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In this paper, by making use of the theory on Riemann surface and value
distribution theory we obtained some unique polynomials P(z) such that,
for any nonconstant meromorphic functions f and g, if P(f) = P(g) then

f=g.

1. Introduction

Let P(z) be a nonconstant polynomial in the complex plane. If the condition
P(f) = P(g) implies f = ¢ for any two nonconstant meromorphic (entire) func-
tions f and g, then P(z) is called a unique polynomial of meromorphic (entire)
functions, and we say P is UPM (UPE) in brief (cf. Li and Yang [7]). This
relates closely to the concept of Unique Range Set introduced by Gross and Yang
[4]. A set S is called a unique range set of meromorphic (entire) functions if
E¢(S) = E4(S) for any meromorphic (entire) functions f and g implies f = g,
where E¢(S) = U{z|f(2) —a =0, a € S}, here a zero of f(z)—a of multiplicity m
appears m times in £¢(S5). Now we construct a polynomial P(z) such that it has
no multiple roots and the set of the roots coincides with S. Then the condition
E¢(S) = E4(S) means that P(f) and P(g) have the same zeros with the same
multiplicities. This is weaker than P(f) = P(g). Thus any unique range set of
meromorphic (entire) functions will lead to a corresponding unique polynomial.
The converse is not true in general.

Example 1. Let P(z) = 2*+422°-922-2248 = (2—1)(24+1)(2-2) (2+4),
S ={1,-1,2,—4}. Then P(z) is a UPE by the following Theorem A. However,
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for two different entire functions f(z) = 2v/6e* + I and g(2) = 2v/6e™* + I we
can easily check that F¢(S) = E;(S). Thus S is not a unique range set of entire
functions.

Concerning UPE and UPM, Li and Yang [7] proved the following results.

Theorem A. Any polynomial of degree less than 4 is not a« UPE and any
polynomial of degree less than 5 is not a UPM. If P(z) = 2*+a32®+az2%+a; 2+ao,
then P is a UPE if and only if a3/8 — azaz/2 + a; # 0.

In this paper, we shall consider some general polynomial of the form
PR)=2"+a, 12" " +. . daz+a (n>4) (1)

and prove the following results.

Theorem 1. Let P(z) be defined as (1). If there exists an integer t with
1<t<n-2and(n,t) =1 such that a,_1 = --- = ayy1 = 0 but a; # 0, then
P(z) is a UPE.

Remark 1. The following results show that the conditions 1 < ¢ and
(n,t) = 1 are needed.

Example 2. Lett=0and P(z) = 2" 4 ag. Then for any function f
and n-th root of unity u we have P(f) = P(uf).

Example 3. Let P(z) =2542241. Thent =2 < n—2 =4 but
(t,n) # 1. Obviously, P(f) = P(—f) for any f.

Concerning UPM, we have the following result.

Theorem 2. Let P(z) = 2" +a,, 2™ +ag be a polynomial such that (n,m) =1
and a, 0. Ifn>5and 1 <m < n—1, then P(z) is a UPM.

Remark 2. From Theorem A we see that the condition n > 5 is neces-
sary. Combining the two examples above and the following example, we see that
the conditions 1 < m < n —1 and (n, m) = 1 are necessary.

Example 4. Let P(z) = 2" — 2"~ ! 4+ ag, where m = n — 1. Then for
any non-constant meromorphic function h(z) we have

n—1 17 n—21j
P <Ljf_ll hj,) e <L{f_ﬂ h],) .
Zj:o h? Z]’:O h?

Remark 3. Ifwetakem =mn—1in Theorem 2, then P(z) is a UPE.
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2. Some lemmas

For the proof of our results, we make use of the theory of Riemann surface.
The following lemma is the famous Picard’s theorem on uniformization of alge-
braic curves (see Selberg [10]), cf. Ozawa [9]).

Lemma 1 (Picard’s Theorem). Let R(u,v) be an irreducible polynomial
in Clu,v]. If there are non-constant meromorphic functions f(z) and g(z) such
that

R(f(2),9(2)) =0,
then the Riemann surface defined by R(u,v) =0 is of genus < 1.

From this result we can prove the following lemma which is similar to Ford

[1, Theorems 7 and 8] (cf. [2]).

