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We consider, in the semi-classical (adiabatic) limit, evolution equations
whose generators extend into a strip around real axis as a holomorphic family
of operators (with respect to the time-variable). The asymptotic expansion
of the S-matrix associated to this evolution can be expressed in terms of
simple quantities attached to the singularities for the spectrum of Hamil-
tonians from complex-time plane. We extend to many-level case the result
from [26] which contains as limit cases both the Landau-Zener formula and
Friedrichs—Hagedorn results for this problem.

Introduction

General setting. We study, in a separable complex Hilbert space 7, the
limit ¢ — 0, ¢ € Ry, of the evolution operator, solution of the Schrédinger
equation

iedisUa(s, sg) = H(s)U.(s,s0) with s,s0 € R, U.(s,s0) =1. (1)
It describes the dynamics of a time-dependent quantum system with the generator
or the Hamiltonian H (s). In the adiabatic framework ¢ is the slowness parameter
and s denotes the reduced time s = ¢t.

This kind of limits, when the small parameter is in the front of the highest or-
der derivative and reduce the equation order for € = 0, is not tackled by standard
perturbation methods and involves a strongly singular behavior for the solution
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Multilevel Landau-Zener formulae: adiabatic reduction along a complex path

of the differential equation at € — 0. The starting point of the method which we
consider relies on the idea of getting information about U, (s, sg) without actually
integrating (1). Following [33] this can be realized by using a schema of reduction
for the Schrédinger equation, to a subspace K.(sg) (almost) invariant under the
evolution, i.e., U.(s, 50)K(s0) >~ K.(s) or (see below a precise statement):

P.(s) =~ U.(s,50) Pe(50) U= (s, 50) (2)

(we denoted with P.(s) the orthogonal projector onto K.(s)). The aim is to
integrate the restriction of (1) to K.(sg). This arguments relies upon the fact
that the singularity of U.(s,so) at € — 0 comes from one of its components
called dynamical phase operator (for instance, see the exponential factor in (11)).
It does not affect the subspaces K.(s) which are regular at ¢ — 0. For the
construction of K.(s) an equation without U, (s, sg) is obtained differentiating
(2) (the Heisenberg equation):

. d

zeEPE(S) ~ [H(s), P.(s)] (3)
We mention also the equivalent manner to formulate the invariance of P.(s) under
U.(s, s0) by considering an exact intertwining evolution:

P (s) = Ua(s, 50) P=(50)[Ua(s, 50)] ", (4)

which turns (2) into
U.(s;50) = U4(s, sg) - (5)

(We send to (19), (34) for the precise form of (3), (5)). For such ”adiabatic”
evolutions we shall use a construction based on a generalization (given in [33]) of
the Krein—Kato parallel transport, for which we consider a variant in Lemma 1.3.
The restriction Ua(s, so)|x,(s,) i simpler, being, e.g., trivially integrable when
dimK = 1.

A question of interest in adiabatic theory concern the transition probability
between spectral subspaces of H(s) associated to parts of the spectrum separated
by a gap. Thus the starting point in the construction of P.(s) was a spectral
projector of H(s) corresponding to an isolated bounded part of the spectrum (let
denote it o7(s)). We assume for the spectrum of H:

o(H(s)) =o1(s)Uorr(s), irel]%dist(al(s)an(s)) >d>0. (1)
S
Let consider a continuity condition in s for o;(s), for instance, we suppose the

existence of a simple closed path I'(s) in the rezolvent set of the Hamiltonian
I'(s) C p(H(s)), continuous in s, which encloses only o7(s), with

dist(I(s), o (H (5))) >

W
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This involves for P, the same regularity like that for H (we shall denote by P,
the corresponding spectral projectors of H).
The fact that F,, is invariant under U, (s, so) in the order o(e), i.e.,

1,11

Eyy(s) = Us(s, 50) Py (50) Ue (50, 5) + 0(e)

is known as the Adiabatic Theorem, and it has a long history (see [2, 21, 30, 1]).
For the study of the higher order solutions of (3) we mention the approaches from
[25, 9, 38]. The higher orders are determined by the order of differentiability of
the Hamiltonians family. For the indefinitely differentiable case the extension for
complex times is important. We consider here the holomorphic case.

Let us extend (1) in the complex strip

So={z€C||Imz| < a}

where

H(z) € B(H) (ii)

is an analytic family of bounded operators. We assume (i) for all z € S,.
As in most of physical situations we assume also the integrable decay condition

sup (14 |Rez|"tF)||H(2) - Hr|| <oo forsome H: € B(H) (i)
zESa,Rezzo

(or a limiting approaching dominated by any b(Re z), b € L'(R)).
The classical result states that (notice the assumption of self-adjointness on
the real axis:

H(z) = H"(2)) (5)

the transition probability from o7(—00) to or7(00) is exponentially small:

Pirr(+00,=00) i= lim [[Poyy (5)Us(s,50) Pry (s0) [P = O(e™2) ()

tg—r—o0

(for some k£ > 0). We note that no assumption are made on the nature of the
Hamiltonian spectrum except the gap condition. We mention [24] for initial for-
mal methods to compute exponential tunneling for analytic Hamiltonians. For
a rigorous approach we cite [17] which combines the first order in the construc-
tion of Uy(z, z9) with a variant of the complex WKB method. In [33] there is
a straightforward construction of the method (3)—(5) on the real axis. This fact
allows one to cover the case when H(s) belongs to the Gevrey class, which ”inter-
polates” between the € and the holomorphic case. It gives (6) for any reduced
times and uses the concept of super-adiabatic evolution Uy (z, zp) which verifies
(5) up to exponentially small terms (see [18] for a similar construction). For a
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better control of k in (6) we refer to [27] which by micro-local analysis techniques
obtains

Pir1(+o0, —00) = O(e?/*), (5")

with 3 arbitrary close to a positive constant ¥y (which has a geometrical in-
terpretation). We mention [32] for estimations of this type in the framework of
[33].

The scattering operator associated to (1) is defined by the limit

t— o0
tg—>—o0

S= lim exp(éHrs)U(s, s0) exp(—ésto) .

