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For a holomorphic almost periodic mapping f from a tube domain of
C” into C9, the properties of its Jessen function, i.e., the mean value of
the function log|f|?, are studied. In particular, certain relations between
the Jessen function and behavior of the mapping and its zero set are ob-
tained. To this end certain operators ®; on plurisubharmonic functions are
introduced in a way that for a smooth function wu,

(@i[u])' (dd°|2|*)" = (dd°u)' A (dd°|2]*)" "

1. Introduction

In this paper we study relations between behavior of a holomorphic almost
periodic mapping and distribution of its zero set. Our considerations are based
on pluripotential theory methods and have required some developments in the
machinery of the complex Monge-Ampere operators. Some of the results were
announced in [10].

Let G be a convex domain in R", T = R"+iG={z=z+4+iy: 2 e R", y €
G'}. A holomorphic mapping f : Tg — C?, ¢ < n, is said to be almost periodic
in Tg if for any € > 0 and any subdomain G’ CC G the inequality

17z +7) = F(2)llor,0 < €

holds for all 7 from a relatively dense subset X, of R™. Here

l9(2)llGr 00 = supflg(2)| : z € Tar} (1.1)
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Monge-Ampeére operators and Jessen functions

An example of such a mapping is one whose components f; have the form

> erjexp{i(z,2))}, e € C, Aj € R™
i

A classical result of B. Jessen and H. Tornehave [6] for n = ¢ = 1 states that
for a holomorphic almost periodic function f in a strip T(, ) = {z4+iy: —c0 <
T < 00, a <y < b}, the function log|f| has the mean value

t
.1 .
As(y) Ztlggog/loglf(ﬂcﬂy)ldw
—t

which is a convex function on (a,b) with the following remarkable property: if
the derivative A} exists at points @y and by, @ < a1 < by < b, then the set of
zeros of the function f in the strip 7,, 3,) has the density equal to

1
= (A% (b1) = A% (a1)) -

This result was extended in [12] to almost periodic holomorphic functions f :
Ta — C. Namely, the function log|f(z + iy)| was shown to possess its mean
value Ay(y) along any plane {z 4+ ¢y : = € R"}, the function A; (the Jessen
function) being convex, and the density of the zero set Z; of the function f
in any subdomain Tg, G’ CC G, exists and coincides with the Riesz measure
ps(G') of the function Ay, provided uf(dG’) = 0.

The case ¢ > 1 was considered in [13]. Under certain condition of regularity
of a mapping f (see the definition of the class R, in the next section), a current
flgeq_l) of bidegree (¢ —1,¢ — 1) was constructed as the mean value of the current
log | f|?(dd¢log | f|*)97!, so the density of Z; in a domain T exists and coincides

with the trace measure of the current dd.cflgfq_l) in {max |z;| < 1}4+iG’, G' CC G.

The existence of mean values 1215,1) of the currents log | f|?(dd®log | f|})!, | < ¢—1,

was proved in [9]. The current AS‘O) is equivalent to a convex function and can
be regarded as the Jessen function of the mapping f. It is a much simpler

object than the current ddcflgeq_l), and, on the other hand, it could give us some
information on the distribution of zeros of the mapping. A natural conjecture that

~ ~ {
d.dCAS]_l) = {ddCAEfO)} was shown to fail for [ > 1 [9]. Moreover, an example by
Ronkin (also described in [9]) proves that, generally speaking, supp d.dcflgfq_l) #
supp {dd‘:flg,o)} ?. Nevertheless one can hope for some relations between these sets.

Since for a subdomain G’ of G, Zy N Tg = 0 if and only if ddcflgtq_l)(TG/) =0,
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(0)

the question arises: given the function flf , to find tube domains T where the
mapping f has no zeros.
To answer it we study relations between the Jessen function A&O) and the

currents Ag,l), I < q. We show that for f € R;, ¢ <n,
supp ddcflgfq_l) C supp [ddcflgeo)}q (1.2)

(Corollary 3.1); for the case ¢ = n it was earlier proved in [9]. Moreover, under
no assumption on regularity of a mapping f, the condition {ddcflg,o)}q =0ona
domain T¢ implies Zy NTe = 0.

Then we obtain that, similarly,

~ ~ {
supp dd°A{ ™"  supp [ddCAﬁP)} . Vi<yg (1.3)

(Corollary 5.5). We also show that the degeneration of the currents dd.cflgfl_l) for
I < qand f € R, cannot be of local character: their supports are either T or ,

and the latter is the case of rank f < [. So if {ddcfl;o)y = 0 on some T then f
has no zeros in the whole T¢.

As a consequence it follows that if a convex, piecewise linear function A in
G C R” is the Jessen function of a mapping f € R, (Tg) for ¢ > 1, then A is
linear. It contrasts with the case ¢ = 1, for which a description of the (non-
empty) set of piecewise linear Jessen functions was obtained in [14]. Moreover,
every convex piecewise linear function on an interval (a, b) is the Jessen function
of some holomorphic almost periodic function in the strip 7,4 [6] (note that
every holomorphic almost periodic function f: Tg — C is regular).

