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An initial boundary value problem for semilinear parabolic equation

n

Ou® 0 € Ou® €Y _ pE .
Erale Z 9 (az’j(l‘)a—%) +f(w)=h"(z), 2€Q, te(0,7);

i,7=1

with the coefficients afj(:v) depending on a small parameter ¢ is considered.
We suppose that a;;(z) are of the order of g3 (0 < 4 < 1) on a set of spher-
ical annuluses G of a thickness d. = de?*7. The annuluses are periodically
with a period e distributed in €. On the set Q\U,G2 these coefficients are
constants. We study the asymptotical behaviour of the solutions u®(z,t) of
the problem as ¢ — 0. It is shown that the asymptotic behaviour of the
solutions is described by a system of a parabolic p.d.e. coupled with an
o.d.e.

1. Introduction

The aim of the paper is to study the asymptotic behaviour of the solutions of
the semilinear initial boundary value problem

o K 9 . | ou o e ‘
ot _¢;1£<aij(x)@>+f(U)_h (), z€Q, te(0,T);
0w _ r€dQ, te(0,T); (11)
on ? ) ) )
u®(z,0) = u§(z), z € £,
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Homogenization of semilinear parabolic equations

as € — 0. We suppose that afj(m) depend on a parameter € and for any ¢ these
coeflicients satisfy the following condition:

n

B (@)¢)2 < 3T (@) < B (2) 1€, (1.2)

7,7=1

where
0< ol (z) <p¥2) <00, z€Q.

The existence and uniqueness of the generalized solution of problem (0.1) in the

appropriate classes (see Theorem 2.1 below) under hypothesis (0.2) and natural

assumptions on u§(z), h*(z), and f(u) follows from standard parabolic theory.
If there exist some constants « and 3 such that

0<a<a(@)<pP@)<p<o, zeQ,

then the homogenized equation has a form of the initial equation. The problem
of passing to the limit in the problems of such type was studied by a number of
authors: it is difficult to give here a complete bibliography, but one can find the
extensive bibliography in the monographs [1-3].

If on the contrary condition (0.2) is not valid, i.e., there exist some subsets
G. such that sup () (z) — 0 as ¢ — 0 or inf 3(5)(z) — oo as ¢ — 0, then the
homogenized equations have more complex form, essentially depending on the
structure of the set G..

In this paper we suppose that afj(.r) are of the order 37 (0 < v < 1) on
the union G. of spherical annuluses G2 having the thickness d. = de?*7. These
annuluses are periodically, with a period ¢, distributed along the directions of the
axes in ©. On the set Q\ |J, G2 these coefficients are equal to the Kronecker
symbol 4;;.

We study the asymptotic behaviour of the solutions u*(z,t) of problem (0.1),
as € = 0. We show that the homogenization of this problem leads to a system
of a semilinear parabolic equation coupled with an ordinary differential equation
with respect to the variable ¢:

Ju n 0%u

e —mzzjlbijm—Fbl(u— v)+ f(u) = hi(z), =€, te(0,T);

ou

3_71_07 €0, te(0,7); u(z,0)=u(z), z € (1.3)
0

8—:+62(v—u)+f(v):h2(m), €Q, te(0,7);
v(z,0) = vo(z), z €€,
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where the coefficients b;;(¢,7 = 1,2,...,n) and biy(k = 1,2) are calculated from
the solutions of cellular problems and the parameters of the structure.

A problem that is very close to above mentioned problem is the problem
of homogenization of the non-linear parabolic equations in the domains with
"traps”, considered by L. Boutet de Monvel, 1. Chueshov, and E. Khruslov [4]
and by A. Bourgeat and L. Pankratov [5]. Problem (0.1) with f(u) = 0 was
considered by E. Khruslov (see, for example, [6]).

2. Problem statement and uniform estimates
Let €2 be a bounded domain from R”, n > 3. Let us introduce the notation
G={z€Q:r.—d. < |z—2% <re}, By(re—d.)={z€Q:|z—2% <r.—d.},

G. = U Gaav B. = U Ba(rs_da); QEZQ\(QEUBE)7

a€N a€Ne
where 2% = ae (o € Z") and N, is a set of multi-indices such that G2 C €,
re =re, d. = de**7 (0 < y < 1). In the domain Q7 = Q x (0,7T’) we consider the
boundary value problem:

du’ - 0 € du’ e _ L€ .
D _iglafm(“ij(w)a—%)+f(u)—h (z), zeQ, te(0,T); (2.1)

ous
on
u®(z,0) = ug(z), =€, (2.3)

0, z€0Q, te(0,T); (2.2)

where n is a external normal vector to the domain €, f(u) is a smooth function
in R, the functions A®(z), uj(z) : @ — R are given. We study the asymptotical
behaviour of the solutions u®(z,t) of problem (2.1)-(2.3), as ¢ — 0.

