Matematicheskaya fizika, analiz, geometriya
2000, v. 5, No. 3/4, p. 166-181

A characterization of some even vector-valued
Sturm—-Liouville problems

Max Jodeit, Jr., and B.M. Levitan

School of Mathematics, University of Minnesota
206 Church St SE §VinH 127 Minneapolis MN 55455

E-mail:jodeit@math.umn.edu

Received February 10, 1997

We call ”even” a Sturm-Liouville problem

' +Q(zx)y=Ay, 0<z <, (1)
y'(0) — hy(0) =0, (2)
y'(m) + Hy(m) =0 (3)

in which H = h and Q(7m — z) = Q(z) on [0, 7]. In this paper we study
the vector-valued case, where the potential Q(z) is a real symmetric d x d
matrix for each z in [0, 7], and the entries of () and their first derivatives (in
the distribution sense) are all in L?[0, 7]. We assume that h and H are real
symmetric d X d matrices.

We prove that a vector-valued Sturm-Liouville problem (1)—(3) is even
if and only if, for each eigenvalue A, whose multiplicity is r = 7y (where 1 <
r < d, and where ¢1(z,A),...,¢r(z,A) denote orthonormal eigenfunctions
belonging to A), there exists an » x r matrix A = (a;;) (which may depend
on A and on the choice of basis {¢;(z,A)};_;, but does not depend on z)
such that

(1) A is orthogonal and symmetric,
and

(2) for 1<i<r, gi(m A) =307 aije; (0,)).

To some extent our theorem can be considered a generalization of N. Levin-
son’s results in [2].
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Even vector-valued Sturm-Liouville problems

§1. Introduction

Suppose that Q(z) is a real symmetric d X d matrix for each z in [0, 7], and
that the entries of the potential () and their first derivatives (in the distribution
sense) are all in L2[0, 7]. Let A and H be real symmetric d x d matrices and X a
real number.

We consider the following Sturm-Liouville problem, in which y is a real
d-dimensional vector-valued function:

"+ Q@)y=A\y, 0<z <, (1)
y'(0) — hy(0) =0, (2)
y' () + Hy(r) = 0. (3)

In the following definition, we use the term ”even” to mean that the potential
Q(z) is "even about 7/2”, meaning Q (7 — z) = @(z), and that the "boundary-
condition” matrices A and H are equal.

Definition. The Sturm-—Liouville problem (1)—-(3) is called even if

(i) Qz)=Q(r—=)
and

(i) H="nh.

In 1950 V. Marchenko [4], using transmutation operators, proved that, if two
scalar-valued Sturm-Liouville problems on the half-line*,

" +a@y=2y, v¥(0) =h1y(0); —y"+ q(z)y=2Xy, ¥'(0) = hey(0),

have the same spectral function, then ¢;(z) = ¢1(z) and hy = hy. We will refer
to the version of this for a finite interval as Marchenko’s uniqueness theorem.

In the scalar case (d = 1) the following known theorem is based on work of
Levinson (see [2]). In the theorem, we let ¢(z, ) denote the solution of equation
(1) with the initial conditions ¢(0,A) = ¢, ¢'(0,X) = hc, where ¢ > 0 is chosen
so that [y ¢(x, A\)%dz = 1. Then ¢(z, ), for every A, satisfies the first boundary
condition (2). The eigenvalues, \g < Ay < Ay < -+, of the problem (1)—(3) are
the roots of the equation

¢ (m, X) + H pl(m, \) = 0.

The corresponding eigenfunctions are ¢(z, A,), n > 0. We have normalized these
functions in L2. That is, ||¢(e, A,)|]2 = 1 for all n > 0.

Theorem 1.1. A Sturm-Liouville problem is even if and only if, for alln > 0,
o(m,An) = 2¢(0,2,), n=0,1,2,.... (1.2)

Moreover, the signs alternate.

*The proof of Marchenko’s theorem on a finite interval is essentially the same.
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We offer a proof that resembles, to some extent, the proof of the analogous
theorem in the vector-valued case.

