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R.P. Newman proved that a timelike geodesically complete pseudo-Rie-
mannian manifold with nonnegative Ricci curvature for all vectors and ad-
mites a timelike line is 1sometric to the product of that line and a spacelike
complete Riemannian manifold. This result gave a complete proof of a
conjecture of Yau. In this paper we proof a cylinder type-theorem which
corresponds to the extrinsic version of Newman’s result. Moreover, we show
that k-strongly parabolic geodesically complete submanifolds of a pseudo-
Euclidean space with nonnegative Ricci curvature in the spacelike directions
are also cylinders with k-dimensional generators.

According to a conjecture of Yau [12], a geodesically complete Lorentzian
4-manifold of nonnegative Ricci curvature in the timelike direction, which con-
tains an absolutely maximizing timelike geodesic, is isometric to the cross product
of that geodesic and a spacelike hypersurface.

Many results related to this conjecture were established. For example, Es-
chenburg [6] proved the conjecture in the globally hyperbolic case, assuming the
manifold is timelike geodesically complete, satisfying the strong energy condi-
tion and contains a (complete) timelike line. Galloway [7] observed that the full
assumption of timelike geodesic completeness is not needed. This property is
derived as a consequence of global hyperbolicity. In 1990, Newman [10] com-
plemented Galloway’s result and completed Yau’s conjecture. He proved that
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Strongly parabolic timelike submanifolds of Minkowsky space

if (M™,g) is a timelike geodesically complete pseudo-Riemannian manifold with
signature (—,+, ..., 4), such that Ric(X, X ) > 0 for all timelike vectors and also
M admits a unit speed timelike line o : IR — M, then (M™,g) is isometric to
(IR x M —di? @ h), where (M, h) is a complete Riemannian manifold and o
is given by t — (t,p), for some p € M.

In this paper, we prove extrinsic versions of this last result for timelike sub-
manifolds of the pseudo-Euclidean space E} with signature (s,n — s), obtaining
the so-called cylinder theorems. We denote by M’ a manifold with signature
(s,£ — s). Our main result is motivated by the classical Hartman—Nirenberg’s
theorem [9] which stablishes that if M™ is a complete Riemannian manifold with
nonnegative sectional curvature and f : M — E™'P is an isometric immersion
with index of nullity k > 0 then f(M) is a k-cylinder, i.e., there exists a Rie-
mannian complete manifold M"" such that M is isometric to M x E*, and
there exists an immersion f : M — E"P=F such that f(7,r) = (f(z),r), for all
(T,r) € M x E* =M.

We formulate our results in the following theorems.

Theorem 1. Let M{ be a timelike geodesically complete submanifold of E7.
Assume that

(i) Ric(X,X)> 0 for all timelike vectors and
(ii) the submanifold M} has a timelike straight line of the ambient space E7.

Then MY is a cylinder which splits as an euclidean product (E] x Mt —dt*®h),
where M~ ¢ E*™', h is the induced metric on M and E] is a timelike straight
line.

Theorem 2. Suppose M’ is a geodesically complete (-dimensional submani-
fold of signature (s,{—s) in a pseudo-FEuclidean space E7 of signature (s,n —s).
Assume that the nullity index u(q) = k = const on the submanifold M! k > s,
and Ric(X,X) > 0 for all spacelike vectors. If there exists a point qo such that
the null space L°(qo) is a pseudo-FEuclidean plane E¥ then M! is a cylinder with
k-dimensional generators E*.

We observe that Abe and Magid in [2] studied the case where the nullity index
p(q) > £ - 1.
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1. A cylinder theorem for a timelike submanifold of £}

In this section we prove Theorem 1. We will need the following lemma.

Lemma 1. Suppose M} is a simply connected surface of class C' in a pseudo-
Euclidean space E7, isometric to the Lorentzian plane F} with signature (—,+).
If there exists a straight timelike line of the ambient space which belongs to M?
then this surface is a cylinder and splits as a product (E{ x C, —dt* @ ds?), where
C c E"! and E} is a timelike straight line.

A similar result for the euclidean case was proved in [3].