The goal is to express the asymptotic expansion of S (in €) in terms of the
local behavior spectrum of H(z). Let consider the n-dimensional case. We give
the asymptotic expansion for

By (00)SFy (—00) (7)

under the assumption
rankF, (z) =n < o0 (iv)

(let or(H(z)) = {hi(z), © = 1,...,n}, with h;(z) eigenvalues). The method
covers also cases which violate the gap conditions of type (i) respectively (in the
finite-dimensional framework (iv)) cases with crossing points at real arguments
for h;(s). The idea (of the complex WKB method) is to remove in complex plane
the path for the integration of U, (s; s0)|k.(s,) such that it avoids the degenerating
points. Thus the gap condition is recovered but the difficulty become the loose
of the self-adjointness of H(s). We shall see below the manner to avoid this
inconvenience. We consider also the so called ”quasi-crossing” case which covers
the situation from many applications with small gaps between eigenvalues (with
eigenvalue crossings in the complex plane close by the real axis). The interest of
this situation comes from the double asymptotic expansion of S in the two small
parameters: € and the gap width.
As a by-product of the reduction method to K.(s) the S-matrix

By (+00)S By (—0) (8)

can be obtained as the one given by an effective evolution in Ran F,,(0) (see
[26, 18]). The result hold up to exponentially small errors (see [28] for accurate
results of type (5”)). The only case where the asymptotic expansion (6) was
computed is the 2-dimensional one (or reductible toit). In this article we consider
the multidimensional one. For the 2 x 2 matrices case the leading term of the
asymptotic expansion (6) is given by the so called Dykhine formula (see [20]
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and also [6, 35] for previous results) which for small but finite gap (the quasi-
crossing case) gives the Landau-Zener formula [14] used by physicists since a
long time in the computation of the non-adiabatic transition probability over
a gap. The situation of a real crossing between the two eigenvalues is covered
by the Fridrichs—Hagedorn result [10] obtained by techniques of stretching and
matching for the asymptotic expansions of differential equation solutions. The
method which we use covers as limit cases all these situations.

We mention that our results have the same expression for unbounded Hamil-
tonians. The assumptions should be modified as follows. The Hamiltonians H (z)
are taken to be a family of closed operators defined on a common dense domain
D C H. The analyticity and decaying condition (iii) can be expressed in terms of
graph norms. As was noticed in [17], the different graph norms on D, according
to H(z), taken in different points z are equivalents. The analyticity and decaying
condition of H(z) can be equally formulated (we recall for instance Theorem 1.3
from Chapter VII of [22]) for the rezolvent R(z,&) = (H(z) — &)~ € € I'(2)
(let T'(2) C p(H(2")) be the rezolvent set of H(z"), for 2’ in a neighborhood of
z). It should be set also for all z € S, diam(oy(z)) = D(z) < D < co. For
bounded Hamiltonians (5) is used only as o(H(s)) C R (for example, in the
quantum scattering application from [7] the self-adjointness was considered with
respect to a different scalar product). But in the unbounded case the condition
that H(s), s € R, is a family of self-adjoint operators, defined on D and below
bounded, ensures the existence and uniqueness of U (s, sg) as unitary propagator,
i.e., a two-parameter family of unitary operators, which leaves D invariant, is
jointly strongly differentiable on D and verifies (1) — see the theorem of Kato and
Yosida ([22, 42, 43]). Therefore the mentioned integration of U(z, zo) for 2, 2o on
a complex path is not straightforwardly adaptable in the unbounded case. But
using the reduction mentioned after (8) to the effective evolution corresponding
to o1 (see [18, 26]), we obtain in the unbounded case exactly the same expression
of the results as for the bounded one. Thus, we restrict ourselves to the previous
bounded case.

We also mention that the construction of K.(s) from [33] does not involve
differential equations and assume that Hamiltonians are a family of densely de-
fined, closed operators acting in a Banach space. It is a local construction, in the
sense that it involves only finite order derivatives of the Hamiltonian.

Improved complex WKB-type analysis. The S-matrix asymptotic ex-
pansion (6) for an complex extension of the Schrédinger equation (1) is an old
subject in quantum theory. We cite [27] for a recent modern approach and men-
tion [24] for an initial physical formulation. Extending H(s) holomorphicaly in
S. (5') allows one to express Prr 7(+00, —00) (associated under (iii) to (1)), in
terms of the geometry of the H(z)’ spectrum at its singularities from complex-
time plane.
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We discuss a few arguments from [20] in order to note the progress brought
to the classical complex WKB-type method (from [13]) by [26] (see Section V]. In
[26] as an illustration of this improvement we find a short (see [14] for a different
analysis in the unbounded case) derivation of Landau-Zener formula. By the
same method we give in [7] (the time independent application from Part 2) an
explicit simple realization of the existence results derived in [36] by micro-local
analysis technique of [12].

To sketch this improvement let firstly recall for the complex extension of
(1), that the spectral decomposition of H(z) describes a Riemann surface. For
example, in the finite dimensional case, as the eigenvalues are solutions of the
characteristic equation with the coefficients being analytic functions, this is a well
known result for algebraic functions and by the Riesz formula it can be transposed
for eigenprojectors (the branching points are among the points of degeneration,
the crossings for eigenvalues). It is necessary to consider the multivaluesness of
the spectral decomposition because the transition probabilities are defined with
respect to the splittings of H,; spectrum and because, as we mentioned before,
in the method which we use, K.(s) is constructed from the spectral projector
associated to an isolated part of the spectrum.

A consequence of this fact is that (as K.(s)’s construction is local for reduced
time in any complex domain D where

o(H(z))=o0r(2)Uopr(2), 212{7 dist(o7(2),0r1(2)) >d >0 (9)

holds) after restricting ourselves to sub-domains of S, we shall be able to consider
in (9) a splitting of the o (H (z)) which is different by the splitting on real axis, or
cases which violates (i) on R. Although the possible source of confusion this is the
point of the exponentially small values for Pz (400, —00) (see details below).

The operator H(z) (and by (1), also U(z, z)) is an univalent function on S,.
Therefore as a limit of an univalent analytic operator (see [26, Lemma 4.3])

S=_lim exp(éH,nz)U(z, 2p) exp(—éleO)7 Z, 20 € Sq - (10)
Re zg—+—c0

For the bidimensional problem, let us consider the ideas of the approach from
[13] used in [20]. The evolution equation written in the form

ietl(2) = H(2)0a(2), e(2) €C,  H(2) € My(C)

(" denotes ) is decomposed into an orthogonal basis

H(z)np,i(2) = hj(2)np,5(2)
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(let denote with P;(z) the spectral projectors for h;(z): H(z) = 2521 h;(z)P;(2)
and decompose . up to the dynamical phase

= Zc] z)exp | —— / dz"h;( np,i(2)). (11)
7=1
The basis vectors are obtained by parallel transport in S,:

np,j(2) = Up(z, —00)ny, j(—o0) ,

2

P2

d.

E )| Up(z,20),  Up(20,20) =1. (12)

Z,co

As U, is multivalued (its generator is meromorphic on S, and (12) has regu-
lar singular points at the eigenvalue crossings), the notation U,(zp,20) = I is
ambiguous because the evolutions after a closed path at zy give a representation
of the fundamental group of

Sao\{the set of eigenvalue crossing points} (13)

at zg.