If r is chosen such that r < 1/4 the annuluses G2 are non-intersecting, each
containing in "its” cell K,(¢):

We assume for sake of simplicity that K,(¢) C Q2 for each a € N..

The coefficients af;(z) of equation (2.1) are defined as follows:

aa&j = a5ij€3+7, a>0, z€4g..
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We assume that the function f(u) € C?(R) has the following properties :
sup{|f'(u)| : u € R} < o0 (2.5)

and there exist constants By, By, B3 such that

uf(u) > Byu* — By, (2.6)
F(w)= [ 1€)d > Bru - By (2.7)

We denote by V,°(Q7) the Banach space of functions that are continuous with
respect to the variable ¢ in L2(Q) with a norm

(), = max |lu(z, )]l2,0 + [[Vulla0, ,

0<t<T
where || - ||z, is @ norm in the space L*(2) and
T
V]| = //|Vu|2dmdt.
0 Q

We denote also by VZI’I/Q(QT) a subset of functions u(z, t) from the space v, °(Q7)

such that
T—h

/h_l[u(m, {4+ h) — u(z, t)]2dedt — 0,
0 Q
as h — 0.

We say that u*(z,t) is a generalized solution from V,°(Qr) (or from
‘/QI’I/Q(QT)) of problem (2.1)—(2.3) if this solution satisfies the equation

—/uf(x,t)%(x,t)dxdw/ﬁ: afj(x)gz%(m,t)gj(x,t)dxdt
Qr Qp BI=1 ! !
+/(f(u6) —he(x))cb(m,t)d.md.t:/ug(x)qb(x,o)dx, (2.8)
Qr Q

for any ¢(z,t) € W, (1), ¢(z,T) = 0, where W, (Q7) is a Hilbert space with
a scalar product

(u, v)é:éT = / (uv + Z Uz, Uz, + utvt) dxdt .
Q k=1
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The Theorem is valid (see [7]) :

Teopema 1 i). Let he(z),ui(z) € L*(Y). Then problem (2.1)-(2.3) has a
. . . 1,1/2
unique generalized solution in the class V,

satisfies the estimate

(Q27) and moreover this solution

max [|[u*(z, 1) [0 + IV |2.0.x(01) + V2V l2 6.x0,1) + V07|28 x0,7)

< AiflJugllz,0 + [[77]l2,0] + Az, (2.9)

where Ay, Ay are the constants independent of ¢.
ii). Let h®(z),u(z) € W3 (). Then problem (2.1)-(2.3) has a unique gene-
ralized solution in the class W, (Qr) and we have the equality

1
Aelu) + [ [z, ) B gt = Aclu), (2.10)
0

where

& 1 1 & 1 1 E_ .
Aot = 5 {IVe B 0, + el VulE g, + 1V G s, } + [ {F () - b} do.
Q

Lemma 2.1. Let u®(z,t) be the solution of problem (2.1)-(2.3), then

T—A
[ [ 1wt ) — @, 0)Pdwde < Ag- At [ugliEa + 1913+ 1), (21)
0 Q

where As is a constant independent of €.

The proof of this Lemma is of standard character and relies on the methods
presented in [7].

3. Formulation of main result
We suppose for sake of simplicity that 0 € €2. Let K be a cube in R" :
1
K={zeR" |z;] < 2 i=1,2,...,n};
and B is the unit ball in R" :

B={z¢€ K;Zm? < 1}
i=1
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Define now in P = K\ B the functions v;(z), ¢ = 1,2, ..., n, that are the solutions
of the following auxiliary problem:

Av; = 0, € P=K\B;
ov;

vi(z), Dv;(z) are K — periodic,

where n is the external normal vector to B. It is known that this problem has a
unique solution v;(z) (up to a constant).

Let {z* = ae,a € Z"} be a lattice in R". We associate with this lattice a
covering of the domain € by the cubes centered at 2 and edges of length ¢. Let
(). be a linear interpolation operator that is defined by its value in each node of
the lattice as follows. For each node of the sublattice {z® = ae, a € N.} we set

1

= Vol (Bo(re — o)) / u(z)dz, o€ N,,
Ba(re—de)

(Qeu)(2")

where Vol(B, (r. — d.)) is the volume of the ball B,(r. — d.) of radius (r. — d.)
centered at z”. For each node {2 = ae, o € N.} we set (Q.u)(z") being equal
to a mean between the values of (.u) in the nearest nodes of the lattice. Taking
now the restriction of the operator (). obtained on the domain €2 and keeping
for it the same notation, we obtain the linear bounded operator from L2(f2) to

WHQ).