Proof of Lemma 1. Let/ be astraight line on the surface M? and
let £ be the corresponding line on FZ, 7 = ¢(£), where ¢ is the isometry between
FE? and M}. Parametrize £ by v(t), t € IR, and take, for each ¢, A; the segment
orthogonal to £ in the point v(t). Then ¢(A\;) = ); lies on the subspace of E}
orthogonal to £ in the pseudo-Euclidean metric of E?. In fact, suppose this does
not occur for some point (o) = go. Assuming to = 0, there exists a point p € F?
such that the segment gop is orthogonal to £ and the corresponding segment g,p
in E7 is not orthogonal to £, where g, = ¢(¢o) and p = ¢(p).

Denote the length of the segment gop by A and %(t) = ¢(v(t)). Assume that
t is large enough such that the sides of the triangle v(—t)pvy(t) are timelike. If ¢
measures the length in £ from go = v(0) we have

(O = Ipy(=0)]* = [ = #* + h*| = 1* = B?,

where in the last equality we use the assumption that the sides py(¢) and py(—t)
are timelike. Choose an orthonormal coordinate system in E7 such that the line
{ coincides with the zg-axes and §, is the origin. Assume that the point p belongs
to the plane xq, z1. Then P has coordinates (tg, h, 0, ..., 0) with ¢y > 0 (or tg < 0).
Then

_ -—2 —2
YW =|—-(t—to)*+h|=(t—tg)* —h,

PI-0) = = (t+10)* + 7| = (t +10)* = T,
where 7(t) = $(+(1)).

Since ¢ is an isometry, we obtain that t* — h? = |v(t)|? = d(p,7(t))?, where
d is the distance function on MZ. Now, using that straight timelike lines have

maximal length among all timelike curves which connect two fixed points, it
follows that

(t—t)2—h° > 12— h2,

(t+t0)2— B > t2 — h2.
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This implies that
“ttg + 12 > B’ — h2,
to +t2 >k — h2,
which is impossible for ¢ large.

Hence we can consider a rectangle qoy(¢)p(t)po on the plane E? with ¢o € ¢
and the segments gopo and v (¢)p(f) orthogonal to £. Let Gy7(¢)p(¢)p, be the
corresponding quadrangle in ET. We take a system of coordinates as before, such
that py = (0, ho, 0, ...,0) and p(t) = (¢, hycos a, hysin, 0, ...,0), where « is the
angle determined by Gypy and 7 (¢)p(?).

We know that

[PoB(t)|? = t* — (ho — hicos a)? — (hysin ).
Again, using that ¢ is an isometry, we get
[Bop(t)|* > [pop(t)]* = 1°.
Then
t* — (ho — hycos a)* — (hysina)? > %,

which gives that hg = k1, a =0 and [pyp(t)| = t.

Therefore the segment p,p(t) lies on the surface M2 and is paralell to the line
£. This concludes the proof. [

Now the proof of Theorem 1 follows easily from Newman’s result and Lem-
ma 1.

Proof of Theorem 1. Using Newman’s result it follows that M{
is isometric to (B} x M, —dt?* ® h), where (M*~', h) is a complete Riemannian
manifold and the straight timelike line o : E' — M{ is given by a(t) = (t,p),
for some p € M*~'. Let C' be any curve in M*"!, then El x C is isometric to
some strip in the Lorentzian plane and applying Lemma 1 it follows that M{ is
a cylinder in the pseudo-Euclidean space F7. [

2. Strongly parabolic timelike submanifolds of E7

In order to prove Theorem 2 we first recall some results and definitions.

If f:M!— m+ is an isometric immersion between indefinite Riemannian
manifolds we define the relative null space at z, L°(z), by

Lo(z) ={veT.M: Seg(v)=0,VE€N(z)},

where N (z) is the normal space and S¢ is the Weingarten map. The dimension
p(z) of LO(x) is called the index of relative nullity of the immersion at z. The
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minimum value of p(z) on M is called the index of nullity and is denote by .
M is called a k-strongly parabolic submanifold if u(z) > k, for all z € M.

We observe that codimension-one isometric immersion between Lorentzian
space has nullity index g > n—1, where n is the dimension of the hypersurface [8].
When the ambient manifold is the Lorentzian space form of positive curvature,
the Lorentzian submanifolds with nullity index g # 0 were investigated in [1].
We need the following results proved in [1]:

Lemma 2. Let f : M — M;H_p(c) be an isomelric immersion, where M is
a space form with constant curvature ¢ and let G be the set of points in M where
p(z) = po. Then

(i) G is an open subset of M;
(ii) x — L°(z), z € G, is a differentiable and involutive distribution in G;
(iii) the foliation L° is totally geodesic in M;

(iv) ﬂch leaf of the foliation is immersed as a totally geodesic submanifold of

M.

