Matematicheskaya fizika, analiz, geometriya 1999, v. 6, No. 1/2, p. 10-21

Strongly parabolic timelike submanifolds of Minkowsky space

A. Borisenko, M.L. Rabelo[†], and K. Tenenblat[†]

Department of Mathematics and Mechanics Faculty, Kharkov State University, 4 Svobody Sq., 310077, Kharkov, Ukraine E-mail: Alexander.A.Borisenko@univer.kharkov.ua † Departamento de Matemática Universidade de Brasília, 71910-900 Brasília, DF, Brasil * E-mail: rabelo@mat.unb.br E-mail: keti@mat.unb.br

Received December 29, 1997

R.P. Newman proved that a timelike geodesically complete pseudo-Riemannian manifold with nonnegative Ricci curvature for all vectors and admites a timelike line is isometric to the product of that line and a spacelike complete Riemannian manifold. This result gave a complete proof of a conjecture of Yau. In this paper we proof a cylinder type-theorem which corresponds to the extrinsic version of Newman's result. Moreover, we show that k-strongly parabolic geodesically complete submanifolds of a pseudo-Euclidean space with nonnegative Ricci curvature in the spacelike directions are also cylinders with k-dimensional generators.

According to a conjecture of Yau [12], a geodesically complete Lorentzian 4-manifold of nonnegative Ricci curvature in the timelike direction, which contains an absolutely maximizing timelike geodesic, is isometric to the cross product of that geodesic and a spacelike hypersurface.

Many results related to this conjecture were established. For example, Eschenburg [6] proved the conjecture in the globally hyperbolic case, assuming the manifold is timelike geodesically complete, satisfying the *strong energy condition* and contains a (complete) timelike line. Galloway [7] observed that the full assumption of timelike geodesic completeness is not needed. This property is derived as a consequence of global hyperbolicity. In 1990, Newman [10] complemented Galloway's result and completed Yau's conjecture. He proved that

^{*}This work was partially supported by CNPq and FAPDF.

[©] A. Borisenko, M.L. Rabelo[†], and K. Tenenblat[†], 1999

if (M^n, g) is a timelike geodesically complete pseudo-Riemannian manifold with signature $(-, +, \ldots, +)$, such that $Ric(X, X) \ge 0$ for all timelike vectors and also M admits a unit speed timelike line $\alpha : \mathbb{R} \to M$, then (M^n, g) is isometric to $(\mathbb{R} \times \tilde{M}^{n-1}, -dt^2 \oplus h)$, where (\tilde{M}, h) is a complete Riemannian manifold and α is given by $t \mapsto (t, p)$, for some $p \in \tilde{M}$.

In this paper, we prove extrinsic versions of this last result for timelike submanifolds of the pseudo-Euclidean space E_s^n with signature (s, n - s), obtaining the so-called cylinder theorems. We denote by M_s^{ℓ} a manifold with signature $(s, \ell - s)$. Our main result is motivated by the classical Hartman-Nirenberg's theorem [9] which stablishes that if M^n is a complete Riemannian manifold with nonnegative sectional curvature and $f: M \to E^{n+p}$ is an isometric immersion with index of nullity k > 0 then f(M) is a k-cylinder, i.e., there exists a Riemannian complete manifold \overline{M}^{n-k} such that M is isometric to $\overline{M} \times E^k$, and there exists an immersion $\overline{f}: \overline{M} \to E^{n+p-k}$ such that $f(\overline{x}, r) = (\overline{f}(\overline{x}), r)$, for all $(\overline{x}, r) \in \overline{M} \times E^k = M$.

We formulate our results in the following theorems.

Theorem 1. Let M_1^{ℓ} be a timelike geodesically complete submanifold of E_1^n . Assume that

- (i) $Ric(X, X) \ge 0$ for all timelike vectors and
- (ii) the submanifold M_1^{ℓ} has a timelike straight line of the ambient space E_1^n .

Then M_1^{ℓ} is a cylinder which splits as an euclidean product $(E_1^1 \times \tilde{M}^{\ell-1}, -dt^2 \oplus h)$, where $\tilde{M}^{\ell-1} \subset E^{n-1}$, h is the induced metric on \tilde{M} and E_1^1 is a timelike straight line.