The main result of the paper is the following

Theorem 3.1. Let u®(z,t) be the solution of problem (2.1)-(2.3). We assume
that

i) for any € € (0, )

£ 1 £ £ 1 1
gl + IV Qeugllz.a + 155159 + IVQeA|20 < C,

where C' denotes any constant independent of €;
ii) there exist the functions ug, vo, by, hy from L?(Q) such that

lug = wollz.0. = 0, [|h* = hafla0. — 03

and
lug — vollz,. = 0, [[A® — hall25. — 0,

ase — 0.
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Then we have
l%{l|ua($7t) - u(xvt)”g,QEX(O,T) + ||u€($7t) - U(xvt)”%,l’j’gx(O,T)} =0,

where the pair of functions {u(z,t),v(z,t)} is the solution of problem (0.3). The
coefficients b;; and by, in (0.3) are calculated from cellular problem (3.1) solutions

by

bij = 8;; [1 — 1r_ /(Vvi,Vv]')d:U ) (3.2a)
My
baop 7 2 an
by = == bh=—. 2b
1 1_H7 K F(%—i—l)’ 2 rd (3 )

In (3.2) above §;; is the Kronecker symbol and I' is the Gamma function.

The proof of Theorem 3.1 consistsof two parts. In the first
part we obtain the uniform estimate

T
/||VQ€u5(t)||§7th <C.
0

Then in the second part we pass to the limit in equation (2.1) using a special test
function.

The proof of the existence and uniqueness of the generalized solution U(z,t) =
(u(z,t),v(z,t)) of problem (0.3) under conditions (2.5)—(2.7) for Uy = (uo, vo) €
Lo = L?(Q) x L?(Q) in the class C'(0,T;Lg) is of a standard character and relies
on the methods presented in [9] (see also [4]).

4. Properties of operator ().

In this section we obtain some properties of the solutions of problem (2.1)-
(2.3).

Let P. be a linear extension operator from €. to Q (as defined for instance
n [10]) having the properties:

i) P.: WH(Q.) — WL(Q) for I = 0,1 such that

l 1
1P|y < Cllull§',, 1=0,1,

where (' is a constant independent of ¢;
ii) P.u=u on Q. for any u € L?(9.).
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The main result of this section will be Lemma 4.1 giving a bound for

T
[ (1@ 1) ar
0

This Lemma and estimates for P.u® following from (2.9), (2.10) will make possible
to extract from {P.u*} and {Q.u°} subsequences strongly convergent in L?(7).
We will assume in the following that the conditions (i), (ii) of Theorem 3.1 are
fulfilled.

According to (2.9), (2.10) the solution u®(z,t) of problem (2.1)—(2.3) satisfies
the estimate

[u (2, )13,0. + Ve (z,1)]50, < C1, (4.1)

for a constant €'y independent of €. Therefore we have for the extension:
| Pt (@, Dl + IV Pati (2, D)l < C (4.2
In a very similar way using (2.9), (2.10) we have for all ¢ € (0,7")
1Q:u(2,1)]130 < Cs. (4.3)

Now in remaining part of this section we will prove similar estimate for VQ.u*(z, ).
Let us introduce the following notation:

Ge={zeQ:r.—d. <|z|<r}, Blre—ds)={z€Q:|z|<r.—d.},
B2ro)={z€Q:|z| <2r.}, Me={ze€Q:r.<|z|<2r.};

ug,(z,t) = u* (2™ +2,t), wug,(z) =ug(z” +2), 2°=ae, a€ N, z€B(2r.);

£4n _ 1 25 (/ )
ul"(t) = Vol(B(r. = 4.)) / u,(z,t)dz

B(re—d.)
1
e,in _ e d
0.0 Vol(B(r. — d.)) ( / : uoﬂ(m) o
B(re—d.
1 1
uS () = ul (2. 1) d: 23T — s (2)d:
e (1) wﬂm%/%@,)% T \Umggwm@)m

where u®(z,t) is the solution of problem (2.1)—(2.3).
We also use the notation

w® = wip(@,t) = ug (2,t) —uz(z, 1), wy = wpap(2) = upa(2) — ug a(2),

z € B(2r.), a,8 € Ng;
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and we will denote indistinctly by w# or wfﬁ for
wt = w0 =) -t (1), wf =l =gt — it aBeN,
where # is either ”in” or "ex”.

The main result of the section is
Lemma 4.1. Under assumptions of Theorem 3.1 we have a priori estimate

T
[19@au @, )it < € (1.4)
0

for a constant C' independent of <.

In order to prove this lemma it is sufficient to obtain appropriate estimates
for wyp(t), for this we will use the following preliminary lemmas.

Lemma 4.2. Let w(z) € W (G.IL.). Then we have

/wz(fﬂ)dw <O + e[Vl gn, + Vel (45)
Ge

Let us introduce the function v*(z) defined on B(2r.) as follows:
M52, z € Ilg;
€ 2—n € ) .
vs(m): Lsp + L5, z € G, (46)

14+ A5p%, 2z € B(r. — d.).