The first step is to estimate ¢; by WKB analysis for U(z, zp) along a complex
path v above the "nearest” (see [20] for the discussion of this notion) branch point
(Z with hy(2) = ho(2), ImZz > 0). We make the next considerations, supposing
only one singularity in this situation. A technical aspect is the restriction of
”dissipativity” for the path used in this analysis.

We denote by ~ the analytic continuation along 7, and for Im2z # 0 we
denote ”without ~” the analytic continuation along R. The result of the WKB
analysis is (let consider hy(—00) > hy(—00)):

|€1(2) = e1(=00)| = o(e) -

Therefore it follows from

Ua :Z exp (__/ dz' h )"p]( ),

(3]

where 7, ; is the parallel transport on 7 of 7, ;(—o00) = n, ;j(—oo) (orthonormal
vectors):

Mp,j(2) = Up(2, =00)y j(—00)
that in order to calculate [Sy;| = |[P2(c0)SPi(—o0)|| all what is needed

||72,1(400)||. Notice from (10) that ~ is sufficient for the S-matrix element
definition.
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According to the remark after (9), we have
hi(+00) = hj(+00) and Fi(+00) = Pj(+c0). (14)
The classical argument for ||72, 1 (+00)]| calculus is to use (14) which gives
Tup,1(+00) = const - ny, 2(400) . (15)

Because U, (s, s0), s, so € R is unitary, n,;(4+00) are orthonormal and the previ-
ous norm is given by |const|.

Although ingenious we observe a weakness of the argument. It requires the
gap assumption (i) on R (that is infser[h2(s) — hi(s)] > 0) or equivalently a pure
imaginary singularity I'm z > 0.

The fact pointed out in [26] is that the essence of the result does not rely
on the previous motivation. Thus the same job (i.e., to compute ||7, 1 (+00)||) is
realized as follows. We consider any known, differentiable family of orthonormal
vectors in P, (let us denote it by n;). For the complex factor fin

fip,1(2) = f(2)m(2) (16)

we obtain from (12) the differential equation

Fi(2) = (na,m}) f(2)

which is integrable along . The real axis can be used finally in order to obtain
local results for |f(+00)| (and also for Im [T°°hy(2') d2" in (11)) by shifting ~
to R. This allows one to cover the case when Z € R.

We observe that in (10) we use the fact that U is univalent whereas here
multi-valueness of U, was important. We mention also another implication of
o(H(s)) C R for s € R in the simplification of the geometric setting from the
proof for the existence of a dissipative path (see [7, Appendix 2]).

Therefore in both approaches the dependence of |Sgq| on the local behavior
of H(z) at z is obtained. But the point is that after replacing the Hilbert space
geometry at z = +oo used in order to obtain (15) by that one used along 7 in
(16) it is shown that for the problem of interest the representation of fundamental
group mentioned before (13) is not essential and can be avoided.

A further improvement is to transpose the decomposition (11) in operator
language and to use the tools of adiabatic reduction theory mentioned at the
beginning. The assumptions and the results of complex WKB approach are
recovered. But what is important that after replacing U,(z, z0) by U., 4(z, 20)
mentioned in (4), (5), (see the details below) the higher orders in ¢ are easy
available.

Moreover, we mention the more general approach of the quasi-crossing case.
Thus (see the 2-level situation) a single method for Imz = 0 and Imz # 0
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cases, permits to describe small I'm Z ones by the next simple assumption on the
Hamiltonian operator

H(z)Ho(2) + Hp(2) , (v)

where Hy has the eigenvalue crossing points on R and H), is a small perturbation
(see the stronger condition on o(H(z)) imposed in [14] to avoid real crossing
cases).

Let

sup [Hp(2)|| =7
2€8q
For an finite  example we mention [7, Section 2]. For such calculus we do not
consider the terms which corresponds to the transition probability between o;
and oy, by restricting (i) to
d? > n

or oy sufficiently isolated (see the precise result for £ from (6) in [27, 32]). The
physical interest for small values of 7 is given by the competition of the effects
given by € and 1. Thus we obtain the asymptotic expansion also in 5. A single
result covers the limit cases mentioned above: Landau-Zener (¢ < 1), Friedrichs
Hagedorn (7 = 0) and the intermediate case (7 ~ €). The case n = 2 with a single
linear crossing was treated in [26]. We are interested in multilevel extensions to it
(see also [19, 26] for the diagonal elements of the S-matrix in the non-degenerate
case). We refer the reader to [14] for the Landau-Zener formula and to [10] for
Friedrichs-Hagedorn result (see also [11] for an = () situation).

In this article we restrict ourselves to a class (with respect to the topology
of the eigenvalues crossings) of Hamiltonians for which the complex WKB-type
method is directly applicable. The result was announced in [7]. It can be obtained
also with the method of [20] (see [15]) but only for the non-degenerate case (in
the framework of quantum scattering application from [7] this means only over
barrier collision). In [8] we take advantage, among others ideas, from the previous
mentioned improvements of the complex method and reconstruct the general
argument of the reduction schema (2)—(5) in interdependence with the complex
method. Via the point mentioned in (8) the construction is differentiated in
subregions of S, solving a larger class of Hamiltonians.

1. Multilevel adiabatic reduction method

Let D be a simply connected domain in S,, where the gap condition (i)
holds. The projector from the next lemma verifies the Heisenberg equation up
to exponentially small terms. The construction is achieved (see [33]) from a
truncation of its formal asymptotic series into an e-dependent order (the formal
series becoming its proper asymptotic series).
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Lemma 1.1 (see [26, Lemma 3.3]. There exists the projector FP.(z) such that

(i) at fized z, in the sense of asymptotic series,
P(5) =Y () (17)
J=0

with
1

= fr(z)(x ~H(2)"VdA,

B =57 . DO HE) T Qo) (7)) R)

Fo(z) = Po(z) = Pr(2)

~Po(a) (o Eim()) Q) } (A= HE)™ 4 55() = 2R(S, () Pali) s (19

j—1

Qo(2) =1-Ro(2), S;(2) = Y En(2)Ejmm(2)

m=1
(the path of integration is the contour I'(z) surrounding or(z) at finite distance
by a(2));
(i) P- checks the Heisenberg equation up to exponentially small errors:

Jeg >0, K<oo, k>0, such that VzeD, 0<e<gg,

Jie=Po(2) = 1), P < Ko(Re z)exp (-2 (19)

(the function b is the decaying function from (iii)).
We note that F;(z) before is the unique solution of

i%Ej(z) =[H(z), Ej+1(2)],

Ei(z) = Z_: En(2) Ejmm(2)

satisfying Fo(z) = Fo(z) or at the formal level series

(i E;—(z)ef) - (i E;-(z)ef)

2
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and
d (& . 0 .
e (Z Ej(z)»s]) = [H(z),ZEj(z)»s]] .
Z \j=o =0
An equivalent recurrence for this construction is given by

_ b . /
Biz) = 5 /F R (19

with

qi(z,A) = —i(A — H(z))_léq]'_l(z, A) and  qo(z,N)= (A — H(z)™!