Proof of Necessity Let the potential in (1)-(3) be denoted ¢(z)
since d = 1, and suppose the problem is even, that is, ¢(7 —z) = ¢(z) and H = h.
Let us define the functions

Pz, \y) =@ —z,A,), n>0. (1.3)

Since ¢(m—z) = ¢(z) the function ¥ (z, A,,) is a solution of the differential equation
(1):
(2, M)+ 9(2) (2, M) = Anth (2, Ar). (1.4)

To prove that 1(z, A,,) is an eigenfunction of the problem (1)—(3) we must consider
the boundary behavior of ¥(z, A,). By construction,

¢(07 ’\n) = 99(71-7 ’\n)v ¢/(07 ’\n) = _99/(71-7 ’\n) .

By these last two equations, the assumed symmetry, and because ¢(z, A,) is an
eigenfunction,

'¢/(07 /\n) = _99/(77-7 /\n) = H@(ﬂ-7 /\n) = Hlf/)(07 An) = h¢(07 /\n)7
and
'l;b/(ﬂ-7 /\n) = _99/(07 /\n) = _h@(07 /\n) = _h'lr/)(ﬂ-7 /\n) = _H'l;b(ﬂ-7 /\n)

Therefore 1 (z, A,) is an eigenfunction, so the simplicity of the spectrum (see,
e.g., [3] for some functional analysis background material) implies that ¥ (z, A,)
is a multiple of p(z, A,):  ¥(z, A,) = ep(2z, Ay). We can now prove (1.2). Since
¥(z, A,) and (2, \,) have the same norm in L? (by construction), and because
we consider real scalars only, ¢, = 1. Thus ¢ (z, A,) = *¢(z, A,). We can now
put 2 = 0 and use the definition of )(z, A,) to obtain (1.2).

Proof of Sufficiency Wewill make use of Marchenko’s uniqueness
theorem here. In addition to (1)—(3), in which d = 1 and we write ¢(z) instead
of Q(z), we assume that (1.2) holds. We consider also the "reflected” problem

—y"+q(r—a)y=Ay, 0<z <, (%)
y'(0) — Hy(0) =0, (27)
Y (x) + hy(x) = 0. (3%)

We observe, by inspection, that the functions ¥ (z,\,) = ¢(7 — z, A,) defined in
(1.3) are eigenfunctions of (1*)—(3*). This new problem therefore has the same
spectrum as (1)—(3). We wish to show that the problems (1)—(3) and (1*)—(3*)
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have the same spectral function. Let us renormalize the eigenfunctions ¢(z, A,),
recalling that each p(z, A,) has norm 1in L% We define, for each A, (z, A) to be
the solution of (1) with initial values ¢(0,A) =1, @'(0,A) = h. Then p(z, A,) =
©(0,A,)@(z, An). Hence for all n =0, 1,2 ..., ©(0,A,)?|@(e, An)]|3 = 1. Now
we can define the spectral function p(A) of (1)—(3) in terms of the norming con-
stants a2 :=||@(e, A,)||3, and we can apply the relation (0, A,)%||@(e, Ay)||2 = 1

)= Y = Y 0, A

Ap<A T An<A

When we do the same for the problem (1*)-(3*), and take into account the
assumption (1.2), we find that the spectral function for (1*)—(3*) has the form

AOED I WAL

Ap<A n An<A

= 2 le(m M)l = 32 1e(0, M)l* = p().

An<A An<A

Thus the problems (1)—(3) and (1*)—(3*) have the same spectral functions. By
Marchenko’s uniqueness theorem, they have the same potentials and the same
boundary conditions at z = 0. That is,

g(r—z)=¢q(z) for 0<z<w, and H=h.

From the Sturm oscillation theorem it follows that @(7,A,) = (—-1)" if
@(m, Ao) = 1. We do not yet have an analogue of this last result in the vector-
valued case.