We choose the coefficients in (4.6) from the following conditions:

(v9)*F = (v%)7, p=Te;
<av€)+ 3 <8v5)_ o (4.7)
ap = @, ap y P =T
(v5)* = (v°)7, p=re—de;
<8v5>+ B (87}5)_ Ly (4.8)
Qe ap — ap 3 P =Te = lg,
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where we denote by ”+4” a value of the function v*(z) and its derivative on the
external surface of 9B(r.) (or dB(r. — d.)) and by " we denote a value of the
function v®(z) and its derivative on the internal surface of dB(r.) (or dB(r.—d.)).
It also follows from (4.6) that Av®(z) = 0 for z € G.. The function v*(z) is a
model of behaviour of problem (2.1)—(2.3) solution in a neighbourhood of the set
(.. Calculating the coefficients in the explicit form it is easy to verify that

lim A] = lim A§ = S (4.9)

e—0 e—0 2rd

Let us also introduce the function V*(z) defined on B(2r.) as follows :
VeE(z) = v°(x) — 4\r2. (4.10)

Lemma 4.3. Let V*(z) is defined by (4.10). If we denote

gﬁ(t):% / w® (2, )V (2)dz + (I54() — 2n)5) / w® (2, )V (z)dz

B(2r¢) B(2re)
(4.11)
where
1 1
0= [d [ Fhen + e - ule,0)Veda
0 B(re-d.)
M, = / VE(z)dz
B(re—d.)
then quantity R, 5(t) is bounded:
RES(D] < Bie™ (Jw(8)] + [h7] + [h7°] )
+Bae ™/ {[[0f 10,5 ar,) + [V o, + 7572 |V 0t o g,
IV |25y + 55115 By | - (4.12)

Here Bi(i = 1,2) are constants independent of €, hz(z), h*°, and h=* are
defined in the same way as w(z,t), w(t), and WS (t).

Proof of Lemma 4.3. Let us consider the equation

%/ (z,)V*(z)dz — / Z@a@(” ZQ:)VE( Jdz

B(2re) I Y 1
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+ / (f(u‘;(x,t))—f(u%(m,t)))vs(ac)dx: / he(z)V*(z)dz, (4.13)

B(2re) B(2re)

which follows from (2.1). Denoting R?4(f) the quantity

/ Z oz, ( az;( gw]) Ve (z)dz — 2n A3 / w®(z, )V (z)dx

=1 B(2r.)
#1250 / “@OVi@)ds— [ (F((a0) - Fuh(n,0)V.(e)drdr

+ / he (@ = %81 e) + E0(1e) + €25 (,e),  (4.14)

we immedlately obtain equation (4.11).

Let us prove that R 5(t) verifies estimate (4.12). Consider the first term in
(4.14). It is clear that V*(z) =0, for z € dB(2r.), and AV*(z) =0, for z € G..
Using the properties of the solution of problem (2.1)—(2.3), (4.7), and (4.8), we
get

€91, ) = / W AVEdr — 2 / wVedr — 2 / wVedz

I, G-
oo
)

9B (2r.

C(AV® - 2005V dz . (4.15)
Te_da

Using Lemma 4.2, we obtain from (4.15)

€75 (t,€)] < Cre™ ™ ()] + Cos ™2 [z, + [0l

+Cae D [V |a,, + Y2V, - (4.16)

Consider the second term in (4.14). We have

&7(te) = - [ (F(us) = )V ()do = [ (F(w5) = F(u5)V* (2)da

Il Ge

- [ v - s e)ds + / W0 [ Vi@

B(re—d.) 0 B(re—d.)
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M) ) [ V@it [ wtevi@dnt . @)
B(re—d.) B(re—d.)

It follows from (2.5) that
1,0 < L. (1.18)

Therefore, using Lemma 4.2, we have from (4.17)
€57 (02)] < Coe™ 7w 4 Coe 4 o,

+Cge(n/2+1) [€1+v||v,we”2ﬂ5 4 3232 Gt ||, +||V'w€||2,B(r5—d5)} . (4.19)

For the third term in (4.14) we find

€55 (t,€)] < Cre™ (€M7 |h=| 4 [R5 ™)) + Cae ™ D2 g5,

O [ o, + VR o, + VR gl
(4.20)
Now Lemma 4.3 immediately follows from (4.16), (4.19), (4.20).

Proof of Lemma 4.1. Consider equation (4.11). Denoting by y*(¢)
the value

vy = [ wte Vi),

B(2r.)
we obtain for any § > 0
L)) <2005 (1) + = (R2,)? (4.21)
dt =7 25\ el '

where

Je = L 4 2n|A5| + 6.