(see [28, 40]).
We obtain F;(z) analytic in D and P.(z) = PX(2) (in [7, Section 2] this
self-adjointness is considered with respect to a different scalar product). As we

mentioned all the theory is local in z (only finite order derivatives of the Hamil-
tonian are involved).

In the multilevel case we encounter the situation of more isolated bounded
parts of the spectrum for which we want to make a similar construction. Thus,
we consider the following gap assumption:

J#k 2€D

o(H(z)) = Q 0;(z) with min inf dist(o;(2),0%(2)) > 0

(for an unbounded Hamiltonian we assume o;(z) to be uniformly bounded, j =
1,n —1; apply the following lemma for P;., j = 1,n — 1, and take P,. = I —
YL Pie(2)).

A construction for P;.(z), j =1...n, similar to the above is given by

Theorem 1. There exist the projectors P;.(z) such that

(1) at fized z, in the sense of asymptotic series
0 .
Pj75 (Z) = Z Eiyo'] (2)82

=0

with F; ,,(z) supplied by Lemma 1.1 (or (19')) for o;(z);
(71) (3) g0 > 0, K < 00, k> 0 such that (V)z € D, 0 < e < &g,

||z'€%Pj,a(2) — [H(2), Pj<(2)]]] < Kb(Re z) exp <_?k> ;
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Bie(2) Pie(2) = 0i i Pie(2) ;

Proof. In Lemma 1.1, P.(z) is constructed as a spectral projector (for
the spectrum part which is near 1) of the operator ("almost” idempotent) T, )
which is the truncation of the formal series (17) into the ¢ dependent order

N, = LL} (with ¢ constant)

€

TN, (2) Z Ei(

It verifies

1P (2) = Ty, ()|l < Kb(Rez)e . (20)

Let P;.(2) be the projectors given by this lemma for o;(z) making all the
truncations in the same e-dependent order supplied by

All the estimates remain valid with the same constants K and k in (20) (see [33]).
Below we shall include generically in the same notation K all the multiplicative
constants involved.

We have l
Z Em;criEl—m;cr] =0 fOT‘ { 7&.]
m=0

(see [40]) which involves after estimates similar to those for (20) ( see [33, Rela-
tions (2.50)—(2.52))]:

IPe(2)Pia)l] < Kb(Re2)eT  for i ). (21)
Also, .
Z Nero; (2) = TN, 410000 00, (2) = 1
=1
(the first equality from (19’) and the second one from Lemma 1.1) implies

zn: — 1| < Kb(Rez)e= . (22)
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Now from (21), (22), via a generalized Gram—Schmidt orthogonalization given
in the following proposition, we obtain, after renoting k/2 by k, the required
Pio(2).

For example, the Heisenberg equation up to the same errors is immediate
using boundedness of H(z) and

=(Pe(2) = Pre(2)] < Kb(Re 2)e™ .

i(Pie_Pi,e)(Z):—i, / (P — Pic)(u) du

27
|z—u|=

which implies (eventually in a smaller domain) the previous estimate.

For § := b(Re z)e= , we have the independent result:

Proposition 1.2. Let § > 0 and ]52'75, 1 = 1,n, be uniformly bounded pro-
jectors such that (V)8 with 0 < § < é:

1> Pis— 1 <8 and ||PsPisl <6 (i#3).

=1

Then (3)8o > 0, the projectors P,s, i = 1,1, and a constant K such that (¥)§
with 0 < § < &

|Pis— Pisl| <K -6 and > Pis=1,PisP;5 =06 ;P
=1

Proof: Letus omitd in projector indices. We use the notation K gener-
ically for all constants involved. (In the previous theorem context all the esti-
mates are uniform for z € D.) By the expression "for § small enough” we mean
”(3)do > 0 such that for any § with 0 < & < &y”.

We proceed by induction in n. The case n = 2 is obvious by setting P = P,
and P2 =1 - Pl.

For the general case we first orthogonalise P; and P,. The family of bounded
operators 15 = (1 — ]52)]51(1 - ]52) check P,T5s = T5P, = 0 and T2 — Ts|| < K¢
for § small enough. On a contour that contains only the spectrum part of Tjs
which is near 1 we obtain the projector

4 1 1 z ~ ~

P=— dz ith ||Py— P|| < Ké

o / s vith 1P Rll<
|z—1|=const
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(see, for example, [33, Proposition 3]). Also, PPy = P1P, =0 (because obvi-
ously ]%ﬁ = ﬁ]% = %) Therefore ]55 = ]51 + ]52 is a projector.

Now from the induction assumption ()P, Ps,..., P, associated to Ps,
P, ..., P, verifying the conditions of Proposition. For ¢ small enough, [|FP5 —
Ps|| < 1. Let Ms the Sz—Nagy transformation (see [22]) matrix corresponding to
the pair Pj, Ps:

Ms=[I— (Ps— P5)Y =" ?[PsPs + (I — P5)(I — F3)], (23)

where (1 = T)"2=T1+Y2, ”’;;?”W. It has the bounded inverse

My = [PsPs+ (1 = Ps)(I = PO = (Ps — Py

and verifies P = M;PsM; . Since for & small enough |M —I|| < K -6, |[M~"' —
I|| < K -6, we finish the proof by setting

Pi=MP,M™" and P,=MP,M™". =
Now we extend the Krein—Kato parallel transport from [33] to the many-level

context by simple adaptation of one step from the recurrent construction of [31]:

Lemma 1.3. If
@'gdiiUA(z, 20) = (H(2) — Bo(2))Ua(2, 20);  Ua(z,20) = I (24)

with

B.(2) = 3 Piu(e) (i Piul) = [H(2), ()]
i=1
(exponentially small), then
PJ}E(Z) =Ual(z, ZO)PJ'7€(ZO)U;1 (2, 20)

(exact intertwining).

We emphasize the before idea to looking for the asymptotic expansion of
P.(z) in the e-factorised form (17) and to construct the intertwining superadia-
batic evolution U4 (z, zp) independently. In the previous variants of the Adiabatic
Reduction method [34] the utilization of U4 (z, zg) directly in the P. construction
brought inessential technicalities in the estimations from (19) (see [18] for such
exponentially small results).