§2. The vector-valued case

Theorem 2.1. The Sturm-Liouville problem (1)-(3) is even if and only if,
for each eigenvalue X, whose multiplicity is r = ry (where 1 < r < d, and where
v1(z,A),...,¢.(z, ) denote orthonormal eigenfunctions belonging to ), there
exists an r X r matriz A = (a;;) (which may depend on X and on the choice
of basis {@;(x, A\)}_,, but does not depend on x) such that A is orthogonal and
symmetric and, for 1 <1 <r,

©i(m, A) =D aije;(0, ).
7=1

Remark. Wedonot consider Dirichlet boundary conditions in this paper.
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Proof. Suppose the problem is even, so that Q(z) = Q(r —z) and H =
h. This part of the proof is straightforward. By exploiting reflection, and the
hypothesis that H = h, we can show that the functions

pr(m—z, ), ..., (T — 2, A)

are solutions of the same problem. They are also mutually orthogonal and nor-
malized, so there exists an orthogonal r X r matrix A such that, for 1 < ¢ < r,
we have

pi(m—z, ) Za”apjxx\ for 0 <z <. (2.2)

If we now replace z by m — z in this equation, and then substitute the original
equations into the right-hand side, we have

A) = Zaijapj(ﬂ' — Za” Z a;rpr(z, A)
=1 i=1

=2 | Do e | enlz, N) (2.3)
k=1 \j=1
for 1 < i < r. The orthonormality of the functions ¢i(z, A) now implies that

Z(lijfljk = &;1, 50 A? = I. Since A is also orthogonal, we have A? = [ = AAT,
=1

so A is symmetric as well, as was to be shown. Finally, we may put z = 0 in the
equation (2.2) to obtain

N =Y a0, 2.9

and this completes the proof that the conditions concerning the matrix A are
necessary.
Next, we must deduce the symmetry of problem (1)—(3) from the assumptions

Z a;;(A);(0,A), valid for each eigenvalue A, where we assume that

A=AN = (am(/\))w
not so straightforward. We will use the completeness of the eigenfunctions, the
uniform convergence of the Fourier series (with respect to the eigenfunctions) of
C?[0, 7] functions, and the two following theorems.

is orthogonal and symmetric. This part of the proof is

Theorem A. Existence of the transmutation (by way of a Goursat problem).
Consider two Sturm—Liouville problems,

—y"+ Ri(z)y=Ay, 0 <z <,
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y'(0) = h1y(0) =0, y'(m) + Hiy(r) = 0, (2.5)

and
—y"+ Ro(z)y= Ay, 0<z <,

y'(0) = hay(0) =0, y'(7) + Hay(r) = 0. (2.6)

As usual, we assume that Ry(z) and Ry(z) are continuous, symmetric, d X d real
matriz-valued functions, and we assume that hy, Hy, hy, and Hy are symmet-
ric, d X d real matrices.

Suppose that

(i) the problems (2.5) and (2.6) have the same eigenvalues, with the same
multiplicities,
and

(ii) there exist systems of eigenfunctions {p1;(z, A)} and {pa;(z,\)} for the
eigenvalues X\, where 1 <1 <ry, such that for each eigenvalue X\, and for
1 < i <7y,

©1i(0,A) = 2:(0, A).

Then there exists a transmutation operator, with kernel K (z,y), such that for
each eigenvalue A, and for 1 <1 <ry,

02i(2, A) = ori(z, A) —|—/K(m,t)c,ou(t, N, (2.7)

and conversely, if (2.7) holds, then ¢1;(0,X) = ¢2;(0,A) for each eigenvalue X,
and for 1 <1 <ry.

The proof of Theorem A will be given following the present proof, of Theorem
(2.1).

Theorem B. Identification of F(z,y) in the Gelfand-Levitan equation so that
the kernel K(zy) of the transmutation is its solution.

In addition to the hypotheses of Theorem A, assume that the systems of eigen-
functions {@1;(z, )} and {@2(z, )} are each orthogonal, though not necessar-
ily normalized. For each eigenvalue N, and for 1 < i < ry, let a;(N)? =
eri(o NI and let ass(\)? := leailo, N

Suppose that the following series, defining F(z,y),

Fla,y) =) (a%b)g - ali/\)Q) eri(z, Ny, AT

summed over the eigenvalues A and the 1 with 1 <1 < ry, converges uniformly
in0 <y <a<mw. Then, the kernel K(z,y) of the transmutation operator from
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Theorem A is the solution of the Gelfand-Levitan equation
K(e,y)+ Flo,y) + [ Ko, F ()i =0.
0

The proof of Theorem B will be given following the proof of Theorem A.
We consider the following (reflected) Sturm-Liouville problem, and seek to
show that it coincides with the original one.