The proof of (1.2) makes use of technique of maximal plurisubharmonic and
convex functions, while the situation for [ < ¢ in (1.3) is treated in an ab-
solutely different way. The Monge-Ampere operator (dd®)! has the property
(dd°(u+ v))' > (dd°u) 4 (dd°v)! for plurisubharmonic functions u and v, howev-
er it is not possible to relate

1 Y :
(%)
to
1 X l
v 2 (dd°uj)
1

independently of N. So one can hardly hope for good relations concerning mean
values of families of plurisubharmonic functions. Besides, as is known the Monge—
Ampere operators cannot be defined for all plurisubharmonic functions.
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To avoid such difficulties we introduce operators ®; acting on plurisubhar-
monic functions as follows. Given a smooth plurisubharmonic function u, ®;[u]
is a function g; such that

(g0)! (dd|=*)" = (dd°u)' A (dd°|=|*)""", (1.4)

and we extend it to be a measure for an arbitrary plurisubharmonic function
u (as was done for [ = n by Bedford and Taylor [1] when solving the complex
Monge-Ampere equation). These operators are well adapted to functions of the
form u = log | f|?, where f is a holomorphic mapping into C?. If the zero set of
f is a complete intersection then ®;[u] with [ < ¢ is absolutely continuous with
respect to the Lebesgue measure in C" and its density g; satisfies (1.4). The
operators ®; have the concavity property

Oiftu+ (1 —1t)v] > tdi[ul + (1 —t)P[v],

and we hope they could be of independent interest.

The paper is organized as follows. Section 2 contains preliminaries on holo-
morphic almost periodic mappings. In Section 3 we prove the conclusion (1.2).
We introduce and study the operators ®; in Section 4, and we obtain relations
(1.3) in Section 5.

2. Notations and preliminary results

Throughout the paper G is a convex domain in R" and T = R" 4+ iG =
{z=2+4+1weC": z € R" y€ G}is atube domain in C” with the base GG. For
teRY and 1= (1,...,1) e R}, t =t ... t,, m(t) = minigjcn by, t- T =
(tlml, .. .,tn;ﬁn) € R”,

(2% ={z e R" : |z; —2f| <tj, 1 <j<n}, Il =T1,(0).

Further, My is the collection of all ordered samples of the length / < n from the
set {1,...,n}; for I = (iy,...,4) € My and z € C" we set 21 = (z;,...,2;,) €
cl 2 =z ...+ 2, and dzl = dz;;, A A z;,. We denote by CNV (G) the
collection of all convex functions on G and by PSH(Q) the collection of all
plurisubharmonic functions on a domain 2.

Let D, ,(£2) be the space of smooth and compactly supported (p, ¢)-differential
forms on a domain Q C C”, and let D] (€2) be its dual space of currents of
bidimension (p, q) (bidegree (n — p,n — ¢q)) (see [7]). A current T € D, ,(Q) is
called positive if (T, ¢) > 0 for every ¢ € D, ,(€2) of the form

d=(IAMAM)A(ALAN) A A (A AN,

Matematicheskaya fizika, analiz, geometriya , 2000, v. 5, No. 3/4 277



Alexander Rashkovskii

where A; € D10(R2), 1 < j < p. The coeflicients of positive currents are known
to be measures.

Weset d = d+0, d° = (0—0)/44,50 B = (ddc|z|2)l/l! is the standard Euclid
volume form in C!. A positive current T € D670(Q) has the form T = %1,
where T is a positive measure (or function). Throughout the paper we will
identify such currents 7" with the corresponding measures (functions) *7".

Let F be a holomorphic mapping from a domain Q C C” into C?, ¢ < n,
let Zp = F~1(0) be its zero set regarded as a holomorphic chain and |Zp| be its
support. We will say that Zp is a complete intersection if dim |Zp| < n — ¢, i.e.,
dim|Zp|=n—qor Zr = 0. As is known [5], for such a mapping the currents

al) := (dd°log | F|?)!

and
A%) = log |F|2a%)

are correctly defined for [ < ¢, their coefficients a(ll} and A(Il} are locally summable
functions, ddCA%) = agﬂ) > 0, and the current aﬁﬁ) = dd.CA}E‘” coincides with
the current of integration over the chain Zr (up to the multiplication constant
7w~ %) . In particular, the 2 (n — ¢)-dimensional volume V¢ (£Y) of Zr in a domain

Q' CC Qis equal (up to 777) to the trace measure of ag) in Q"

1
Vr() = — / a\9 A B,
Q/

Let now f: Tg — C?, 1 < g < n, be a holomorphic almost periodic mapping
in T. It means that for any sequence {h;} C R” one can choose a subsequence
{h;, } such that the mappings f(z+ h;,) converge as k — oo with respect to any
norm || - ||gr .00, G' CC G (see (1.1)). This is equivalent to the definition given in
the introduction.

An almost periodic mapping f is said to be regular if Zr is a complete inter-
section for each its limit mapping F' [13]. The class of all regular holomorphic
almost periodic mappings Tz — C? will be denoted by R, (1¢).