Aslong as U, 4(z, 29) is close to U.(z, zp), we can obtain informations about §,
using the superadiabatic evolution. The proof of (5) passes through the Gronwall
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lemma-type argument (see [39]) and therefore uses the integration of the differ-
ential equation (24) along a path which we take (as we stated in introduction) in
the complex plane. This proof is not straightforward because of the estimates of
type ||U:(2, 20)|| (a non-unitary operator for complex arguments) which presents
difficulties similar to those of the method WKB complex.

Results of type adiabatic theorem

[Py, (+00)S Py (—00) || = 0+ O(Ke™¢)

are immediate (we replace U, 4(s,so) with U(s,sg) along real axis when the
evolution operators are unitary, and we also use ||FP.(2) — Fo(2)|| < b(Rez)e as
below). An explicit calculus of P, (c0)SP.(—o0) can be realized when Ran P.(z) =
1 (by explicit integration of U, 4 along the complex path of evolution).

For the general theory of adiabatic reduction (the construction of P, and U, 4)
we mention following [32], a few other topics which are contributed to clarify this
problem. The general scheme can be viewed as an extension of a standard tool of
the analytic theory of perturbations [22] to the time dependent case. It includes
in a unitary approach ([31], in [3]) topics from the adiabatic theorem of quantum
mechanics [29] and of the theory of spectral concentration [30], to the theory
of adiabatic invariants for linear Hamiltonian system [4, 41] and the theory of
simplifications and diagonalization of differential evolution equations [23].

2. The complex WKB-type method

The reduced S-matrix P, (+00)SF,,(—0o0) is equal (up to exponentially small
terms) with the S-matrix of another effective evolution operator acting in the n-
dimensional space (fixed for instance to origin) Ran P,,(0). We refer the reader
to [18, 26, 8] for details. In a few words, for this construction we first consider the
iterative scheme from [33] in order to associate F,, .(z) to P,,(z) (Lemma 1.1)
which are intertwined by the generalized parallel transport Krein-Kato (Lemma
1.3 for n = 2) Us(z, zo) (exponentially close by the real evolution). We denote
the real variables to include time-independent situations. As for € small enough
| P, .e(z) — Py, (z)]| < 1the Sz—Nagy matrix (23) associated to them M, . is well
defined, checking

Pry () = My, o (@) Py, (2) M3 (0)

01,

Finally, if A(z,z¢) is the parallel transport of P, (z),
. d -
Z%A(;t, zg) = i[ Py, (), Py, (2)]A(z, 20)

with
Pry(2) = Az, 20) Py, (20) A(z0,2)
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the desired effective evolution is given by

Usa(z,20) = A(0,2) M ' (2)Us(z, 20) M, - (z0) A(z0,0) .

OJ1,&

Its evolution equation

o d
zng&A(ac, z9) = He 4(2)Ue a(z, 20)

has the Hamiltonian

Heoa(x) = A0, 2) My (2) (H (2) = Be(2)) Mo, o (z) Ay 2(2, 0)

OJ1,&

—icA(0,2) [Py, () Py, (z)]A(z, 0) + ic A(0, x)jfo;{E(x)Mg]7a($)A(x, 0).

Therefore we can suppose o7y = @ (or dim H = n) because if not, using the
”change of representation” (given by M,, .(z)A(z,0)), we reduce the problem to
Ran P,,(0). The only difference is the e-dependence of H,, but its expansion
in € has no contribution in the orders calculated. Also for € small enough this
dependence does not change the topology of eigenvalue crossings (see [8]).

We specify the following notations. We denote by hg;(z), ¢ = 1,n, the eigen-
values of Hy(z) in 070(2), and we take o small enough so that

RO {z € Clhoi(2) = hoj(2), 1# 7} (25)
We consider (5') also for Hy(z), in addition to (iii) we claim

sup [Re 2"+ Hy(2)]| < o0,
2€ES4

and we assume that
Ho(z) and H,(z) areanalyticin S, forsome a>0. (vi)

The analytic continuation of hg;(z) (their analyticity is obtained (under 25)
from the Rellich theorem [37]) and the perturbation theory in H,, give a con-
sistent identification for hg;(z) and h;(+£oo) = hi»’r (and thus for the
S-matrix element S; ;). To simplify the notations we shall use the same name
(and notation) for the S-matrix elements as complex numbers given by the
scalar product S;; = (n;(c0),Sn;(—00)) between the normalized eigenvectors
n;(+£o0) = P;(+o0)n;(£oo) (see below a canonical choice of them) and the oper-

(
ator S; ; = P;(00)SPj(—00):

P;(00)SPj(—00)n;(—00) = 8; ni(c0), |[Fi(c0)SPj(—o0)|l = [Si,l.
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We resume the above assertions on the complex extension. In the proof that
U. 4(z, z9) is close to U.(z, z) (see (34)), we choose the mentioned integration
path in the complex plane in order to avoid the crossing points on R and therefore
to recover the gap condition necessary for U, 4 construction. The Hamiltonian
H(z) (and therefore U.(z, zp)) is an univalent analytic operator in S, while its
spectral decomposition (h;(z), 7 = 1, n, o77(z) and the corresponding eigenprojec-
tors) are global multivalent analytic functions with branch points at the crossing
points {z € C|h;(z) = h;(z) for some 7 # j}. This Riemann surface behavior de-
termines the exponentially small results obtained for [S; ;|. Moreover, it permits
to compute by the same method different elements of the S-matrix (7) (let define
them on the real axis for = 0 — see the remark after (vi)). For this we simply
consider (topological) different dissipative path with respect to the branch points
contained in the domain delimited by the path and the real axis.

The important technical point in the complex extension is that for the proof
of (34) (see the discussion after Lemma 1.3) we can do estimations of type
U (2, 2z0)|| (which otherwise blow-up in the limit ¢ — 0) if we restrict the evolu-
tion operators to the subspace corresponding to the least dissipative eigenvalue
(h1 in (30), (31)). Thus (5) and hence adiabatic theorem — like results still hold
true for non-self-adjoint Hamiltonians (see [34]). The existence of a complex
path which verifies the technical requirement of dissipativity (characteristic for
the complex WKB method) makes the method sensible to the behavior of Stokes
lines (see [7, Appendix 2]). It impose constraints concerning the topology of the
eigenvalues crossings and restrict the results only for linear crossing points. A
straightforward approach along the Stokes lines ([16]) can supply results for high-
er order degeneracies but for example, the quasi-crossing case from below is not
available.