Theorem 2. Suppose M_s^{ℓ} is a geodesically complete ℓ -dimensional submanifold of signature $(s, \ell - s)$ in a pseudo-Euclidean space E_s^n of signature (s, n - s). Assume that the nullity index $\mu(q) = k = \text{const}$ on the submanifold $M_s^{\ell}, k \geq s$, and $\operatorname{Ric}(X, X) \geq 0$ for all spacelike vectors. If there exists a point q_0 such that the null space $L^0(q_0)$ is a pseudo-Euclidean plane E_s^k then M_s^{ℓ} is a cylinder with k-dimensional generators E_s^k .

We observe that Abe and Magid in [2] studied the case where the nullity index $\mu(q) \ge \ell - 1$.

1. A cylinder theorem for a timelike submanifold of E_1^n

In this section we prove Theorem 1. We will need the following lemma.

Lemma 1. Suppose M_1^2 is a simply connected surface of class C^1 in a pseudo-Euclidean space E_1^n , isometric to the Lorentzian plane E_1^2 with signature (-,+). If there exists a straight timelike line of the ambient space which belongs to M_1^2 then this surface is a cylinder and splits as a product $(E_1^1 \times C, -dt^2 \oplus ds^2)$, where $C \subset E^{n-1}$ and E_1^1 is a timelike straight line.

A similar result for the euclidean case was proved in [3].

Proof of Lemma 1. Let $\overline{\ell}$ be a straight line on the surface M_1^2 and let ℓ be the corresponding line on E_1^2 , $\overline{\ell} = \phi(\ell)$, where ϕ is the isometry between E_1^2 and M_1^2 . Parametrize ℓ by $\gamma(t)$, $t \in \mathbb{R}$, and take, for each t, λ_t the segment orthogonal to ℓ in the point $\gamma(t)$. Then $\phi(\lambda_t) = \overline{\lambda}_t$ lies on the subspace of E_1^n orthogonal to $\overline{\ell}$ in the pseudo-Euclidean metric of E_1^n . In fact, suppose this does not occur for some point $\gamma(t_0) = q_0$. Assuming $t_0 = 0$, there exists a point $p \in E_1^2$ such that the segment q_0p is orthogonal to ℓ and the corresponding segment $\overline{q}_0\overline{p}$ in E_1^n is not orthogonal to $\overline{\ell}$, where $\overline{q}_0 = \phi(q_0)$ and $\overline{p} = \phi(p)$.

Denote the length of the segment $q_0 p$ by h and $\overline{\gamma}(t) = \phi(\gamma(t))$. Assume that t is large enough such that the sides of the triangle $\gamma(-t)p\gamma(t)$ are timelike. If t measures the length in ℓ from $q_0 = \gamma(0)$ we have

$$|p\gamma(t)|^{2} = |p\gamma(-t)|^{2} = |-t^{2} + h^{2}| = t^{2} - h^{2},$$

where in the last equality we use the assumption that the sides $p\gamma(t)$ and $p\gamma(-t)$ are timelike. Choose an orthonormal coordinate system in E_1^n such that the line $\overline{\ell}$ coincides with the x_0 -axes and \overline{q}_0 is the origin. Assume that the point \overline{p} belongs to the plane x_0, x_1 . Then \overline{p} has coordinates $(t_0, \overline{h}, 0, \ldots, 0)$ with $t_0 > 0$ (or $t_0 < 0$). Then

$$\begin{aligned} |\overline{p}\,\overline{\gamma}(t)|^2 &= |-(t-t_0)^2 + \overline{h}^2| = (t-t_0)^2 - \overline{h}^2, \\ |\overline{p}\,\overline{\gamma}(-t)|^2 &= |-(t+t_0)^2 + \overline{h}^2| = (t+t_0)^2 - \overline{h}^2, \end{aligned}$$

where $\overline{\gamma}(t) = \phi(\gamma(t))$.