For f € R, (Tg), t € R} and [ < q we set

agf{)t = Z a(IZ} (t-z+iy)dz" Adz7,
7

AV = S AN (¢ 2+ iy)dT AdZT

1.t IJ Y )
7

(1) ) (0 (0

where a}; and A(IZJ are the coefficients of the currents a}’ and A}’, respectively.
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Monge-Ampeére operators and Jessen functions

Theorem 2.1 [13,9]. Let f € R,(Tg), | < q. Then
(1) the currents agfl)t and Ay)t converge in the weak topology of currents as
m(t) — oo to some currents EL;Z) and Agf), respectively;

(2) the coefficients of dg,l) and flg,l) are locally summable functions depending
on y only;

(3) dac AV~ = &) > o;

(4) if a measure gy on G is defined so that given Borel set K CC G, pys(K)

is equal to the Kdhler mass of the current dg,q) = ddcflgfq_l) on the set 117 + 1K,
then for any domain G' CC G with 1y (0G') = 0 there exists

. 1 . _
lim t_l‘/f(Ht +1G') = 77 u s (G).

m(t)—oo

The coefficients EL(IE} and A(Il} are L}Oc—limits of the coeflicients a(Il} and A(Il} of
the currents affl) and AS}), respectively:

(1)

apy(y) = m(lti)fgoo ayy(z +iy) de,
T (z°)

A = lim o Afe iy e, Va0 € RN
Ht(l‘o)

Here
]D[ng:%ngT (2.1)

is the mean value of a function g over a set D with respect to a measure 7.

Theorem 2.2 [9]*. Let f € R, (Tg). Then dg,q) =0 on a domain T, G' C
G, if and only if |Z¢| N Te = 0.

The current (function) fl&o) is equivalent to a convex function A which is
called the Jessen function of the mapping f.

Theorem 2.3 [9]**. Let f be a holomorphic almost periodic mapping from
Ta to C1. Then

][ log | f(z +iy)|* dz — A(y) € CNV(G) as m(t) = oo,
T (z°)

*For n = 1 see [6], for n > 1, ¢ = 1 see [14].
**For g = 1 see [12].
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uniformly in z° € R™ and y € G’ for each G' CC G. Besides, if f € R,(T¢) then

the function Ay is equivalent to 1215,0).

The function Ay was shown to be a uniform limit of the mean values A g of
the almost periodic functions log|f|? as § — 0, where

| flo := max{]fl], 6} (2.2)

3. A relation between the Jessen function and distribution
of zeros

As was shown in [9], if (dd°Af)" = 0 for f € R,(Tg) on adomain T/, G' C G,
then |Zf| N T = 0. Here we extend this result to almost periodic mappings
f:Tg — C?, g < n. To this end we need to recall some facts concerning the
real Monge—Ampere operator and maximal convex functions [11].

The real Monge—-Ampeére operator M is defined on smooth functions v(y), y €

R™, by the equation
2 n
Mou(y) = det ( il )
DY;0yk ) s

and extends in a unique way to arbitrary convex functions. Besides, for any
function v(y) € CNV(D) regarded as a function from PSH (Tp),

Mvuvdz = ¢, (ddv)".
The Dirichlet problem

{ Mou(y) =0, ye€ D,
v(y) = ¢(y), y€ID

in a bounded strictly convex domain D for any function ¢ € C'(0D) has a unique
solution vy (y) in the class CNV(D) of all convex functions on D. Furthermore,
the solution is the upper envelope of the set of convex functions in D not exceeding

¢ on OD:

vg(y) = sup{v(y) € CNV(D): v(y) < ¢(y'), Vy' € OD}. (3.1)

Theorem 3.1. Let f be a holomorphic almost periodic mapping from Tg C
C" to C?, q < n, and (dd°A)? = 0 on some domain Tg,, Go CC G. Then
|Zf| N TGO =0.

An immediate consequence of theorems 2.2 and 3.1 is the following
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Corollary 3.1. Let f € Ry(1g), q < n. Then
supp &Stq) C supp (dd°Ag)?.

Proof of Theorem 3.1. Let, contrary to the statement, |Z¢|NTg, # 0.
Then there exists a point z° € T, such that f(z°) = 0 and dim |Zf|Nn{z € C":
zr = Z(I)} = 0 for some I € M,,_,. For the sake of brevity we can take 29 =0 and
I'={q+1,...,n}. Points of the space C™ will be denoted by z = (2/, 2"), where
ZeC?and 2" € C"1,

Choose domains G’ C R? and G C R" 7 such that 0 € G' x G" CC G and
consider the family of the holomorphic mappings

fS(Z/) = f(Z/ + 5, S") : Ter — CH,

where s = (¢, ") € R".