The main condition, which we claim for the eigenvalue crossings, is

(V)r, s=1,n card{z € Rlhg,(z) = hos(z)} < 2. (cond 1)

We calculate the probability of ”transition” after a crossing point from the
S-matrix unitarity. A consequence is that we obtained only its module. A viola-
tion of (cond 1) would involve an interference of two such transition probabilities
with the same order, hence the knowledge of their phases. It would generate the
so called Stuckelberg oscillations (see [19] for less explicit results).

In this article we restrict ourselves to a first situation where the complex
method gives directly any order of the S-matrix element (including the phase).
We calculate S;;, when all the crossings of h;(z) with other eigenvalues are with
positive slope (or all with negative slope):

sign(h’;(c) — hi(c)) = const (Y)c € R with h;(c) = h;i(c), for some j € I, n, j#1.
(cond 2)
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For the existence of the dissipative path in this case we extend the proof from ([7,
Appendix 2; 14, 20] (if we consider 7 small enough) and we mention [7, Appendix
1] (for a finite p-example).

We illustrate the method in the following two cases: 1 — for several double
eigenvalues crossing points and Il — for one multiple crossing. Identical proofs
are applicable to all their combinations according to (cond 2). Consider n = 3
and A} > hY > hh.

Case I. Let hl, > hf > h] and hoz(z) # hos(z) for 2 € R. We assume that
ho(z) and hgo(z) (respectively hg1(z) and hg3(z)) have a linear crossing at
(respectively zo > z1):

ho (1) = ho (1) =a >0,
hos(x2) — ho(z2) = > 0.
(See Fig. 1).

G (Hy(x)) '

Fig. 1.

We calculate Sq;.
There exist the constants g > 0, 79 > 0 such that for 0 < e < eg, 0 <71 < 7,
27 [1

811l = exp { =2 |21z, — i 4+ 5 HE, — i3+ ol )] | (29)

with the notations
HJLo = (no(z1), Hp(z1)no2(21)) , (26)

HZ,213 = (no,1(z2), Hp(x2)n03(22)) , (27)
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i d

dyg = (no,1(z), @no,z(wma::m ; (28)
i d

dy75 = (noa(z), %n0,3($)>|r=r-2 (29)

(we send to (38), (39) for the choice of the eigenvectors). The value of arg S is
given by (47). The previous expression contains as limit cases generalizations of
the Landau—Zener formula and of the Friedrichs-Hagedorn result (see (48)—(50)).

Case II. We consider k5 > h5 > h] and that all the three eigenvalues of Hy
have a linear crossing at the origin with the slopes

h672(0) - h6,1(0) =a>0 and h6,3(0) - h6,2(0) =p>0.

(See Fig. 2).
, G (Hy(x)
h0,1 ;
h0,3
hl
0,2 r
o b - h0,2
hl
.
X
Fig. 2.

We calculate S33 (the only other matrix element given by the method is S14).

There exist constants €9 > 0, ng > 0 such that for 0 < e < &g, 0 < 5 < 9,
2 [1
e Lp

The argument arg S33 is obtained from (47) if we replace 1 with 3. For |Syy|?
we have a similar expression (see (51)) with the same argument as in Case I. The
generalized Landau—Zener formula, Friedrichs—Hagedorn result, and the crossover
regime are similar to Case I.

) 1 )
|S33|2 = exp{ |H, 30 — Z€d32|2 + muf 31— Z€d31|2 +o((e+ 77)3)]} .

Adiabatic reduction along a complex path. Because all these cases
violate (i) on R, the step constrained to integrate a differential equation (the
proof of (34)) is removed on a complex path in S,. As we noticed, because H (z)
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is not self-adjoint the estimates involved in this lemma and therefore (5) are still
true, if we restrict the evolution operator to one eigensubspace for which the path
satisfies the global condition of dissipativity.

For the previous evolution along a complex path =, if we denote by

AL () i= [ (ba(w) — ha(w) du, (30)

Z0

A (2) = / “(ha (w) = hs(u)) du, (31)

)

then the path v is said to be dissipative for h(z) if
ImA! () and ImAZ(z) are non — decreasing along 7. (32)

In the applications (see [34]) with non-unitary evolution operators on the real axis
(32) becomes (Y)u € R, I'mhy(u) > Imh;(u), i = 2,n (the real and superadia-
batical evolutions are close in the subspace corresponding to the eigenvalue with
the largest imaginary part — the least dissipative). In the proof of the existence
in our situation of such a path between +o0o (see [7, Appendix 2]) other implicit
requirements for the path are a bound for sup,cg |d';—(;)| and that it does not
”pendulate” too much at the ends of the strip such that the integrals involved
along the path to be convergent.

The problem along the complex path can be removed (see [26]) on the real
axis. Let z(z) = z 4 iy(z) be the dissipative path. We consider the evolution
operators

Uy(z,z0) = exp (é/ hi(z(u)) (1 + zdPZ—ELu)) du) U(z(z), z0(z0))

0

its generator H.(z) has the eigenvalues
(its g v g

Paa@®) =0, hoi(e) = (@) - i) (14122, =23,

and

U, 4(z, 20) = exp (é/r: hi(z(w)) (1 + zdv—(uu)> du) Ua(z(z), z0(20))

(we denote its evolution Hamiltonian by H,(z) — B,.(z)). Let P,.(z):=
Pre(2(2)).

Defining Q(z,z0) by Uy(z,z0) = Uy a(z, 20)2(2,29) with the integral
equation

Q, (2, 20) = T +ie™! / U, (1, 20) By o (2) Uy (1, 20) 2 (, 30) du. (33)
ro
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for the next restriction to P, .(z¢) (see the intertwining property of U, 4(z, z¢)):
Py e(2)Uy (2, 20) Py e(0) = Py e (2)Uy,a(2, 20) Py 2 (20)

X[I + Py o (20) (2y(z, z0) = 1) Py c(20)],
we have

Lemma 2.1. If~ is a dissipative path for hy(z), then for z, zy € v
Py (2)U(z,20) P1 c(20) = P1o(2)Ua(z, 20) P1(20) (I + R(z2, 205 €)) (34)

with ||R(z, z0;€)|| < K exp(—f) for some K < oo, k > 0 independent of z, zy € ~
(see [26, Lemma 5.1.] and also [34] for errors of order £¥).

In order to obtain the estimation of ||R(z, z0;¢)|| (a Gronwall lemma-type
estimate in (33)) they are used

[Uy.a(z, 20) Pie(o)|| < Clexp(—i®y (2, zo3€))| (35)
1P (20) U 4 (z, 20) || < Clexp(i®;(z, zos€))l, (36)

j = 1,3 (see the intertwining property of Uy from Lemma 1.3), where
1 T
®,(2,20:8) = = [ hoys(u) du+ o(1)
o

(see (45)).
This motivates the restriction to Ran P, . in (34) and involves the result by
applying in the Gronwall lemma the estimations

[|Uqy, (2, 20)|| < const < co, x> 9, and [P 75($0)U;i($,$0)|| < const.