Lemma 3. With the above conditions and assuming M complete, we obtain
that the relative null foliation is geodesically complete.

In particular, we observe that when M is the pseudo-Euclidean space E7*?,
each leaf of the foliations is immersed as an affine subspace of EF71?.
As a consequence of these lemmas and Theorem 1 we have

Proposition 1. Suppose M} is a timelike complete submanifold in a pseudo-
FEuclidean space EY, with nullity index po = minreMle,u(x) > 0 and Ric(X,X) >0
for all timelike vectors. If there exists a point qo € M{ such that u(qo) = po and
L%qo) is Lorentzian, then the submanifold M7} is a cylinder with 1-dimensional
timelike generators.

P roof. It follows from Lemma 2 that the leaf L°(¢qq) is a Lorentzian
pto-dimensional plane in E7. Let £ C L%(go) be a timelike straight line of the
ambient space. Then the submanifold M} satisfies the hypothesis of Theorem 1
which concludes the proof. [

Let X (uy,...,us) be a local parametrization of a pseudo-Riemannian /-di-
mensional submanifold M? of the pseudo-Euclidean space E?*'. We consider
M* the submanifold of the euclidean space E"*!, given locally by the same
parametrization. Then each normal vector to M! corresponds a normal vector to
M*, and we can associated their second fundamental forms with respect to these
normals as follows.
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Lemma 4. Let M! be an (-dimensional pseudo-riemmanian submanifold of
E™ and let M* be the corresponding (-dimensional submanifold of the euclidean
space E"t1. Then their second fundamental forms with respect to corresponding
normal vectors are proportional.

Proof. Letxg,y,...,7, be an orthogonal system of coordinates for E7+!
and E™*1. We also consider their respective metrics ds? = —dz3 — dz? — ... —
dxg_l —}—dmz—}—...—l—dm% and d3? = dm%—}—dm% +...—|—de.

Let X (uy,...,u;) be a local parametrization of M! C E?*! and we take M!
the submanifold of E"*! given by the same parametrization.

Let &€ = (£°,...,€") be a unit normal vector to M’, then <

X
——,£>=0,0<

Ou;
J < n, where <, > is the inner product in Entl. We will show that there is a
corresponding unit vector = (50 . ,f”) normal to M? in the euclidean space
with scalar product (, ). In fact, since & must satisfy
[ .
rewriting these equations in coordinates, we obtain
8:67» 8$k
o Z du; Z
7“:0
for 0 < j < n. Since £ and £ are unit vectors we have
s—1 n n
=2 EP € =1 and Y () =1
r=0 k=s k=0
It follows that £ is given by
{= e L8

Now we calculate the coefficients of the second fundamental forms of M and M*
with respect to € and &, respectively. We obtain that

0%z,

92X = ey L
bij(§) =< auiauj’ {>=— ; 8“2'3”] Z ou; (?u

Matematicheskaya fizika, analiz, geometriya , 1999, v. 6, No. 1/2 15



A. Borisenko, M.L. RabeIoT, and K. Tenenblat’

and

. . %X - 1

which completes the proof. [

This result for the pseudo-Euclidean space F? was considered by Sokolov [11]
and the analogous result for submanifolds in space forms was proved in [4].

Lemma 5. Suppose that a submanifold M’ of E7 has nonnegative Ricci cur-
vature for all spacelike vectors at a point ¢ € MY where the null space L°(q) is
a k-dimensional pseudo-Euclidean plane E*, k > s. Then there exists a normal
vector & at q such that the second fundamental form of M with respect to €,
restricted to the subspace of the tangent plane, orthogonal to L°(q), is positive
definite.

Proof. Let IH be the mean curvature vector at q. We consider an ortho-
normal basis €1, ...,&,_, normal to M’ at ¢ such that & is in the direction of .
Let ey, ..., e, be an orthonormal basis tangent to M’ at ¢ which diagonalizes the
second fundamental form in the direction of & in such way that ey,...,e,_p are
spacelike vectors.