According to the Gronwall lemma we find

T
T 2 279 2
() < 5 [[Rep(0Pde+ T (5 (0))? (4:22)
0
where
4 (0) = / w®(z, 0)Ve(2)dz (4.23)
B(2r¢)
and
|52 (0)] < Cre™ (lwg™ | + |wy™]) + Cae™/ 2V |w 0||2B (2re) * (4.24)
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From (4.12) we get
|RZ ()|2 < CgEQn{hU |2 |ham|2 |heez| }+C 2,_:n-}-Q(Ta —}-TE)

where

= 10125, (2r0) + IVEENS 1y + 1V B, (e —a

e e(1) 2
+ V2 + (18515, o)

Here ' '
B;(2r.) = je+ B(2r.), Ill=je+1l., Gl=je+0dG,,

B;(r. —d.) = je+ B(r. — d.),
and j € N.. Therefore

Z Z 2 < Cge?

a€Ne B€a(a)
’6‘t2 V,a? 3+’7V162 V‘62 h6(1)2
x4 ez, D20+ [IVeilz g, + 7 IVet]lz g, + IVUl]lz 5 + (1671120

Y Y - { (1) PSS P R - ;m|2},<4.25>

@€N: fea(a)

where o(a) = a(a) () Ne and () is the set in Z" of the nearest neighbors of a.
To estimate the second term in (4.25) and |y*(0)| we use the inequalities:

Yo DL M) —ugT ()] < G| Vel g, (4.26)

a€N: Beo(a)

SO D MY - hGT? < Cee?|IVA3 . (4.27)
a€N: o (a)
oY ugy —ugy P < Coe?|Vuglli g, (4.28)

a€N: Beo(a)

Croe?IVQ:=h 30 < 3 D €A™ —ug™? < Cnie? || V@A q,  (4.29)
a€N: fea(a)

012€2||VQ5U8||%,Q§ Z Z n|usm— Em|2 < Chze’? ||VQ6U0||2Q- (4.30)
a€Ne peo(a)

Therefore, using (4.26)-(4.30), one can obtain from (4.25)

Z Z 2 <Ot

a€N, Beo(a)
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><{|lus($7 Dz + IVei]3q, + ™7 Vus|l3g,

2
+ 1Vl s, + (I1R°180) "+ ||vczsff||%,9}. (4.31)

Using (4.29) with u®(z,t) instead of h®(z), we get

/|VQ WP <Cis YYD o { 0)? + (WM. -y (1))?} . (4.32)

«€N, feo a)

Now the statement of Lemma 4.1 follows from (4.22), (4.24), (4.26)—(4.32), and
(2.9), (2.10).

5. Convergence proof

Let U.(z,t) = P.u®(z,t) and V.(z,t) = Q.u*(z,t), where u®(z,t) is the solu-
tion of problem (2. 1) (2 3). Then it follows from (4.2)-(4.4) and Lemma 2.1 that
the family {U.(x,t); Ve(z,t)} is a precompact set in the space L%(Q7) x L?(Q7),
as ¢ — 0.

In this section we prove that any cluster value (u(z,t);v(z,t)) € L3(Qr) X
L*(Qr) of the family {(U.(z,t); Vo(z,t)) : € — 0} is a weak solution of problem
(0-3).

At first we rewrite problem (2.1)-(2.3) in a weak form. Let u°(z,t) be the
solution of (2.1)—(2.3). This solution satisfies the equalities (see [7])

(w)* = ()7, z € OBa(re);
dus\*t ou®\ "~
= g ) B (re);
<8n> a(@n) z € 0B, (re)
(u®)t = (u®)7, z € 0B, (r. — d.);
dus\* Ju*\~
€ = y Boz e~ ds 3
a(@n) <8n) z € 9Ba(r )
where o = 1,..., N., and we denote by ”+” a value of the function u°(z,t) and
its normal derivative on the external surface of 0B,(r.) (or 0B,(r. — d.)), and
by 7" we denote a value of the function u*(z,¢) and its normal derivative on the

internal surface of B, (r) (or 0B, (re — d.)).
Consider (2.8). Let us choose a test function ¢°(z,t) € W, (Qr) as follows:

0¢°
on

(z,t)=0,2 € 09Q,t € (0,T); ¢*(z,T)=0, z €
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locally ¢°(z,t) is the function such that ¢°(z,t) € W2'' (R x (0,T)); ¢°(z,t) €
W2 (G x (0,T)); ¢°(2,t) € Wy (Be x (0,T)), where W, (Qr) is the Banach

space with the norm

2

G, =S (s . (s = 3 1DiD3ulls,;

7=0 2r+s=j

and ¢°(z,t) satisfies the same equalities on 0B, (r.) and 0B, (r. — d.) as the
solution of problem (2.1)-(2.3). Now, integrating by parts in (2.8), we obtain the
following equality:

Jo(u®; 0% Q) + Jo(u®; 0% B:) + J- (u®;¢0%;G.) =0, (5.1)
where
T
(u®; 6% Q) ug(z)¢° (z,0)dz — (r,t)dmdt
A
T
— u®(z,t) A¢*(z, t)dzdt + flu®(z,t))¢(z, t)dadt
frenmsconas
T
—//mmmwmmmu (5.2)
0 Q.
Jo(u®; 0% G.) = ug(z)o®(z,0)dz — ,t)dzdt
Joinn [

—%f/m@@Aw@o@ﬁ+//ﬂmg@mmmMMt

0 G. 0 G

_/T/ha(m)qba(m,t)dmdt, (5.3)