Similarly [26], we consider the following families of analytic vectors: i
eEigenvectors of Hy(z)

Ho(2)n0,5(2) = ho j(2)n0,i(2), j=1n, (38)

orthonormed on the real axis (ng ;(z), nox(z)) = §;k, * € R, which are construc-

ted for instance by parallel transport such that it avoids the eigenvalue crossing
points (singularities of (12)).

eEigenvectors of H{(z)
mo,;(2) = 10,;(2) (39)
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which are orthogonal to ng ;(z) (see the analyticity of ng ;(Z) and therefore of

(mo,j(2), 10,3 (2)))-

eOrthonormed eigenvectors of H(z)

nj(z) = Pj(z)n;(z) and  m;(z) = P7(z)m;(2)

by simple projection and normalization of ng ;(2) respective mg ;(z) (for n small
enough). Also we consider for ¢ small enough the projections

nJ}E(Z) = P]'@(Z)n]‘(z), m]}é(z) = n]}é(g)? J=13.
In the both previous Cases I, I we have for the S-matrix elements:

S11 = (n1(00), Sn1(—00)); S11m1(—00) = Fy,1(00)S Py 1(—00)ny(—o0) =

Rez— o0
Rezg—+—co

. 7
= lim exp <g(h1,r2 — hLl,Zo)) Fo1(2)U(z, 20) Po,1(—00)ng 1 (—o0)

Rezg—+—co
Rez— o0

—  lim exp <§(hmz _ huzo)) Pro(2)Un (2 20) Pro(z0) (I40(e™% ) ) ny o (—00) -
(40)

In order to integrate this expression as well as to prove the estimates from (37)
we obtain the explicit expression for U4(z, o).

By the intertwining property
Pje(2) = Ua(z, 20) Pj.e(20) U3 (2, 20)
we have in the case Rank P;.(z) =1 that
Ua(z,20)n5,.(20) = Aj(2, 20;€)nj.(2) .

We consider only 7 =1 (A; := A), the other ones used only in (37) being similar.
Differentiate (see (24)) and take the scalar product with m; .(2) to get (see
[26]):
ieax\j(z,zo;e)
_ <<m1,e(2)7(H(2)—Be(z))nl,a(2)> _(me(2), £m2(2))

(my . (2)n1 (2)) - my - (2)m1.0(2)) ) Aj(z, z05€)

which involves

k

Ua(z, z0)n1,.(20) = exp (—i(b(z, 20;€) + o(e_?)) n1,:(2) (41)
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with

et [ () Hm) Z<m15< IF i ,s< w)
®(z, 205¢) Z (2 () e () d Z < du . (42)

Now, along 7, by adiabatic perturbation theory with respect to € and the usual
perturbation theory with respect to H,, we obtain the asymptotic expansion in €
and 7 of ®(z, zg;¢) and the control of the remainder. We consider the low order
contributions:

z

®(z, 2:¢) = / {5‘1h1(u) du — i(ma(u), %nl(u»

Z0

—e(ma (w), Py (w) B (u) (H (u) — by (u)) By (u) Pr(w)n ()} du+ o(=?) .

From (18), by residue theorem, we have

By =

hry — h1 {PQ P1 PPy P2} + ha h1 {Pg P1 PlPl(l)Pg} .

We replace this relation, (Plnl)(l) = n(ll) = Pl(l)nl + Plngl) and the similar one
for P'm; into the expression of ®(z, zg;€) and obtain

z

Bzz02) = [ {7 i) = idma (), 4 0)

Z0

d Py (u) Ps(u) d 2
<m0 (e e o] = ) dam @) ool @

with o(g?) uniform in z, zp on the path of integration (z,z9 € 7). The last
assertion takes into account that F,,(z), m > 1, and R(z, z0;¢) as well as their
derivatives are O(b(Re 2)).

Now, by standard perturbation theory (see, e.g., [5]), we have

1

ha = ho + (mo.y, Hyno,n) = g

(mo,1, Hyno2){mo,2, Hyno 1)
1

- m<mo’1’ Hynos)(mo s, Hyno ) + o(n°) (44)

and
1

Pr=F;- ——
! 01 h0,2—h0,1(

FooH,FPoq+ Fo1HpFo 2)
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1
hos = hoga
As we claimed before, we expand the r.h.s. terms of (43) also in 5. The
insertion of the previous relation into (43) (note that (mg j; Pj(2)no,;(2)) = 1+
o(n?)) gives for the second term

(PosHpPo1 + PoyHyPo3) + o(n’) .

(ma,n{"))
1
= <m0,17 néff)—m [<m0,27 Hpn0,1><m0,17 n81§> + <mo,17 Hpn0,2><mo,27 nélb}
1 (1) (1) 2
e (Mo, Hymo) (o1, n63) + (mo.s, Hynoa)mos, niiD] + o(r")

and for the third term(only the first order in 7 is relevant when we expand in &

and 7)
n (I L ) (1)
ot (o + ) )

(1) (1)>

(mo1n{d)(moanlll)  (moanfid)(moani) o(n)
hy = hy hy = by !
(the first term was obtained in (44)). Therefore

@@xmazg(/@wwwm+w@+m%) (45)

with
¢(8) = h071 — i£<m071n8%> + <m071, Hpn071>
1 . .
_m {{<m071, Hpn072> - 25<mo71n83>} {<m072, Hpn071> — Z€<m072n8%>}}
1 . .
_ﬁ { {<m071, Hpn073> — 25<m071ngg)} [<m073, Hpn071> — 'I,€<m073n8%>}} .
0,3 — 0,1

The results.

Case I.

We point out the difference between the behavior for Reo(H (z(z))) (see
Fig. 3) and those of o(H(z(z))): the analytic continuation of hq(z(z)) inter-
twines between its limits A} and k7. For the proof of (25'), we repeat the method
idea. In order to calculate S1;, we use the superadiabatic evolution operator. It
is integrated along a complex dissipative path (if we consider the restriction to
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Ran Py ;) where it differs by the real evolution operator with an exponentially
small term. Thus, from (40) and (41) we obtain

) 1
Si1= Rezhgﬂ_oo exp {—_ {—(h’{z - hlﬁo)
Reoz—)oo €

+ [ eue) dut ol(e+m)*)]} (1 +0(e™)
Z0

with the integral along the dissipative path v. Now using the analyticity of the
integrand in S,\{z1,z2} with simple poles in z1, z9, we can shift the contour of
integration from v to the real axis (note the compensation for vertical segments

contributions).