Let B' CC G’ be a ball in R? with the center at 0. As the zero set of the
mapping fo is discrete, one can choose a bounded neighborhood U’ of 0 in C? in
such a way that for some 8 > 0 the inequality |fo| > 26 holds on 9U’. In view of
almost periodicity of the mapping f there exists a relatively dense subset {h;}
of R™ such that

0

1G4 h) = Floee < 51 F=1,2,00 (32)

and for some bounded neighbourhood Vj of 0 in R"™

1 f(z+s) = f(2)|lce,co < Z, Vs € V. (3.3)

Set V; = Vo+h; and V = |J; Vj; we can also arrange the domains V; to be disjoint
keeping the set {h;} relatively dense in R™. By (3.2) and (3.3),

0
|f(z45) = f(2)]lGo,00 < 2 Vs eV,

then

0
1£(z") = fo(Dllare0 < 3

and, by Rouché’s theorem, each mapping f,(z') has a zero in the domain U’ and
|fs| > 8@ on dU', Vse V.
Set

Vs eV, (3.4)

W; = {(z,s) e U xV;: |f(2)| < 6},
w o= [Jw, cTe xV,

J
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and define the function

v(ﬁ) (Z/ S) — {IOg |fs(2/)|2, when (Z/7 S) c (TG/ N Rn) \ [/V’
) 210g0, when (ZI7 S) € Ww.

For each fixed s € R”, v(g)(z’,s) is plurisubharmonic in Tgs, coincides with
log |f5(2/)|2 in TG/ \TBI and

log | fs(2)* < vO(2/, 5) < log | f,(<") |2

everywhere in T (where | - | is defined by (2.2)).
Set, further,

30 (2') = lim sup lim sup ][ v® (¢y ) ds.

(e m(t)oo
It is a plurisubharmonic function in T which satisfies the inequalities

Asy'0) <) < Agoly, 0)
in Ter and coincides with Af(y’,0) in Ter \ T (see the last paragraph in the

previous section).
The function

‘w(e)(y') = sup{f)(e)(ac' +1y): 2’ € R}
is convex in G/ and equal to Af(y’,0) in G'\ B’. We are going to show that
w(®(0) > A(0). (3.5)

By (3.4), |£5(0)] < £, Vs € V, therefore

w®(0) - A;(0) > liminf {v(e)(O,S) —10g|f(8)|2} ds

m(t)—o0 7,
1
> timint sor [ [600,5) = log ()] ds
II;nV
. 1 0
> liminf — / [210g0—210g—] ds

1NV
= log4 mes,Vy > 0,

that proves (3.5).
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So, the function Af(y’,0) is not maximal in B’ and thus, by (3.1),
MA(y',0) # 0 on B’. Hence,

[dd°As(y',0)]7 £ 0 on T, . (3.6)

It implies that (dd°Af)? # 0 on Tg,, too. Indeed, let A)(y) be a family of
smooth convex functions in Gy decreasing to A¢(y) as ¢ — 0. By (3.6) there is a
nonnegative function ¢(z’) € D(Tp/) such that

/ [dd° A (4, 0)]76(=") > 0. (3.7)

Ty

Take a function ¥ (2") € D(Tgn), ¥ > 0, ¥(0) = 1. Then by the monotone
convergence theorem for the Monge—Ampére currents [2],

/ [dd°As(y',0)]%¢(2") = lim [ [dd°A((y',0)]%6(=")

e—=0
Ty Ty
= T [ [ A (0 g6 A [ddlog "0 ")
Ta,
= [ WA () A log P61 ().
Te,

By (3.7), the latter value is strictly positive, therefore (dd°Af)? # 0 on Tg,. So,
we come to the contradiction and the theorem is proved.

4. Operators O;[ul

In order to study properties of the currents (dchf)l with [ < ¢ we are going
to introduce some operators ®; acting on plurisubharmonic functions. In case of
a smooth function u, ®;[u] will coincide with g'3,,, where ¢ is the density of the
absolutely continuous measure (dd°u)!A3,_;. The operator ®,[u] was introduced
by Bedford and Taylor in [1] by means of a measure theoretic construction from
[4]. The definition and most of the properties of ®;[u] for [ < n are similar to
ones of ®,,[u], and we will refer for their proofs to [1].

Let C'; denote the cone of positive semi-definite n X n matrices imbedded in
C”. Let A € Cy and let Ay > Ay > ... > A, be its eigenvalues. Consider the

function .

T
> /\J] . 1<n

JeM;

T (A) =

Matematicheskaya fizika, analiz, geometriya , 2000, v. 5, No. 3/4 283



Alexander Rashkovskii

(as usual, A = X; - Ay, - A for J = (G1, g2, -+, 1)
It is clear that Wy is a continuous nonnegative and positively homogeneous of
degree 1 function on Cy. The crucial point is that it is concave [8]:

U (tA+(1-7)B) >tV (A)+ (1-7)¥(B), 0<7t<1, A Be(C,.

So the construction from [4] can be applied to extend the functions ¥; to matrix
valued measures.

Let M4 (S2) be the set of all vector valued Borel measures y on a domain 2
with values in the cone C, i.e., p = (uy);,_; and p(E) € C4 for each Borel set
E CC Q. For u € M, choose a nonnegative scalar Borel measure A on 2 such
that y is absolutely continuous with respect to A (e.g., A = 371 <; j<n |#5], Where
|pei;| is the total variation measure of p;;). By the Radon—Nikodym theorem,

dp = hd),

where h: Q — C}.
Set
Wi (p) = Wi(h)A.

It defines a nonnegative Borel measure W;(u) € My (€2) which does not depend
on the choice of the measure A (see [4]).