0 G.

Jo(u®; 9% B.) = /uo( )¢ (z,0)dz — // T, t (z,t)dzdt

0 B
T
—//u (z,t)AP°(z,1) d:vdt—l—//f u®(z,1t))¢° (z, t)dzdt
0 B. 0 B.
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T
—//ha(:c)qba(x,t)dmdt. (5.4)
0 B
Let us cover the domain Q by the cubes K, (e + k) with the centers z* € €
and edges of length € + K, Kk = o(¢), K > 0, oriented along the coordinate axes.
We assume that each ball B, (r.) is located in K,(c+ &) and has the same center.
Let us associate to this covering a partition of unity {¢,(z)} : 0 < ¥,(z) < 1
Ya(z) = 0for 2 ¢ Ko(e +K); Ya(z) =1 for v € Ko(e + k) \ Ugpa Ksle + K);
S al(z) =1for z € Q; [Vipa(z)] < AsL.
Let us introduce the functions

T
vie(2) = revi( =), wie(2) = 2i — 2F — vie(2),
£

where v;(z) is the solution of problem (3.1). We denote by @;.(z) a continuation
of wi.(z) on Q\ Q.. Let w(z) = ©(|z|) be a function from C§°(R") such that
0<w(z) <1;0(p)=1for p<r;w(p)=0for p>2r.

Now we choose ¢°(z,t) = b(t)z.(z), where b(t) € C'(0,T), b(T) =0, and

ze(2) is a function constructed as follows:

(@)=Y {c )+ el [z

o

Y o <xa>w¢s<x>w]~a<w>] } a@)

=

+30) - CEe —ae () (5.5)

e

Here, in (5.5), ¢(z) and n(z ) are chosen smooth enough in €, the function v*(z)
is defined by (4.6), p.(z) € C*(f) is a function such that

1, =€,

0, ze€b.,
and | Do, | < AdZF (k= 1,2).

Now let us consider the properties of the function z.(z).

Lemma 5.1. The function z.(z) is such that

/|Azs(x)|2d:v <c (5.6)

where C' is a constant independent of <.
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Proof of Lemma 5.1. Letusrepresent the integral in the left hand
side of (5.6) in the form

/|Az5(x)|2dx -3 / Az (2)2dz
Q

aff Ka(e+k) ﬂ Kg(e+k) ﬂ Q

+Z / Az (2)|2d. (5.7)
I&a a K ﬂQ

First we obtain the estimate for the first term in (5.7). It follows from the defi-
nition of the function w(z), that the function 2.(z) on U, 5 Ka(e+&) N Kg(e+ &)

has a form .
@)=Y {ga P3G - 2 - ()
a =1

+ = Z C T z;, — UZE('r))('rj - x? - Ujf(m))}lfba(x) ’ (5'8)

t,5=1
where o o2
Taking x = &'t for any 0 < # < 2/3, one obtain that for any set
K,(e+ k)N Ks(e + k)

¢"=((=), ¢G=

/ Az (2)|2de = o(e™). (5.9)
Ka(e+r) ﬂ Kg(e+r)
Therefore the first term in the right hand side of (5.7) tends to zero as € — 0.

Now let us estimate the second term in (5.7). Consider the set K,(¢ — k) \
B, (2r.). On this set we have for sufficiently small ¢ that @(p) = 0. Therefore

=) (el e (2 + Zc =28 —vie (2)) (2 — 25 —vje (2)),
=1

1,J=1

and

n

Az (x Z ¢ {Zn:l 8i L; — T vza(x))a—mk(xj -5 - Uj&(‘r))}'

1,5=1

From this equality we obtain
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Consider the annulus 1 = B, (2r.) \ B,(r:). On this subset z.(z) has the
form

Z£($): {Ca‘l'zczzwza + = Z C wzs w]a )}

=1 7,7=1

H{ = )t = o (T ) | =0t + 53(0).

£

First we obtain appropriate estimate for pj(z). We get

=Y Clai—af —vie(2) + Zc =28 =i (2)) (- 25 —vje (),
=1

1,5=1

and

n

Api(x ZC {iai ; — Ty —vw(:ﬁ))a—%(mj—m?—vja(m))}.

1,=1

Therefore
/ |ApS (2)|%da = O(e™). (5.11)
Consider p5(z). We find:
Ap; = (™ = (M) [Av"w + v° Aw].

It follows from the definition of the function v* (4.6)—(4.10) and the definition of
the function w(z) that

/ |Aps(2)|2dz = O (=), (5.12)

On the set G2 according to the definitions of ¢.(z) and v® for 0 < v < 1 we
get

/ Az (2)2de = o(e™). (5.13)
Ga

Let now consider the ball B, (r. — d.). We have
Azf = (n% = (%) - Av® = 2nA5(n” — ¢7).

Therefore
/ Az (2)2dz = O(="). (5.14)

Ba(rs_de)

The statement of the Lemma follows now from (5.9)—(5.14).
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Let us introduce the following functions:

ze(z), € Qg
Ze(z) :{
0, z€Q\Q;
and
Az (z), =z € Q.
0, z € Q\ Q..