G (H,(x) o 2 T ()
ho 3
; ,
h0,1 ﬁh&
hl s
o2 |
ho 3 | |
| W v
X X5 X —/ _J
G (H(x)) Re ¢ (H(x+iy(x)))
X X
Fig. 3.

This allows one to use the self-adjointness of H(z), z € R, in order to obtain
results for [S; ;| only in terms of the local behavior of the Hamiltonian at zy, z;
(the singularities of the integrand). We use the standard formula L = P+ix6(0),
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where P stands for the principal value integral, and we notice that for z € R,
mo,1(z) = no,1 (z), which implies Re (ng 1 (z), =ng,1(z)) = 0. We obtain

|(n0,1(00)Sng,1(—00))|* = [S11/?

= exp{ =T [z, = id? 4 1T, — ied3 P+ o))} (46)

with the notations from (26)—(29), and also

arg Sy = ¢! {/_Ooo(ho,l(—oo) — hou(2)) do + /Ooo(hm(oo) _ ho () da
= d

= [ o (@), @) do+ie [ (n0a(a), Tonoa(e) do

— 00

P [ ey oy 0100 (le) =it

ey )hmwﬂm”@*%@*”ﬁﬁwdem+d@+m%}
(m

For this general formula of the transition probability we consider the next
limit cases. In the regime ¢ <« n it becomes the following generalization of the
classical Landau—Zener formula:

2 [1 .
Sul? =exp { =2 | JHZLE + L + o)) [+ o+ 0], @9)
while for n = 0 gives the following generalization of the Friedrich-Hagedorn result:
2 1 xr1 |2 1 xro |2 2
[Sul® =1 —2me { —[di3|" +  |di3]" ) +o(e7) . (49)

Similarly to [26], we note that in the crossover regime, n ~ ¢, the Landau—
Zener formula only gives [Sy1|? = 1 — o(¢), while (46) gives

Sul? = 1= 2 (G821, - iz + 5 IH — iediP ) + o). (50)
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Fig. 4.

See IMig. 4. In the situations without multiple crossing points, in fact the
many-level problem can be decomposed in 2-level problems. The possibility of
the separations (in different manners on different sectors of the real axis) of an
isolated 2-level part of the entire spectrum permits to apply there the reduction
idea from (8) (see [8]). But in Case II, in order to separate at least one eigenvalue,
we are obligated to use a complex path. We compute only S1; and S33 when
the dissipative path is under or over the origin (when hy, respectively, hs are
eigenvalues dissipative with respect to the two others). The distribution of the
others transition probabilities remains an open question.

For the S33 calculus, the path z = z + iy (z) dissipative for h3(z) with respect
to hi(z) and hy(z), is above the real axis y(z) > 0 (see Fig. 5). The method
exposed is applicable completely similar with Case I for

2r [1 . 1 .
|S33|2 = exp {—? [ﬁlH 32 — 'I/Eﬁl32|2 + mlH 31— 'I/Eﬁl31|2 +o((e+ 77)3)] }

and argSgs (the same as in (47) if we substitute 1 <+ 3).
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/N

Fig. 5.

For Sy; with a path z 4 iy(z) below the real axis y(z) < 0 (see Fig. 6), we
obtain the result

27 1 . 1 .
S11]* = exp {—? E|Hp,12 —iedya)® + muf 13 — iedis]? + o((e + 77)3)] }
(51)

with the same arg Sy like in Case 1. The extensions of Landau—Zener formula,
Friedrichs—Hagedorn result and the crossover regime are similar to Case I.

Y (x)

L

Fig. 6.
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MHuoroypoBHeBble ¢opmyJabl Jlangay—3eHnepa:
anuabaTu4yecKkafd peJyKIHUA BIOJb KOMIIJIEKCHOTO MYTH

T'abpusinb Pupuka

B kBasukaaccuyeckoM (agnaGaTHYecKOM) Mpejiefe paccMaTpHUBalOTCH
SBOMONMOHHBIE ypaBHEHUS, TeHEepaTOphl KOTOPBIX MPOJOMMAIOTCA B MOJM0-
Cy OKOJO BellleCTBeHHOI ocH Kak roJoMopdHoe ceMelicTBO onepaTopoB (1o
OTHOIIEHUIO K TMepeMeHHO BpeMeHH). ACHMITOTHYECKOE pasiomeHue S-
MAaTpHIlbl, CBA3AHHON C 3Toil »BodIONUell, MOKeT ObITh BbIpakeHO B Tep-
MHHAX MPOCTBIX BeAUUYUH, aCCONMUPOBAHHBLIX C CHHTYASPHOCTAMU CIeKTpa
raMUJIbTOHUAHOB U3 KOMILIEKCHOI MAOCKOCTH mepeMeHHOH BpeMeHu. MEbI
NpOJIoJKkaeM Ha MHOTOYPOBHEBBI ciaydaii pegyabtatr [26], comepskamuii B
KayvecTBe TpefedbHBIX cIydyaeB Kak (opmyawl Jangay—3eHepa, Tar U pe-
3yabTaThl @puapuxca—XareJopHa s 5Toi 3a7a4uu.

BararopiBHeBi ¢popmyau Jlangay—3eHepa:
amiabaTUyHa peAyKIlifA B3/IOB}K KOMILIEKCHOTO NIIAAXY

I'aGpiens Pipika

Y kBasikaacuuHiii (agiaGaTuuHii) rpaHUIl PO3TAANAIOTHCA €BOMIONIHHI
PIBHAIHHA, TeHepaTOpPH AKUX TMPOAOBKYIOThCA Y CMYTY MOOAU3Y MiHCcHOI oci
AK romoMophHa ciM’s onepaTopiB (BiTHOCHO 3MIHHOI Yacy). ACHMITOTHYHHU
POBKJIAJ S-MaTpull, o 0B’ A34aHa 3 1[I€I0 eBOMIONIEI0, Mo#e Gy TH BUPaKeHO
y TepMIHAX MPOCTUX BEJUUYUH, Kl acOIiifioBaHl 3 CIHTYJASAPHOCTAMU CEKTPY
raMiJIbTOHIAHIB 3 KOMIJIEKCHOI TIJIONMHY 3MIHHO1 Yacy. MbI MpooB#YyeMO Ha
GaraTopiBHeBHil BUTIANOK pe3yabTaT [26], 0 BMIlly€e K TpaHUYHI BUNATKU
tdopmyau Jlangay—3eHepa, Tak 1 pe3yabTaTu @piapixca—XareaopHa A i€l
3agadl.
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