Proposition 4.1. Let p,v € M4 (). Then

(1) i(op) = aW(p) for a > 0;

(2) if p and v are mutually singular, then Ui(p+v) = Ui(p) + ¥ (v);
(3) W) is absolutely continuous with respect to p;

(1) Wilrpit (1 - 7)) > 70i) + (1 - 7)), 0 <7 < 1;

(5) if x > 0 is a continuous function with compact support, then

Wi(p*x) > Wilp) * x

on any open set Q' with Q' + suppx C Q;
(6) for any Borel subset E of Q

W) (1) = inf 3 W),

where the infimum is taken over all disjoint coverings {E;} of the set E;
(7) for any sequence of Borel measures p? € My () which converges weakly

to p, ‘
Wi(p) > lim Wy (p)

T oo

provided the measures W;(u’) converge weakly;
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(8) Uiy1(p) < C1(p), 1 <1 < n, where the constants C; depend on | and
n only.

Proof. The properties (1)-(4) are immediate consequence of the definition
of W;. The proofs of (5)—(7) are the same as of Proposition 5.4, Lemma 5.5,
and Proposition 5.6 of [1], respectively. Relations (8) follow from Maclaurin’s
inequality for elementary symmetric functions.

Now let u be a plurisubharmonic function in a domain Q C C” and let

?u \"
i = (32}34)

1,5=1

be its complex Hessian. As is known, H € M ().
We set
Ofu] = ()"0 (H), 1<

Proposition 4.1 implies the following properties of the operator @;.

Proposition 4.2. Let u,v,u; € PSH(Q). Then

(1) ®.[au] = ad[u] for a > 0;

(2) ®i[ru+ (1 —7)v] > 7P[u]+ (1 - 7)Pv], 0<7<1;

(3) if x > 0 is a continuous function with compact support, then

Dfu* x] > Pfu] * x

on any open set ' with Q' + supp x C €;
(4) if uj — w in LL _(Q) (or, that is the same, in D'(Q)), then

O;[u] > lim @;fu;]

— j—oo

provided the sequence ®i[u;] converges weakly;
(5)
lim @;[u * x| = ®;[u],

e—0

where x.(z) = e 2"y (f) is a standard smoothing kernel;
(6) ®riq[u] < Crdiful, 1 <1< n, where C; depend on | and n only.

Note that ®[u] = dd“u A ,_1 for any plurisubharmonic function u, and so
these properties for [ = 1 follow immediatly from linearity of the operator dd¢
and its continuity in the distribution topology (and of course, with the equalities
instead of the inequalities in (2)-(4)).

A relation between ®;[u] and (ddu)’ in case of a smooth plurisubharmonic
function u is given by the following statement.
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Proposition 4.3. If u € PSH(Q) N C?*(2) then

(90)! B = (dd°u)' A B, (4.1)
where g; is the density of the measure ®;[u] with respect to the Lebesgue measure
in C”.

Proof. Theeigenvalues Ay, ..., A, of the complex Hessian H of the function

u are solutions of the equation det(H — Al) = 0, where [/ is the unit n X n matrix.
This equation can also be written in the form

(dd°u — Adde|2]?)" = 0.

But

T

(ddow — Add?|2?)" = ZM—Z(—UH—ZG)(MCU)M(dd6|z|2)”_l

(=0

— (1) zn: yrt (E1) (dd“u)' A Bt

!
P [
Thus by the Viete theorem we have the desired equations (4.1).

In contrast to the operators ®;[u], the complex Monge-Ampere operators
(dd°u)!, [ > 1, cannot be defined (at least as positive currents) for all plurisub-
harmonic functions u. We obtain the following relations between ®;[u] and (dd°u)'
provided the latter is well-defined.

Theorem 4.1. Let v € PSH () be such that for some | > 1 its requlariza-
tions u. = u * Y. generate the family of Borel measures

{(dduc)’ A Bri}e

which is bounded on each compact subset of Q. Then
(1) ®i[u] is absolutely continuous with respect to the Lebesque measure dm,,
on C"; moreover, if ®[u] = g;dm,, then g; € L} (Q);
(2) if
(dd°u)' A By = Gydm, + dv

is the Lebesgue decomposition of the measure (dd°u)! A B3,_; into its absolutely
continuous and singular parts, then

1/1
ngG;/;

(3) if

0%u .
H = (322'(92]') = Hdm, + dv
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is the Lebesgue decomposition of the measure H, then

g = (I (H).

P r o of. The statements for [ = n are proved in [1, Theorem 5.8]; for
the case | < n we only need to use the above Proposition 4.3 and repeat the
arguments of the proof of that theorem.

R em ar k. The question about absolute continuity of the measure ®,[u]
for an arbitrary plurisubharmonic function u was posed in [1]. It follows from
Theorem 4.1 that all the measures ®;[u], [ > 2, are absolutely continuous if the
family {(dd°u.)* A 8,_i}c is bounded (roughly speaking, if (dd°u)? is correctly
defined).

We can get more information on ®;[u] in case u = log |F|* (that will be used
in our study of almost periodic mappings).