—y"+Q(r—a)y=Ay, 0<az <, (")
y'(0) — Hy(0) =0, (27)
y'(7) + hy(r) = 0. (3%)

Because this problem is obtained from the original problem by substituting = —z
for z, and by reflecting the boundary conditions (i.e., interchanging h and H),
(1*)—(3*) has the same eigenvalues A, with the same multiplicities, ry, as the
original problem, (1)—(3).

Let us propose, for eigenfunctions of (1*)—(3*), the functions ¥;(z, A) (where
1 <i<ry and Ais an eigenvalue), defined by

Pi(x, A) == Z%’j@j(ﬂ' —z, ).
j=1

Then, by substitution and rearrangement, each ;(z, ) is a solution of (1*), for
each original eigenvalue A, and for 1 < ¢ < rj.
To examine boundary behavior, we find that, for any d X d matrix G,

Pi(z, A) + Gz, A) = _Zaij@;(ﬂ'—$,/\)—|—GZai]‘§0j(ﬂ'—33,/\)
J=1 7=1
= - Zaij(go;(ﬂ —z,A) —Gpj(rm —z,N)).
7=1
If we choose z = 0 and G = —H, thenfor 1 < j <r, ¢(m—2,\) -Gpj(r—z,)) =

0 by (3), so

which is (2%). If we choose = 7 and G = h, then for 1 <j <r, ¢l(7—=2,A)—
Gyj(r —z,A) =0 by (2), so

Qﬁ;(ﬂ', ’\) + h¢i(ﬂ7 ’\) =0,
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which is (3*). Thus, each of our defined functions #;(z, A) is a solution of (1*)-

(3%)-

Now let us note that, by the definition of 1;(z, \), and by hypothesis,
’\):Zaﬁ( Je;(m, A) Za” Za]k Yer(0, ) = ¢i(0,A),
7=1

since A is orthogonal and symmetric. Therefore the hypotheses of Theorem A
are satisfied, so there exists a transmutation operator with kernel K (z,y) such
that ¥;(z, /\) = @i(z,A) + J§ K(z,t)p;(t, N)dt, for each eigenvalue X and each i
such that 1 <1 < ry.

We shall next apply Theorem B to show that K(z,y) = 0. In Theorem B, the
L?-norms of ¢;(z, A) and ¥;(x, A) can be denoted by a;(A) and 3;()), respectively.
In the present case, the eigenfunctions ¢;(z,A) comprise an orthonormal set.
Thus

2

CHEY

||lr’ ||2 =

2
= Z aly, lpx (o, /\)||§ = Z af, = 1= a;(M)?
k=1 k=1

According to Theorem B, the function F(z,y) = 0, so the solution of the corre-
sponding Gelfand-Levitan equation is identically zero. But this is K (z,y), so by
Theorem A, ¢;(z,\) = ¢;(z, A) for all eigenvalues A and for all 7, 1 <7 < ry.
Therefore, with A and 7 as above, we have

—¢i (2, 0) + Q(2) @i, A) = Api(z, A) = Mpi(z, A)
= =i (@, ) +Q(r — 2)Pi(z, ), 0< 2 < 7
Hence
(@)~ Q(x — 2)pi(e, \) =0, 0< 2 < 7.
It follows now, from the completeness of the eigenfunctions, that Q(z) = Q(r—z),

0 <z < 7. It remains to show that H = h.
The identities @;(z, A) = ¥;(2, A) = 3771 aijp;(m — z, A) yield

iz, A) Zamo] z,A) = Yi(z, A)

so that, when we put z = 0, and use (2) and (3),

hipi (0, A) = ¢%(0, \) Za”apj (m, A)
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= —Za” (—He;(m, X)) = H;(0,) = Hep;(0, A).

We thus have
(h— H)gi(0,) = 0 (25)

for all eigenvalues A and for 1 < ¢ < r). What we want, however, is to know that,
for an arbitrary vector vin R?, (h— H)v = 0. Thus, suppose not — so that there
exists v € R? such that (b — H)v # 0.

We will define a certain C? function f(z), depending on v, such that f(z)
is in the domain of the operator determined by problem (1)—(3), and then we
will use the uniform convergence of the Fourier series of f with respect to the
eigenfunctions ¢;(z, A), and the boundary conditions (2) and (3), to conclude
that, contrary to assumption, (h — H)v = 0.