We introduce the notation 6% =< B(e;, €;), {o >, 1 <4, <1 <a<n—4,
where B is the second fundamental form. From Gauss equation, the sectional
curvature along the plane generated by e;, e; is given by

K(ei, 6]') = €€ [b}lb;J + E (bzb]aJ ba,)Z)] 7

where ¢, =< €;,€; > .
The Ricci curvature in the direction of e; reduces to

n—~4 n—~4
Ric(ei,e;) = bi;(H — e:biy) — &y (63)" = >~ ¢;(b%)?,
a=2 a=
i#i

where we use that

£ £
H-=H¢& = (Z ejb}]-) & and Zejb?j =0, for a# 1.
J=1 7=1

Using the hyphotesis on the Ricci curvature and on the null space, we obtain that
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bL(H —bL) >0, forall 1<i</{—k.

It follows that bl > 0, for 1 < i < £ — k, which proves the lemma. ]

Now we can prove our main result.

Proof of Theorem 2. Letqy € M! be a point where the null space
L%(qo) is pseudo-Euclidean. We consider a plane E™* C E” through qo, which is
orthogonal to the totally geodesic leaf E%(go) (see Lemma 2). In a neighbourhood
of the point g the submanifold N“=* = M! N E"=* can be parametrized by
p(u1,...,up—g). From Lemmas 3 and 4 it follows that the submanifold M* of
the euclidean space K", which correspond to M* C E7, is a strongly parabolic
submanifold with nullity index u(q) = k = const.

Let F*(q),q € N, be the totally geodesic leaf at q. We consider €;_gy1, ..., €
an orthonormal basis of E¥(qo). Let n,(u1,...,up_g), £ —k+1 <r < £ be
a basis for the planes E*(q),q € N, such that their orthogonal projections on the
plane Ef(qo) coincides with e,. Let v,, £ — k+ 1 < r </, be coordinates in the
plane E*(q) with respect to the basis 7,. Then, in a neighbourhood V of the

point gg, M* can be parametrized by

X (Upy ooy Upm oy Vomkog 1y -+ V1)
£
=p(ur, ..., u—k) + Z Oy (U e vy Upef)- (1)
r=f—k+1
In V we have
-k ] n—~4 ~
=+ Clpu, + > S, (2)
j=1 a=1

where €,, 1 < a < n—{is an orthonormal basis, normal to the submanifold M?.

Since = 7,, it follows from Weingarten formulas that

Up

an, ., 0X
G = g+ > rm+2b o (3)

s=1 t=0—k+1

where T3 Ft are the Christofell simbols of the submanifold M¥. Since M* has

r?
constant nulhty index and considering the choice of the basis 7,, it follows that

b2 =0, for k+1 <r < £. On the other hand, we obtain from (2) that

o, Loci K asa
Du; Z 9a Zpuj ZC pujuﬂ—z 8 Z (4)
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Now, using Weingarten formulas for the submanifold N*=*, we get

dp = oy s
(?u]‘(?ui Z gm
850 -k n— (5)
T A

m,s=1

where g;; are the components of the metric tensor, I'}; are Christofell simbols, 47;
are the coefficients of the second fundamental forms of the submanifolds N*~ ® C
E™* and I/Z»ﬁa are the components of the normal connection. Substituting (5) in
(4), we obtain

-k s -k ) -k n—¢
Te = Lge gt OIS L X St
8?% s=1 m=1a=1
(6)
n—~ ~ asa -k
(e 2@@+2&w]
a=1

~ X
Since at a point ¢ of the submanifold M* either {g ,Mr} or { ,m} provides

a basis of T, M, it follows that (3) can be rewritten as

ir 77t (7)

ir

t=f—k+1

Comparing (6) and (7), we obtain that 8!, = 0 for all ¢. Therefore

877 -k
d 8
. = 20 (3
The integrability conditions for this system, taking into account (5), are
%) p;
N Y
? m=1
9
-k -k ( )
> B58 = Y B85
s=1 s=1

Lemma 5 and the hyphotesis on the Ricci curvature imply that there exists a
normal € to M* at ¢ € N*7% such that the restriction of the second fundamental
form of M* to the tangent space of N*~% at ¢ is positive definite. From Lemma 4 it
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follows that there exists a vector € normal to N*=*% such that the second quadratic
form of N*=% ¢ E"* with respect to this normal is also positive definite. Denote
by A the matrix of this fundamental form. Since the submanifold M* C E™ is
complete along the leaves and

aX p Sy Op SN gy, 0P
- + Y e i) DIED D e

du; Oui Ty Oui Oui [ = dus

X

8’[],“ = N,

we conclude that

£
det (I—}— Z ﬂrvr) #0,

r=~0—k+1

for all values v,, where (3, denotes the matrix with entries (ﬁfr) and [ is the
identity matrix. Therefore we obtain that

r=~0—k+1

£
det (A—I— E vrﬁrA) #0,

for all values v,.
£

Since the matrix 3, A is symmetric by (9), it follows that A + Z v 6, A
r=f—k+1
is also symmetric. Using the continuity of the determinant and the fact that A
is positive definite, we conclude that the last inequality holds for all values v,,
if and only if, 5,A is a null matrix. This implies that 5, = 0 at every point,
; . 0 .

