeE, (6)
and Imh =0, ||H|| = ||A||r.. [Lu, Lemma 7].

Suppose that there exists an operator Hy € Herm(F) which does not satisfy
(1), that is, xg\w, HoXw, # 0 for some wg € Y. Choose disjoint sets wy,...,w, €
Yo (wiNw;=0,i#74,1,7=0,...,n) such that

|XwiH0Xwo - /\in¢| < |/\2|7 (7)

where \; 20,71 =1,...,n. Set @ = {w;}",. Due to Lumer’s Lemma [Lu, Lemma
8], the operator H§ determined by the equality

Hg' = p; - Hop

is a Hermitian operator on the subspace E"*1(w). Since F is an ideal space,
lpS ]l = 1, and pS(xw; ) = XwipS(2), 1 =0,1,...,n, it follows from (7) that

||Xw¢ngXwo = AiXwill = 11P5 (Xwi HoXwe — Aixws) |
S ||XwiH0Xwo - /\iXWiH
< il xesdls i=1,..0m,
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and whence
Xw; Hi Xwo #0, i=1,...,n. (8)

Next we show that the subspace E**! is Euclidean, and

n
HZ Ci Xw;
=0

To this point we use the following lemma *.

9 n
=3 leil?llxwll®- (9)
1=0

Lemma 1. Let E™*! be an ideal Minkowski space*™ over C, {e;}7 be the
standard basis in E™T, and H be a Hermitian operator on E™t' such that

(Heg,er) 20, k=1,...,n. (8"

Then E™*' is a Buclidean space, and

n 2 n
I3 cies|” = D leal sl (9
=0

=0

Proof. Let Gy be the connected component of unity in the isometry group

Iso (E™*1), and let (-,-) be a Go-invariant scalar product such that (eg,eq) =
1. The orbit Goeg is a connected Go-invariant submanifold in E**!, which is
contained in the intersection of the Minkowski sphere S(E"*!) and the Euclidean
sphere S*"*! (indeed, GGy C U(n) by our choice of scalar product). The tangent
space T to the orbit Geg at eg is invariant with respect to the stationary subgroup
o. of eg. Note that the operator t;(¢) of the rotation of k-th coordinate on
angle ¢ (i.e., ti(p)er = eer, tp(p)e; = €;, i # k) belongs to the subgroup G¢°
and, therefore, t;(¢)T = T. The latter is possible either if the k-th coordinate
of any vector of T is equal to zero, or if e € T and tep € T. Since the tangent
vector 1Heg to the curve e”H(eo) C Goeg belongs to the subspace T, in view of
(8"), the k—th coordinate of this vector is non—zero. Therefore e € T and ie, € T
(k=1,...,n). Besides that, the subspace T contains vector ieg tangent to the
curve e“H(eo) C Goeg. Thus the real dimension of the subspace T and hence also
of the orbit Ggeg is equal to 2n+ 1. Since Ggeq is a compact connected manifold,

we have
G0€0 = S(En+1) = S2n+1 s (10)

which proves that E”*! is Euclidean.

*Similar statements can be found, for instance, in [KaWo] (the complex case), [SkZal, 2] (the
real case); see also the bibliography therein.
**I.e., a finite dimensional Banach space.
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Because eigen-vectors e;, and e; (£ # k) of the operator tx(7) € Go C U(n)
are orthogonal, {e;}# is an orthogonal basis in E"*1. This implies (9'). The
lemma is proved.

Returning to the proof of Proposition 1, set S = [Ji; w;, and let Eb(S) be the
closure in pgF of the set of finite-valued (step) functions. Passing to the limit
over subpartitions, we can prove that E*(S) is a Hilbert space. In particular,
it is reflexive: E®(S) = (E®(S))”. Therefore the norm on E®(S) is absolutely
continuous ([Lux; Zab, Theorem 30; KPS, IL.3]), i.e., ||xs|| = 0 as (o) — 0.
Hence Eb(S) = pskF. Absolute continuity of the norm allows to get the equality

XM= lxal? (11)
=1

where 0;, 0 € X(S)=XNS,0,N0o; =0,i#j,0=UZ, 0.

Let v(o) = ||xs||*>. Due to (11), v is a positive (absolutely continuous with
respect to p) o—additive measure on the algebra ¥(5). Previous arguments show
that psFE = La(v), which contradicts to our assumption. The proposition is
proved.

Proposition 2. Let I be a symmetric space such that the norm on E is not
proportional to the norm of the space Ly(2,3, ). Then Herm(E) = LML (F).

The proof is quite similar to that of Proposition 1. A partition @ is chosen in
a way that provides (8) just for ¢ = 1, but we should require, besides that, that
p(w;) = p(wy), 1 =2,...,n. Using Lemma IX.8.4 of [Ro] instead of Lemma 1, we
obtain the equality

S

Passing to the limit over partitions we see that || - ||z = k|| - [|,,(4) on any compo-

9 n
=[x ll* D leil? (9”)
=1

nent p,F, s € ¥, where k = ¢g(1) (here g denotes the fundamental function
of the symmetric space F, i.e., ¢(t) = ||xs||, where (o) = t). This yields a
contradiction and completes the proof.