In fact, f(z) will have the form M (z)v, where M(z) is a d X d matrix for each
real z, chosen so that f is in the domain of the operator determined by problem
(1)=(3). Our example is the polynomial

f(z) = [I—}— ah+ m((z/7)* - ($/7T)3)(h—|—H—|—7THh)} v, for 0 <z <.
Then
f(z) = {h—l— (2z/7 — 32 /7)) (h+ H + ﬂ'Hh)} v, for 0 <z <.

By inspection, f(0) =wv, f'(0) = hv,so (2) holds. To show that (3) holds, we set
z = 7 in the equations for f(z) and f'(z), obtaining f(x) = (I + wh)v, f'(x)=
(h—(h+H+7Hh))v=—-H( +mh)v=—H f(r), so (3) holds, and thus f is in
the domain of the operator determined by problem (1)—(3).

To write the Fourier series of f with respect to the eigenfunctions ¢;(z, A),
let us denote by A the set of all the eigenvalues, A, of the problem (1)-(3). For
each A € A, we let r) denote the multiplicity of the eigenvalue A. Then

3> (/ it A)dt) pile, ),
A€A =1 \

the sum being taken over all eigenvalues A and, for each eigenvalue, over all ¢
with 1 <7 < ry. The series converges to f(z) everywhere in [0, 7], in particular

at 0, to f(0) = v="ea T2 (J F(O)Ti(t, A)dt) £4(0,A). But then

(h— H’U—EZ[/ %tA)dt}(h—H)%(o,A):o,

A€A i=1
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by (2.8). This gives the desired contradiction, and completes the proof of suffi-
ciency.

Remark. Thelast argument shows that the set {¢;(0, ) : A an eigenvalue
and 1 <4 < ry} spans R%

§3. The proof of Theorem A

The necessity is immediate. If equation (2.7) holds, we may set z = 0 and
use the definition of a transmutation operator.
To prove that the suppositions (i) and (i7) are sufficient to assure the existence
of a transmutation operator, we make use of the Goursat problem
0*K . 0’K

d
2—(K(z,2)) = Ra(z) — Ry(z), 0<z<m, and K(0,0)=hy — hy;

dz
(5

Dy = 0.

y=0

An argument in a book of Levitan and Sargsjan (see [7, Ch. 6, § 2]) can be
adapted straightforwardly (and lengthily!) to solve this Goursat problem in the
vector-valued case. Also, see the argument for the existence of the Riemann
function in V.A. Marchenko’s book [5, Ch. 1, §1].

Let ¢1(z,A) denote any solution of (2.5), in other words, an eigenfunction
belonging to the eigenvalue A. Let ¢q(z, A) denote a solution of the differential
equation in (2.6), that satisfies the boundary condition ¢4(0,A) = hap2(0, A) at 0,
and such that (0, ) = ¢1(0,A). Thus (2, A) is not necessarily an eigenfunc-
tion of the problem (2.6). Straightforward calculation exploiting the fact that
K(z, y) is a solution of the Goursat problem shows that the function

y(@) = g1 (2, ) + /K(x,t)cpl(t, \) di

is a solution of the differential equation in (2.6), and that y(z) satisfies the initial
conditions

y(0) = ¢1(0,A) = ¢2(0, A),
y/(O) = 99/1(07’\)+R7(070)§01(07’\)
= h1e1(0,A) + (A2 = h1)p1(0, A) = hap1(0, A) = hapa(0, A). (3.1)

Matematicheskaya fizika, analiz, geometriya , 2000, v. 5, No. 3/4 175



Max Jodeit, Jr., and B.M. Levitan

The uniqueness of the solution of an initial value problem implies that
a2, ) = y(z) = @, A) + /K(m,t)c,ol(t, \) dt.
0

Now, by (i) and (7¢), there are r) eigenfunctions ¢q;(z,A), 1 <14 < ry of (2.5),
and likewise r) eigenfunctions @g;(z,A), 1 < i< ry of (2.6), such that

9912'(07 /\) = 9922'(07 ’\)'

The calculations that gave (3.1) can be applied to each of these pairs of eigen-
functions, ¢1,(z, A) and ¢9;(z, A), so that for each eigenvalue A,

ooi(2, ) = prila, A) + /K(m,t)gou(t, Ndi, 1<i<n.
0

This is the desired transmutation — interchanging the problems (2.5) and (2.6)
shows the invertibility needed for a transmutation operator.