Theorem 4.2. Let I be a holomorphic mapping from 2 C C" into C?, q < n,
such that its zero set Z; is a complete intersection, and let u = log|F|*. Then,
in the notations of Theorem 4.1,

{1) (I)l[u] =0, ¢<I<mn

(2) gll dm,, = 1! [\IIZ(H)]ldmn =Gdm, = (ddcu)l ABn_t VI<g;

(3) ®;[u] = 0 on a domain w C Q for some | < q, then ®;[u] = 0 on the whole
domain Q; moreover, in this case rank I’ < [ and Zp = {.

Proof. The statement (1) for [ = ¢ follows directly from Theorem 4.1,(1)
and the fact that (dd°u)? is the current of integration over the chain Zg. In its
turn it implies ®;[u] = 0 for [ > ¢ by Proposition 4.2,(6).

For [ = 1 the statement (2) is evident since ®1[u] = dd°u A $,,_1, where the
current dd®u has locally summable coefficients.

To prove (2) for [ > 1 we observe, first, that the function u = log | f|? satisfies
the condition on the family

{(dd’cue)l A ﬁn—l}ev 1<i< q,

0%u,
He= (82’2’82’]’ )

(dd°u.)' A Bt = Gy o dm,.

of Theorem 4.1 (see [3]).
Further, let

and

By Proposition 4.3,
G = U9, (H)]
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On the other hand, the complex Hessian H of the function » has the form
= |F|7*h,

where h is a smooth matrix function. Therefore for [ < ¢ the coefficients of
(dd°u.)" converge to the coefficients of (dd°u)! in L(Qq_l)/ﬂ7 and so G — G| as
¢ — 0. By the same arguments, [V;(H,)]' — [¥;(H)]' in L(Qq 1)/21, and we come
to the desired equations (2).

Now let g; = 0 on a domain w C €2 for some [ < gq. Then by the just proved
statement (2), G; = 0 on w and so, (dd°u)! = 0 on w. It implies, in particular,
that (dd“u)? = 0 on w, hence Zp Nw =0 and u € C*(w).

The Hessian H of the function u has the form

_ aFk (?Fk aFk 8Fk !
4
H= |F| (|F| Z 0z; 82’] 82’2 Fk Z )
2,7=1
Let oF
),
0z ) 1<i<n, 1<i<q

be the Jacobi n X ¢ matrix of the mapping F’. Taking F as a row vector and
denoting by A* the matrix adjoint to a matrix A, we have by direct calculation
that

H = |F|"Y(FF*JJ* — JF*FJ*)
= |P|"YJFF*J* — JF*FJ*)
= |P|7Y (PP, - F*F)J~,

where [, is the unit ¢ X ¢ matrix. Observe that the matrix I™*F is of rank 1,

hence |F|2 0
FF:U( 0 O)U

with some unitary ¢ X ¢ matrix U. Therefore

FF*I, — F*F |F|U<0 101>U*.
q

Denoting

-1 0 )

we have H = BB*. Besides, rank B > rank J — 1.
On the other hand, the condition (dd°u)’ = 0 implies that rank H </ —1 on
w. Thus rank B <[ — 1, too, and rank J </ on w.
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Since every minor of order [+ 1 of the matrix J is equal to zero identically on
the domain w, then it is zero on the whole domain 2. So, rank ' = rank J </
on €2, and Zp can be a complete intersection only if Zp = {.

0 0
U(O Iq_l)

has the form [0, u(l),...,u(q_l)], and the columns ul9) satisfy the equations
F*Ful) =0, 1<j<q¢q-1 (they are the eigenvectors of the operator F*F' cor-
responding to the zero eigenvalue). Define the column vectors g by g](]) = fi+1,
g9 =1, 99 =0, Vi e {1,..., )\ {4, j+1}, 1 <j < g—1. The vectors {g\/)}
form a linearly independent system in the subspace generated by uM L e
for every z € Q\ U; Zs,. Therefore rank B = rank JG in Q\ U; Zy,, where
G = [g(l),...,g(q_l)]. Since JG is a holomorphic matrix function in € and
rank JG < [ on w, then rank JG < [ everywhere on €2, and the same is true for
the matrix H. Thus ®;[u] = 0in Q.

The theorem is proved.

The matrix

The last statement of the theorem can be reformulated in the following way
(which might be known, however we have no corresponding references).

Corollary 4.1. Let F' be a holomorphic mapping from a domain 2 C C” to
C?, g < n, such that Zr is a complete intersection. If

(dd°log |F|*)! =0 (4.2)
on a domain w C Q for some | < q, then (4.2) holds identically on 2, rank ' <
and Zr = (.

In what follows, we will need a result on limit transitions for the operators
®;[u]. The general situation is described by Proposition 4.2,(4). However for our
special case we have the following, more precise, relation.

Theorem 4.3. If a sequence of holomorphic mappings I; : Q@ — C?, ¢ < n,
converges uniformly on compact subsets of Q to a mapping F' such that Zr is a
complete intersection, then the sequence ®[log |F;j|?] converges to ®[log|F|*] in

Lioe ().
Proof. Let according to Theorem 4.1,(1)
®log |F;|*] = g1; dm,,, ®[log|F|*] = gidm,, [<q.