Lemma 5.2. The functions 3.(z) and Z.(x) have the convergence properties:

Z(z) = (1 — p)¢(z) weakly in L*(Q), (5.15)
and
Zu(a) = (1-0) 32 bigop— (o) Han(n()=C(a) weakdy in - 1*(9), (5.10),

as € — 0. Here above
7I_'n/Z,rn

RSN

bij = 52']' [1 — VU]
ks P

and ((z), n(z) are defined in (5.5).

Proof of Lemma 5.2. Theresult (5.15) comes directly from (5.5)
and the definition of the function v®(z).
Now we shall obtain the result (5.16). It follows from Lemma 5.1 that

/ﬁ*m%xgq,

for a constant C; independent of . Therefore the family {Z.(z)} is bounded in
L2(Q), and we have weak convergence for any smooth function 8(z) € C5°(Q) of
a subsequence {Z.6}.

Let us consider the integral

/Z@w@mz/aawmwm
Q
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8 o
= za:{ / Z Cij Z 8xk T _,Uze(-r))axk(.r]_x]‘ —vje(z))dz

NBa(re) M7
z —z°
+/ # — C)A [ (2 — x@)w( : )] O(x)dm} +o(1), (5.17)
as € — 0. Consider the first term in (5.17). We have
n n 8 N

/ E ¢35 Z (9— T — g — vw(:v))a (z; — z] — vje(z))dz
" 1 k=1 T
Ka(e)\Ba(re) =

=c"(1—p)B(z™) > b5 +o(e"). (5.18)

i,y=1
For the second term in (5.17) we find:

/(?7“ -¢MA [va(fc - 2%w <9; _ja)] o(z)dz

g
— =8 =) [ G (%) do ol
OB(re)
= L 0(a) (1% = C°) + o(e") (519

Now the assertion of the Lemma follows from (5.18), (5.19).

If (u; v) is the cluster value in L?(Qr) x L*(Qr) of the family {U.(z,t), Vi(z,t)}
as € — 0, then there exist a subsequence {e}, e — 0, such that

[u(z,1) = Uy (2, D)ll2,00 + [[0(2, 1) = Ve, (2, D) [l2.0, = 0, (5.20)

as k — oo. Therefore Lemmas 5.1 and 5.2 imply that

lim i, (1% 2, (2)b(0); Q2,) = (1 - )1 (s, ) (5.21)
where
T
Ji(u;n, €)= — [ uo(z)b( u(z, )¢ (z)b'(t)dzdt
T

T n 2
- [ [ uten { 3. b () + s o) = (o) } b()dodt
0 Q =1 e
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T
[ [ttt - @)
0 Q

and
Jim T, (u; 22, (2)b(1); Gzy) = 0. (5.22)

Now we study the asymptotical behaviour of the quantity .J,, (u**; z., (2)b(t); B., ).

Lemma 5.3. Let

=3 / F(uf (2, 1)) 2 (2) da.
a€N. Ba(re_ds)
Then we have

ge — Y F(ug™(®)n(z*)Vol(Ba(re — d.))

a€N,

< Ce. (5.23)

Proof of Lemma 5.3. The Poincaré inequality, the structure of
ze(z) in B,(r. —d.), and (2.7) give

[ rwa@de- few) [ s
Ba(Tg—dg) Ba(rs_ds)
< Clg(n/Z—l—l)||Vu€||2,Ba(7“s—de) .
In the ball B, (r. — d.) the function z.(z) has the form

(@) = (4 (17 = () vz = a) = 7+ O(EY).

Therefore

=Y [ IwE)z@
a€Ne Bo(re—d-:)
= > fug™(1))n*Vol(Bu(r: — de)) + O(e) .
a€N,

Now Lemma 5.3 immediately follows from this equality.
In a very similar way we conclude that

D / (2,2 (2)dz — uS ™ ()P Vol(Ba(re — d.)) | < Coe, (5.24)
a€Ne Ba(rs_ds)
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for all ¢ € [0,77], and

$ / he (2)z.(2)dz — B (2*)n°Vol(Ba(re — d.)) $| < Cse.  (5.25)
a€Ne Ba(rs_ds)

Using the definition of v°(z), we have

Az = 2”/\3(77a - Ca)7 T € B, (ra - ds) .