The main theorem

Theorem 1. (a) Let F; = F;() (1 = 1,2) be two projection provided ideal
Banach spaces, free from Lo-components. Then for any isometric isomorphism
Q : E1 — F, there exists a measurable function g and an invertible measurable
transformation ¢ : Qg — 1 such that

QN () =q()f(p(t), VfeEr. (12)
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(b) The same conclusion is true providing that E; (1 = 1,2) are symmetric
spaces and the norm of Ky is not proportional to the norm of La(u).

Proof. Asit was proved in [Se], the norm of a Hilbert symmetric space
is proportional to the standard Lo-norm. This also follows from Proposition 2
above; indeed, the set Herm(#') of hermitian operators in a Hilbert space £ does
not form a commutative subalgebra. Therefore, under the conditions in (b), the
norm of 3 cannot be proportional to the norm of Lg(u), too. By Propositions 1
and 2, in both cases (a) and (b) we have Herm(F;) = LM. (F;), 1 =1, 2.

Consider the mapping Q. : Herm(F;) — Herm(F3), Q.(H) = QHQ™'. It
is easily seen that (), is an algebraic isomorphism. It generates an isomorphism
of Boolean algebras 6, : 31 — X3 such that Q.(xs) = X6.0, 0 € X1. Define a
measurable transformation ¢ : 29 — Q4 by the equalities

Xo.o® = Qx(tXo), 0 € (Z1)o. (13)
Obviously,
Quf=fl@) V€ L (1), Xouo = Xo(p), 0 € X1 (14)
The equation (14) and the definition of Q. imply:
QXwXwr) = Xw (P)Q(Xwr); @' € Xy, W € (Zi)o- (15)
In view of (15) there exists a unique measurable function ¢ on €3 such that
Qxs) = axo (), o € (EZ)o. (16)

By Theorem 2 of [Za3], (16) implies (12). Since the operator @) is inversible, the
transformation ¢ is also inversible. The theorem is proved.

Comments.

1. The theorem is true for more general measure spaces. In particular, the
proof did not use continuity of the measure.

2. To prove Theorem 1 in the real case, it seems being impossible simply to
pass to the complexifications. Indeed, in general there is no universal definition
of a norm in the complexification of an ideal function space that would be at
the same time ideal and hold the property of “extension of isometries”, i.e.,
such that all of them extend to isometries of the complexification. The simplest
example of such situation is the Minkowski plane 2, where the unit sphere is a
regular octagon. This symmetric space has an extra isometry, namely the rotation
on angle 7/4 *. It is proved in [BrSe] that extra isometries of non-hilbertian

*This example was also noted by Yu. Sokolovski.
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real symmetric sequence spaces could exist in dimensions 2 and 4 only. Due to
Theorem 3 from [Ta], any complex symmetric sequence space different from [,
admits just standard isometries, i.e., permutations and rotations of coordinates.

3. It would be interesting to extend Theorem 1 to more general classes of
Banach lattices; for instance, to describe the class of Banach lattices in which
any invertible isometry is disjoint, i.e., maps disjoint elements again to disjoint
ones.
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IIpencraBienue usomMeTpuii
¢ yHEIHOHAABHBIX MMPOCTPAHCTRB

M. 3aiinenbepr

FnaBHBIN pe3yabTaT yTBep#/jaeT, YTO Ka#paad oOpaTHUMas H30MeTpus
Mely IByMf HlealbHbIMU GaHAXOBBIMHU pellleTRaMU U3MepUMbIX QYyHRIUIA,
YIOBIETBOPAIONIUX JIONOJHUTEAbHBIM OFpAHUYEHUAM, MO#KeT ObITh Mpe/ICTaB-
JdeHa KaR KOMIIO3UITUA ofepaTopa U3MepHMOoil 3aMeHbI TepeMeHHO U onepa-
TOpa YMHOMKEHHUSA Ha U3MEPUMYIO (YyHKITHIO.
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3o6paskeHHA i3oMeTpiii GyHKIIIOHAILHUX MPOCTOPIB

M. 3aiiien6epr

lomoBHUE pe3ydbTaT CTBepi#ye, M0 KO#HA OBOPOTHA 130MeTPifi Miu
ABOMA ilealbHUMU GAHAXOBUMU IpaTaMu BUMIpHUX QyHKIIH, AKi 3a/]0BOMb-
HFIIOThH 10/1aTKOBUM OOMeeHHAM, Mo#e Gy TH Mpe/icTaBieHa K KOMIO3UIif
orepaToOpa BHUMIpHOI 3aMIHHU 3MIHHOI Ta olepaTopa MHOMEHHS Ha BHUMIipHY
(GYHRIIO.
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