Lemma 2. Let P(z) be defined as (1). If f(z) and g(z) are non-constant
entire functions satisfying

P(f(2)) = P(g(2)), (2)
then there exist an entire function h(z) and rational functions
k k
Ry(z) = ijzj, Ry(z) = Zc]zj (—o0 < s <k < 400) (3)
J=s j=s
such that
f(z) = Ri(h(2),  g(2) = Ra(h(2)). (4)

Proof. Factorize P(u) — P(v) into irreducible factors in C[u,v]. By (2),
one of these irreducible factors, R(u, v), say, will satisfy

R(f(2),9(2))=0. ()

Without loss of generality, we suppose that deg,R(u,v) > 1. Note that f and
g are entire, by Lemma 1, R(u,v) = 0 defines a deg, R(u, v)-sheeted Riemann
surface H of genus 0, since Riemann surfaces of genus one can only be uniformized
by elliptic functions, not by entire functions (see Ford [1, Section 91]).

Thus there exists a conformal mapping ¥ (y) = h of the points y of the Rie-
mann surface H onto the point A of the Riemann sphere. Without loss of gen-
erality, we may assume that h = oo corresponds to u = co. Except at a finite
number of branch points of H we may use u as local uniformizing parameter, so
that i induces a holomorphic function ¢(u) of u near all points of H except the
branch points. Therefore the mapping

2= (f(2),9(2) =y = h=4(y) = o(f(2)) = h(2)
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is holomorphic near all z except perhaps those for which (f(z),¢(z)) = (u1,v1) =
y1 is a branch point of H. These values of z form a discrete set K. If z — z; € F,
then h(z) — h(y1), thus z; is a removable singularity of h(z), h(z) is entire. Since
the genus of H is zero, then H is conformally equivalent to the Riemann sphere
so that any holomorphic function on H can be written as a holomorphic function
of h defined on the Riemann sphere, i.e., a rational function. Thus there exist
two rational functions Ry(z) and Ry(z) such that

u= Ri(h(2)), v=Rah(2)). (6)
Therefore
f(2) = Ri(h(2)), g(z) = Ra(h(z)). (7)

From the relation (2) we may suppose that both f and ¢ are transcendental entire
functions. Then Ry, Ry have at most one pole zy and zj is a Picard value of h(z).
By a linear transformation we may let zp = 0. From (2) we see that Ry and Ry
are of the form (3).

The proof is complete.

Lemma 3. Let P(z) be defined as (1). If there are entire functions f(z) and
g(z) such that (2) holds, then there exists a complex number b such that

m (n bff_ g) = o{T(r,g)}.

P roof. Forany non-constant meromorphic function h(z), we know that

1
17\7 ~ T h
<r7 h _ a) (r7 )

except for a set E'(h) C C which is of zero capacity (see [8, p. 276]). According
to Lemma 2, (3) and (4) hold. If Ry(z) = R3(z), then we take b = 0 and obtain
the desired result. If R;(z) # Ry(z), we define

o = 0, s2>0,
| Isl, s<o.

By (3) there exist two relatively prime polynomials p; and p; and rational function
R(z) such that

Ri(2) = R(2)p1(z), Ra(2) = R(2)p2(2) ,
and
m=degp; =degps < k+s .

394 Matematicheskaya fizika, analiz, geometriya , 1997, v. 4, No. 3



Unique polynomials of entire and meromorphic functions

Now we choose a complex number b such that bp; — py has m zeros {z1,...,2z,}
(counting multiplicities) and z; ¢ E/(h) for j =1,..., m. Then we have
N(rome ) ~Tem, G=10m)
r ~T(r =1,...,m).
Y h _ Z] Y Y .7 Y 3

Combining these and (4), we obtain

J=1

)+0(1).

~ mT(r,h):T(r,bf_g

Therefore, by using Valiron’s theorem (see Gol’dberg and Ostrovskii [3, p. 47,
Theorem, 6.1], the desired result holds. This completes the proof.

The following lemma can be easily deduced from Nevanlinna [8, p. 279] (cf.
Hayman [5] or Yang [12]).

Lemma 4. Any non-constant meromorphic function has no more than {%}

k-ramified values, here a value b is called a k-ramified value of a meromorphic

function f(z) if f(z) —b has no zeros of order less than k, and the square bracket
denotes the integer function.

3. Proof of Theorem 1

Suppose on the contrary that there exist two entire functions f(z) and ¢(z)
with

f(2) £ 9(2) (8)
such that
P(f(2)) = P(g(2)) . (9)
This and (1) give
fftrafi+-+af+a=9"+ag + - +ag+a.