For any compact set F C €,

/|gz,j—gz|ldmn= / lg9; — ail' dmy, + / lg1; — ail' dm,
B AU ENU
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where U is some neighbourhood of |ZF|. Since ¢; ; — ¢; uniformly on £\ U then
the first term converges to zero as 7 — co. The second term is not greater than

2!~ / (lgrl" + 1g1l") dm,

ENU

which by [9, Theorem 1] can be made however small by the appropriate choice
of the set U. Therefore g;; — ¢; in Lfoc.

5. Degeneration of the Jessen function

Now we apply the results from the previous section to study the currents
(dd°Ap)', 1 < q.

Let f € R,(Tg), u = log|f|* € PSH(Tg), @5,1) := g1, where the functions
g1 are the densities of the absolutely continuous measures ®;[u] (see Theorem
4.1,(1)). For f € Ry(Tg) and t € R} we define the functions

@5};(:6 +iy) = CI)E,I)(t czty), [<q.

Theorem 5.1. Let f € R,(Tg) and | < q. Then the functions <I>5f)t converge

weakly to some function i)gfl)(y) > 0 as m(t) — oo. Moreover,

PO = 1 0 4
L (y) = m(ltl)lgoo][(bf (s+z+1iy)ds
I1;

in L} _(G) uniformly in x € R".

Sketch of the proof. The way of the proof is similar to one of [13,
Theorem 1], and we repeat it in brief. First, let

EQ(I‘O,G/) ={z€lg:z€ Hl(xo), |f(2’)| < 0}.

By means of Theorem 4.3 one can prove that for any ¢ > 0 and any G’ CC G
there exists # > 0 such that

{
(0] dedy<e vi®eR" (5.1)
EQ(IO,G/)

(cf. [13, Lemma 1]).
Further, set

2
o _ ( | f| ) (1)
o) = (111} ¢
18 |flo !
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(as above, |fls = max{|f], #}). It is a uniformly almost periodic function in

Ta. Therefore there exists a function (fg,l)é,(y) such that for any ¢ > 0 and any

G' ccG

][ (I)Sfl,)e(t s+ 1y)ds — égi)e(y) <e¢ VzeR", (5.2)
Iy (=)
provided m(t) > mg = mo(e, G).

Denote

1/1
lolcrs = [ / |g<5)|zd5] .
Gl

By (5.1) and (5.2), there exists # > 0 such that for any 8 < 8 and 8" < 8, Vz €
R,

= (! (! = (I {
I &0 - 0l < |8~ f o) as
Hl(f) G\l

- ! ! l
I PO ][ o), ds| + [¢>S«,)e/,t - <I>§f,)9~,t} ds

I (2) Gy IMy(=) Gl
< 2¢(1+ mes,G").

Therefore the functions <i>5,l)€ converge to a function (i)gj) in L} (G).
For any € > 0 and G/ CC G, there exist > 0 and 7 > 0 such that

][ <I>5‘l7)€7t ds — <i>5f) <e¢ YzreR?,

Hl(l‘) G\l

provided 8 < @ and m(t) > 7. It implies that for m(t) > 7

][ oV ds— 3P|  <¢ VreR™
1(=) ]
Thus

@) = e ][ @y L ][ (s + 2+ iy) ds

Iy () Iy (=)

in L} (G) uniformly in = € R".
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It also follows that the functions <I>5f)t converge weakly to the function <I>( )
m(t) — oo (cf. [13, Theorem 1] and [12, Theorem 1]). That completes the proof

Note that @S})[u] = dd°u A ,_1 implies (fgf) = dd°As A 1, and <i>5(q) =0
because (I>S,q) =0 (Theorem 4.2,(1)).

Now we are going to relate these limit functions to the currents ELSD from
Theorem 2.1.

Theorem 5.2 Let f € R,(1g) and | < q. Then
~ l
89) 5o <l A

Proof. Setu=log|f|®. By the previous theorem and the Holder inequa-
lity, for any nonnegative function ¢ € D(1¢)

{

/[égj)(y)ywn = / lim ][(I)z z+s)]ds| @By
< / fim ][{qn [u(z + 5)]} dsé B,

= / lim [dd“u(z + 5)]' ds A ¢ B,

m(t)—oo

- /degfl) A ﬁn—h

and the theorem is proved.

()

We can also estimate (I)f
has no zeros.

Theorem 5.3. Let f € R,(Tg), | < g,

(1)

by @}’ from below, but only on domains where f

1Zs|NTg, =0 (5.3)
for some domain Gy C G, and
(dd*log |71%)! 0. (5.4)

Then
q)gfl) ﬁn >c agfl) A ﬁn—l

on each domain Tg, G' CC Gy , where the constant ¢ depends on [ and the
domain G'.
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Proof. Observe, first, that u :=log|f|? € C*(Tg,), and due to Corollary
4.1 the condition (5.4) implies (dd®log|f|?)! # 0 on any domain G’ C G.
For z € Tgr and G' CC Gg we have

(i)gj)(y) B = hm ][ o) (z+s)dsp,

11[o ]||G/ D gim [ [0+ 9)] dss,

m(t)—oo

v

t

1_
= H(ddcu)l) é/ . m(l})rgoo [dd°u(z + 8)]' A By ds
11

= o]}

, 00

MEfl) A ﬁn—l-

The proof is complete.