§4. The proof of Theorem B

We will restate Theorem B, using a slightly different notation for the eigen-
values and eigenfunctions, in which the eigenvalues are denoted A, with repeated
values according to multiplicity.

In addition to the hypotheses of Theorem A, assume that the systems of
eigenfunctions {1 ,(z)} and {p,,(z)} are each orthogonal, though not neces-
sarily normalized. For each eigenfunction 1, let of , = 1,415 and similarly

let a3 , = ll¢2,0|5 - Suppose that the following series, defining a function F(z,y),

Fla,y) = i ( —_ %) e1n(@)e1a(y)T,

2
n=1 0527,” 041777‘

converges uniformly in 0 <y < z < w. Then, the kernel K (z,y) of the transmu-
tation operator from Theorem A is the solution of the Gelfand—Levitan equation

K(z,y) + F(z,y) —|—/K(m,t)}'(t, y)dt = 0.

Proof. From the orthogonality and completeness of the eigenfunctions we
can write
=1
> era@)ern(y)’ =18z —y) (4.1)

n=1 1777‘
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and
Z j P2.0(2)p2n(y) = 18(z — ), (4.2)

where [ is the d x d identity matrix and §(z) is the Dirac delta-function. We

claim that
<01
232 Pra(2)e1a(y)T =0, 0<y<a. (4.3)
1 %2.n

To show this, we write ¢; ,,(y) in terms of ¢ ,,(y), by using the ”inverse” version

of (2.7):

P1aY) = P2nU) + [ L OR2a (0101 (4.4)

Now we substitute this expression for ¢; ,(y) into the left-hand side of (4.3), and
so find that, if 0 < y < z, then

nil a;%n( 2)era(y)” = ni::l Oé—nm,n(w) («Pz,n(y) +/yﬁ(y,t)¢z,n(t) dt)T
= 3 el
+ /y (nf:l a;soz,n(r)soin(t)) L (y, )t
= Ié(z—y)+ /yﬁ(y,t)5(m —t)dt=0

because 0 < y < z.
Having shown that, in a distributional sense, (4.3) holds, namely, that

o0

1
> @@2@(96)%01@(9? =0, when 0<y<u,

n=1
let us now express each g ,(2) in the sum as a transmutation of ¢; , (). That

is,

§¢M<wM<F

20
Z o7 (cm,n(x) +/K(x7t)991,n(t)dt) e1a(y)"
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= ;&%7n¢17n($)¢17n(y)
x o q
+ [K@y 3 o ernOgral) ) de
0 n=1 31
= —_— — 991,n(-r)801,n(y)
> (o)
<1
+ Y i) eray)”
n=1 al,n
x Y o q
+ /I( (x,t) (Z E@l,n(t)@l,n(y)T) dt
0 n=1 ;1

> 1 1
= Z (— - T) 301n($)s«91n(y)T
K al,n

+ Z aTipl,n(éf)ﬁPl,n(y)T
1

n

+ /I((‘rvt) [i (2L - %) Qol,n(t)@l,n(y)T] dt

n=1 a2,n al,n

N2

+ /I((m,t) (f: %Q‘olm(t)@l,n(y)jw) dt.

Then, by definitions, and by (4.1) and (4.3),

<01
0 = Z 2 “P?n(m)ﬁoln(y)T
n=1 0127,“
> 1 1 ' / T
= ;(@—@) 991,n($)991,n(y)
+ D e1a(@)era(y)
n=1 011777‘

+ /I((xvt) (i OZQLSOLn(t)QOLn(y)T) dt

0 n=1 1777‘
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+ /K(a@,t)f(t,y) dt—l—/K(aj,t)cs(t— y)dt

xr

= Flo)+ [ K@,0F(y) di+ K(o,y)

because 0 <t < y < z. We have shown that, in a certain distribution sense,
0=F(z,y) —}—/K(m,t)f(t,y) dt+ K(z,y), for 0<y<z<m.
0

Since the expression on the right is a continuous function, the desired Gelfand-
Levitan equation holds. This completes the proof.
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Max Jodeit, Jr., and B.M. Levitan