= 0 for all indices ¢,j. Hence from (7) we get 8777“ =0, Vi, and
the expression (1) gives that M’ is a cylinder with k-dimensional generators at
some neighborhood of the point ¢g. The hypothesis on the nullity index and
the condition on the Ricci curvature imply that AM* is globally a cylinder with
k-dimensional generators. The same is true for the corresponding submanifold

M?! C E”. This concludes the proof. ]

J
r

i.e.,
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CuabHo napaﬁomxlqecm/le BpeMeHeHOHOﬁHbIe
HOHMHOFOOGpaSI/IH IIpocrpaHcTBa MuHKOBCKOIO

A.A. bopucenko, M.JI. Pa6eno, K. TeneunGuar

P.II. Heiomen JOKasaJjl, 4TO reojiesu4eCcKun IOJHOEe BO BpeMeHeHOHOGHhIX
HalpaBJCeHUAX JOpPEHIEeBO MNpOCTPaHCTBO C HeOTpHL[aTeJIbHOVI HpHBHSHOﬁ
Puyun JIRIS:| BpeMeHeHOﬂOGHbIX BEKTOPOB, KOTOpOE COACpHUT BpeMeHeHO,[[O6—
HYIO JUHUIO, ABJIACTCA METPpUYECKHM MIPOHU3BEJCHUEM 9TOM HpHMOﬁ n puMa-
HOBOTO MHOFOO6paSI/IH. B »To0it cTaThe AJOKa3bIBA€TCA BHEIIHEreoMeTpuvec-
KU aHajor aToi TeopeMbl O MHOTOMEpPHBIX HOBerHOCTeﬁ IIpoCcTpaHCTBa
MunroBcroro. bonee TOT0O, MOKa3aHO 4YTO k — cuanuo HapaGOJH/I‘{eCHI/Ie reo-
Je3nYeCKHn IOJHbIe HOﬂMHOFOOGpaBHH B IICEBI0-€BKJANI0BOM MIPOCTPAHCTBE C
HeOTpHL[aTe.HbHOﬁ HpI‘IBHSHOﬁ Puyuu B HpOCTpaHCTBeHHOHOHOGHbIX Hamnpan-
JEeHUAX ABJAIOTCA NUJIWUHIApaAMHU C k—MethIMH OGpaSyIOH_[HMH.

Ctporo napa6o/iyHi yaconoai6Hl maMHOrOBHAU
npoctopy MIHKOBCbhKOIO

O.A. Bopucenro, M.JI. Pa6eno, K. Tenen6aat

P.II. H’tomMeH J0BIB, 1110 Te0Ie3UYHO MOBHUM Y 9acOMOJiGHUX HANPAMEKAX
JOPEHI[IB MPOCTip 3 HEBI/I'€MHOIO KpUBHUHOIO P1udi ae 9aconoJiGHUX HANPAM-
KiB, B fIKOMY ICHY€ 4Yacomno/iGHa mpAMa, € MeTPUIHUM [00YTKOM MpAMOI 1
POCTOPONOIGHOTO PIMAHOBOrO NmpocTopy. B milf cTaTTi JOBOAUTHCA 30B-
HIIIHbOT€OMETPUYHUN aHANOT 1[Il TeopeMu /Il 6araTOBUMIPHUX MOBEPXOHb
npoctopy MiHkoBcbkoro. Biabin Toro, JJoBoAUThCH, 1[0 k — CUILHO napa-
0OJ14YHI Te0/Ie3UYHO TOBHI MIIMHOTOBU/IM B NCEB/I0-€BK1/IOBOMY MpPOCTOpI 3
HeBi/’éeMHOIO KpUBHHOIO Pi44i y mMpocTOpONOAIOHUX HANpSAMEAX € MUIIHIpa-
MU 3 k-BUMIPpHUMHU TBIPHUMH.
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