()

Now we will obtain a relation between <i>f
function Ay. We would like to stress that it is the point where the concavity
properties of the operators ®; play the key role.

and the corresponding Jessen

Theorem 5.4. ®;[Af] > égp dm,,.

Proof. Let
= ][log|f(z—}—s)|2ds.

By Proposition 4.2,(4),
O;[Af] > lim  Pyfvyl. (5.5)

T m(t)—oo

Further, by concavity of ®; (Proposition 4.2,(2)),

)[vi] > ][ Oyfu(= + )] ds, (5.6)
IT;

where u = log | f|?. Finally, by (5.5) and (5.6),

®;[Af] > lim ][tl)l z+s)]ds = (l) dm,,.

m(t)—oo

Corollary 5.1. (dd°As)' A B_; > { } B

P roof. The relation follows immediatly from Theorem 5.4 and Theorem
4.1,(2).
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Theorem 5.5. Let f € Ry, |Z;|NTg, =0 for a domain Gy C G and QN)S‘Z) =0
on Tg, for somel < q. Then dg,l) =0 on the whole T, rank f <1 and Z; = (.

Proof. Since |Zf|NTg = 0, the function u := log|f|? is smooth and
(

uniformly almost periodic in Tg,, and so is ®;[u] = (I)fl). However,

: ) — W0 _
m(ltl)rgoon][q)f (z+s)ds =@} dm, =0

(1)

on Gg. Thus, by standard properties of almost periodic functions, ¢," =0on
T, Now Theorem 4.2 implies that @S]) =0, dg,l) =0, Z; =0, and rank f <.

Corollary 5.2. Let f € R,(Tg) and (dd°Af)! =0 on Tg,, Go C G, | < q.
Then the conclusion of Theorem 5.5 holds.

Proof. Since (dd°As)' =0 on Tg,, (dd°As)? = 0 on Tg,, too, and thus
by Theorem 3.1, |Z;| N T, = §. So Corollary 5.1 and Theorem 5.5 imply the
desired result.

Corollary 5.3. If the Jessen function Ay of a mapping f € R,(1q), q¢ > 1,
is linear on a subdomain of G, then Ay is linear on G.

Proof. The statement follows directly from Corollary 5.2 with [ = 1, since
dd° Ay =al).

Corollary 5.4. Let f € R,(Tg) be such that &Sj) =0onTg,, Go CG, [ <q.
Then the conclusion of Theorem 5.5 holds.

Proof. By|[9, Theorem 3],

supp dgeq) C supp &Sfl),

S0 dgtq) = 0 on Tg, and, by Theorem 2.2, |Zf|NTg, = 0. Now we can either refer

to Theorem 5.2 and Theorem 5.5 or repeat directly the arguments of the proof
of Theorem 5.5.

The combination of the above results gives us
Corollary 5.5. If f € R,(Tq) then

supp (dd°A;)! D supp égfl) = supp Ezgfl), Vi <q.
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OnepaTtopbl Monxxa—Amnepa u ¢pyukuuu Heccena
rojoMop$HbIX NMOYTU NepHogUYeCKUX OTOOpaskeHuii

A. PamkoBcruit

HccaenyioTtea coiicTa hyHrnun Heccena, T.e. cpefHero sHaueHNA (yHE-
unu log | f|?, ronomopdHoro nouTn nepruonnyeckoro otobpaxenns f TpyGua-
Toit oBaactu npoctpaHcTBa C™ B C9. B yacTHOCTH, yCTAHOBJEHbI CBAA3U
Mex Ty (yHEIHel HecceHa u noBeieHNeM caMOro 0TOOpa#eHNs U ero HyJle-
Boro MHomecTBa. C 3Toil Meabio BBOAATCA omepaTopkl @, AelicTByomue Ha
naopucybrapMonndeckre GyHRIUM, KOTOpPbIE B cIydae rAafikoil GyHKRIUU u

HUMEKT BU]
(@ufu))! (dd°|2[*)" = (dd°u) A (dd[=])"

Onepatopu Mouxa—AmMnepa ta ¢gyHkuili Heccena
rojioMoppHUX Maiizke NMeploAUYHUX BinoGpaskeHb

O. PamkoBecnknit

TocaifmyioTbes BIacTUBOCTI GyHKNIl Meccena, ToGTO cepeHbOrO 3Ha-
genns dynruii log|f|?, roromMopHoro maiize nepioAM4HOro BigoGpameHHA
f Tpy6uacToi o6aacTi npoctopy C” B C?. 30kpeMa, BCTAHOBIEHO 3B ’fI3KH
Misk (yHkuieo Heccena i moBeiHKOIO caMOro BijoGpaseHHs Ta HOTO HY/Ib-
OBO1 MHOKHUHH. 3 I[I€I0 METOIO BBOASAIThCA onepaTopu ®;, AKI AIIOThH HA IIIIO-
pucy6rapMoHiuHi GyHKIII, 0 y pasi IaajKrol GyHKII1 ¢ MalOTh BUTJIA]

(@u[ul)’ (dd*|2*)" = (dd°u)’ A (dd°[2|*)*~".
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