XapakTepucTuKa YeTHbIX BEKTOPHBLIX 3agau
MItypma—JinyBuina

Marc Hopeiit, ma., B.M. JleButan

Hazsosem ”4yetHo#” 3apauy IllTypma—/InyBuaas

" +Q(x)y=Ay, 0< 2 <m, (1)

y'(0) — hy(0) =0, (2)

Y () + Hy(m) =0, (3)

eciu H = h n Q(m — z) = Q(z) na npomexyTrke [0, w]. PaccMoTpum

BEKTOPHO-3HAYHBIN cilydvaii, rjie noteHnuan @(z) ecTb BelleCTBEHHAA CHM-
MeTpudHasa d X d MaTpuia npu Kamjaom z € [0, 7], U 3IeMeHThl MaTPHUIIb]
() n ux nepBhle MPOUBBO/HEIE (B CMBICIe pacpe/ieleHni) Bce MpUHAAIeHaT
L2[0, 71]. Tono#sum, 4o h u H ecTh BemecTBeHHbIe cUMMeTpUuHble d X d
MaTpHIIbI.

JlokasaHo, 4TO BekTOpHO-3HauHas safada [Itypma-lluysBuaas (1)—(3)
ABJAETCH YETHOM, eCliM M TOMBKO €CAM Ul Ka#/0ro cOGCTBEHHOrO 3Have-
HUA A, KpaTHOCTh KOTOPOro ecTh r = 7y (rae 1 < r < d u yepes ¢1(z,A), ...,
©r(x,A) 0603HAYEHBI OPTOHOPMUPOBAHHbIE COGCTBEHHbIE (GYyHKIMHU, OTBeYa-
olue \), cylecTByeT r X r MaTpuna A = (a;;) (KoTopas Mo:KeT 3aBUCETh
oT A u BhiGopa Gasuca {e;(z, A)}i_;, HO He BaBUCUT OT ) TaKaf, 4TO

1) A ecTb opTOTOHAAbHAA U CHMMeTpHYHAH,

2) i 1< < 1 pilm ) = Y asjes (0, V).

B HEKOTOPOM CMBICiIe Hallla TeopeMa MO#eT paccMaTpHBaThcA Kak 0600iie-
Hue pegyabrata H. JleBuncona [2].
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XapaKkTepucTHKa NapHUX BEKTOPHUX 3agady
IItypma—JliyBinaa

Makc Hopeiit, Moa., b.M. JlepiTan

HasBemo ”napuoio” zapauy IllTypma—J/liyBiaas

' +Q@)y=2Ay, 0<a <, M)
v (0) — hy(0) =0, (2)
Y () + Hy(m) =0, (3)

Aarmo H = hta Q(r—z) = Q(z) na npomimky [0, w]. PosragHeMo BeKTOPHO-
BHAUHMI BUNAMIOK, /ie oTeHnian Q(z) e fificHa cuMeTpudHa d X d MaTpHIA
npu KomHOMy z € [0, 7], 1 emeMeHTH MaTpuui () Ta ix neprm moxiaHi (y
cenci posnominis) yci manemars L2[0, n]. Ipunyctumo, mo h i H pificui
cUMeTpHuHi d X d MaTpHIll.

TloBesieHo, 10 BeKTOpHO-3Ha4YHa 3ajada [lTypma—lliysiaas (1)—-(3) e nap-
HOIO TOJI1 1 TIIBKH TOM1, KOJAU [Jsl KOAHOTIO BJAACHOTO 3HAYEHHSA A, KPaTHICTh
Aaroro € r = 7y (tyT 1 < r < d i uepes ¢i(z,A),...,¢r(2, ) n03HAYEHO
BI/INOBIHI OPTOHOPMOBaHI BilacHl GyHRIT), icHye r X r MaTpuud A = (a;;)
(AKra Mome 3aiemaTh Bif A Ta BuGopy Gasuca {g; (z, A) }i_, ajle He 3al1eHUTh
Bi/l ) Taka, 10

1) A e oproroHaibHa Ta CHMeTpHYHA,

2y mpu 1 <i<rpi(m,A) = 2;21 aije; (0, N).

B nesasomy cemci Haima Teopema Mo#e pO3TJIANATHCA AKX y3aralbHeHHS pe-
syabraty H. JleBincona [2].
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