Thus by (8), the above equation can head to

n—1 -1
Zf]g”_l_]—i—atz:f]gt_l_]—l--"+a2(f+9)+a1 =0.
7=0 J=0

Let

p=1.
g
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Then we have
n—1 ) t—1 ]
T B a4 ag(B 1) +ar =0, (11)
7=0 7=0

If 8 is a constant (# 1), then the above equation implies that ¢ is a constant, a
contradiction. Thus § can not be a constant. Therefore

n—1
S #0.
7=0
Next we suppose that
m(r, ) = o{T(r,g)}, (12)

otherwise, we replace g by bf — ¢ in the following discussions, where b satisfies
Lemma 3. Note that g is entire, it follows from (11) that

(’I”L - 1)T(T,g) = (’I”L - l)m(r,g)
t k—1
<m (T, ﬁ) +m (r,kz::l arg™! ;}ﬂj) +O(1). (13)

Let
J=1{0:0¢€0,2r),|g(re’)| > 1}, Jo=][0,27)—J. (14)

Then by (10), (12), and Hellerstein-Rubel [6],

( Zakg“zﬂ]) (t = Dm(r,g)+o{T(r,9)}. (15)

Let {z1,...,2n-1,1} be all the n-th roots of unity. By the second fundamental
theorem, we deduce from Lemma 2, (9), and (10) that

1 1
m (r, w) = (n-1)T(rp)-N (r, W) + O(1)

() o

(n - )T(r,f) - (n —1=2)T(r, B) 4 o(T'(r, 5))

I
B
|
=
"M'
=

<

< 2T(r, B) +o(T(r, f) +T(r, 9))
= 2N(r, )+ o(T(r,9))

< 2N(r, =) +o(T'(r,9))

< 2T(r,g)+o(T(r,9))
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possibly outside a set of r of finite linear measure. Substituting this and (15) into
(13), we obtain

(n—t—=2)T(r,g) < o(T(r,g))

possibly outside a set of r of finite linear measure. Since ¢ < n — 2, the above
inequality implies that ¢ must be a constant, a contradiction. The proof is com-
plete, and Theorem 1 is thus proved.

4. Proof of Theorem 2

Suppose on the contrary that P(z) is not a UPM, then there exist two distinct
non-constant meromorphic functions f and ¢ such that

P+ amf™ +a0=g" + amng™ + ao. (16)
Let
f=0y. (17)
Then  # 1. Substituting (17) into (16), we obtain
- g -1 rlt B+
nem g P . 18
a 5T a T 11 (18)

Since (n, m) = 1, the denominator and the numerator above are relatively prime.
Now we consider two cases.

Case 1. n>band 1 <m <2, Thenn—m > 3 and n -1 > 4.
From the denominator of (18) we see that 3 has at least n — 1 (> 4) 3-ramified
values. It follows from Lemma 4 that § must be a constant, so does g by (18), a
contradiction.

Case 2. n>band3<m<n-—1. Thenn—-—m >2, m—12> 2 and
n— 1> 4. From the denominator and the numerator of (18) we see that § has
at least n — 14+ m — 1 (> 6) 2-ramified values. Again from Lemma 4 we get a
contradiction.

This completes the proof.
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ITonnHOMBI eIUHCTBEHHOCTU 11eJblX U MepoMOp(HbIX
byHRUM

Yskyub—UyH HH, Keun—Xy Xya

Hcnonb3yd TeOpHIO PUMAHOBBIX NOBEPXHOCTEH M TeopHio 060GIIEHHbBIX
(GyHENUE, TOTyYeHbl TMOJMHOMBI €IHHCTBEHHOCTH P(z) Takue, 4TO eciau
P(f) = P(g) nas moGoit napel MepoMopthHbIx GyHEIHI f 1 g, To f = g.

IMoniHoMu eAUHOCTI ITUX Ta MepoMOpPHUX PyHKITIH
Yskyub—YUyH AH, Kcin—Xy Xya

BuropucToByto4Yn Teopilo puMaHOBUX MOBEPXOHb Ta TEOPIIO y3araibHe-

HUX yHRUIH, ofep#aHo nomiHoMu eanHocti P(z) Taki, mo koan P(f) =
P(g) nas 6ynb-sikol napu MepoMoptHux dyHsniit fig, To f =g.
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