Therefore
D / u (2, ) Az (2)de = Lpe™ 3 uSm (1) - 7%) + O() . (5.26)
a€N; Ba(ra_de) a €N

It follows from (5.23)—(5.26) that

lim e, (0% (2, )5b(1) 2, (2): Be) = a7 ). (5.27)
where
T
Ja(v;m, () = —/vo(m)b(o)n(x)dm—//v(m,t)n(m)b’(t)dwdt
Q 0 Q
T T
[ [ (e, 0C@) = n@)e)dadit [ [(fo(a,0)) = ba(e)n()b(t)dad:.
0 Q 0 Q
Thus, it follows from (5.1), (5.21), (5.22), and (5.27) that
(1= ) S (w5 m, Q) + pda(vim, ) = 0 (5.28)

for any cluster value (u(z,t);v(z,t)) € L*(Qr) x L*(Qr) of the family
{(Uc(z,t); Ve(z,t)) : € — 0}. Here Ji(u;n,¢) and Ja(v;n,() are defined by the
equalities, where b(t) € C1(0,T), b(T) = 0, and n(z), {(z) are any smooth func-
tions on . Therefore according to (5.28) (u(z,t),v(z,t)) is a weak solution of
problem (0.3).

From the consideration presented above it also follows the existence theorem
for solutions from C(0,T; L*(Q7) x L*(Q7)) of problem (0.3) under certain con-
ditions concerning to the functions ug, v, h1 and hy (see the assumption (ii) of
Theorem 3.1).

In order to complete the proof of Theorem 3.1 we only need to prove the
uniqueness theorem for system (0.3). It can be done by the same way as in the
paper [4]. Theorem 3.1 is proved.

Remark 5.1 Above we considered the case n > 3. For the case n = 2
the considerations should be repeated word by word with slight modification in
estimates.
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YcpenHeHHe HeJIMHENHBIX NMapaboinyecKUX ypaBHEHUI
C acCUMIITOTUYECKHU BbIPOKIAOMUMUCA KO3 puuueHtaMu

JI. ITankpaToB

PaCCManI/IBaeTCH HaydajJbHO—KpaeBaf 3ajgada [OJaf HeJIMHeHHOT O Hapa60—
JAUYEeCKOro ypaBHEeHHA BUa

€ n €
% - Z_: a% (afj(l‘)%) + f(w¥)=hi(z), 2€Q, te(0,T),
1,j=1

KO3 pUITUEeHTHI af»j(m) KOTOpOTO 3aBUCAT OT Majloro napamMerpa &, Tak 4TO
fj(m) MMEIOT MopsAIoK 317 (0 <+ < 1) na MHOsKecTBe cthepUuecKUX KoJel
G?‘ TOMIMUHE] d, = de?t, Roawna mnepuosndecku, ¢ mepuojoM &, pacrpe-
nedensl B obaactu 2. Ha MHO#ecTBe Q\UaGg‘ 9TH KO3 (PHUIHEHTHLI paBHBI
MIOCTOAHHOW BeJlW4YUHE. I/IsyqaeTCH aCUMIITOTUYEeCKOE MOoBeJeHNhe peLHeHHﬁ
u®(z,t) oroit sagaun npu ¢ — 0. IlorasaHo, YTO AaCHMINTOTHYECKOE NOBe-
eHue peH_IeHHﬁ ONUCHLIBAETCA CUCTEeMON HelMHeHHBIX ypaBHeHHﬁ, KOTOpas
COCTOUT U3 Hapaéommecpaoro YpaBHEHUA B YaCTHBIX NMPOW3BOAHBIX MU CBA-
3aHHOTO C HUM OOBLIKHOBEHHOTO NU((epeHIInalbHOr0 YpaBHeHUS .

a

YcepenHeHHA HeliHIiHUX nmapa6GoaiyHUX PIBHAHD
3 KoedilieHTaMH, [0 ACUMIITOTUYHO BUPOMKYIOThCH

JI. ITankpatoB

PosriasigaeThesi moyaTKOBO-KpaiioBa 3ajada [ HeqdiHifiHoro mapaGoJid-
HOT'O PIBHAHHS
ou® "9 ou®
€ € €
— = — las.(x)=— )+ f(u®) = h®(x z€eQ, te(0,T
B X g (g ) H I =), 20 te0T).
1,j=1
.. . . .
KoedinienTH aj;(z) AKOro sanemaTh BiJl MAIOro NapaMeTpy &, TaK 1o ag,; ()
MaioTh nopAok 37 (0 < v < 1) Ha MHO*HUHI chepruuHUX Kidenb G2 TOBIIU-
Hn d. = de?T7. Riabna nepioAnyHo, 3 MepiofioM €, posnofijeHi B o6aacTi €.
Ha muoxuni Q\U,G2 1i roedilienTH IOpiBHIOIOTHL cTaniil Beanduni. Bus-
4aeThCH aCHMITOTHYHA MOBe/IiHKA PO3B’ABKIB u (2, 1) miel sajgayi npu ¢ — 0.
JloBefieHO, M0 ACUMITOTHYHA MOBeiHKA PO3B’ABKIB OMUCYETHCA CUCTEMOIO
HeMIHIMHUX pIBHAHB, 10 CKAA/Ja€ThCs 3 HEMIHIIHOTO napaGoaiuHOTO pIBHSAH-
Hfl y YaCTUHHHUX MOXiAHUX Ta 3BUYAHHOrO AudepeHiialbHOTO PiBHAHHS.
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