Since ϕ is an isometry, we obtain that $t^2 - h^2 = |\gamma(t)|^2 = d(\overline{p}, \overline{\gamma}(t))^2$, where d is the distance function on M_1^2 . Now, using that straight timelike lines have maximal length among all timelike curves which connect two fixed points, it follows that

$$(t - t_0)^2 - \overline{h}^2 \ge t^2 - h^2,$$

 $(t + t_0)^2 - \overline{h}^2 \ge t^2 - h^2.$

Matematicheskaya fizika, analiz, geometriya , 1999, v. 6, No. 1/2

This implies that

$$-2tt_0 + t_0^2 \ge \overline{h}^2 - h^2,$$

$$2tt_0 + t_0^2 \ge \overline{h}^2 - h^2,$$

which is impossible for t large.

Hence we can consider a rectangle $q_0\gamma(t)p(t)p_0$ on the plane E_1^2 with $q_0 \in \ell$ and the segments q_0p_0 and $\gamma(t)p(t)$ orthogonal to ℓ . Let $\overline{q}_0\overline{\gamma}(t)\overline{p}(t)\overline{p}_0$ be the corresponding quadrangle in E_1^n . We take a system of coordinates as before, such that $\overline{p}_0 = (0, \overline{h}_0, 0, \dots, 0)$ and $\overline{p}(t) = (t, \overline{h}_1 \cos \alpha, \overline{h}_1 \sin \alpha, 0, \dots, 0)$, where α is the angle determined by $\overline{q}_0\overline{p}_0$ and $\overline{\gamma}(t)\overline{p}(t)$.

We know that

$$|\overline{p}_0\overline{p}(t)|^2 = t^2 - (\overline{h}_0 - \overline{h}_1 \cos\alpha)^2 - (\overline{h}_1 \sin\alpha)^2.$$

Again, using that ϕ is an isometry, we get

$$|\overline{p}_0\overline{p}(t)|^2 \ge |p_0p(t)|^2 = t^2.$$

Then

$$t^{2} - (\overline{h}_{0} - \overline{h}_{1}\cos\alpha)^{2} - (\overline{h}_{1}\sin\alpha)^{2} \ge t^{2},$$

which gives that $\overline{h}_0 = \overline{h}_1$, $\alpha = 0$ and $|\overline{p}_0\overline{p}(t)| = t$.

Therefore the segment $\overline{p}_0 \overline{p}(t)$ lies on the surface M_1^2 and is parallel to the line $\overline{\ell}$. This concludes the proof.

Now the proof of Theorem 1 follows easily from Newman's result and Lemma 1.

Proof of Theorem 1. Using Newman's result it follows that M_1^{ℓ} is isometric to $(E_1^1 \times \tilde{M}^{\ell-1}, -dt^2 \oplus h)$, where $(\tilde{M}^{\ell-1}, h)$ is a complete Riemannian manifold and the straight timelike line $\alpha : E^1 \to M_1^{\ell}$ is given by $\alpha(t) = (t, p)$, for some $p \in \tilde{M}^{\ell-1}$. Let C be any curve in $\tilde{M}^{\ell-1}$, then $E_1^1 \times C$ is isometric to some strip in the Lorentzian plane and applying Lemma 1 it follows that M_1^{ℓ} is a cylinder in the pseudo-Euclidean space E_1^n .

2. Strongly parabolic timelike submanifolds of E_s^n

In order to prove Theorem 2 we first recall some results and definitions.

If $f: M_r^n \to \overline{M}_s^{n+k}$ is an isometric immersion between indefinite Riemannian manifolds we define the relative null space at $x, L^0(x)$, by

$$L^{0}(x) = \{ v \in T_{x}M : S_{\xi}(v) = 0, \forall \xi \in N(x) \},\$$

where N(x) is the normal space and S_{ξ} is the Weingarten map. The dimension $\mu(x)$ of $L^{0}(x)$ is called the index of relative nullity of the immersion at x. The

13

minimum value of $\mu(x)$ on M is called the index of nullity and is denote by μ_0 . M is called a k-strongly parabolic submanifold if $\mu(x) \ge k$, for all $x \in M$.

We observe that codimension-one isometric immersion between Lorentzian space has nullity index $\mu \ge n-1$, where n is the dimension of the hypersurface [8]. When the ambient manifold is the Lorentzian space form of positive curvature, the Lorentzian submanifolds with nullity index $\mu \ne 0$ were investigated in [1]. We need the following results proved in [1]:

Lemma 2. Let $f: M_r^n \to \overline{M}_s^{n+p}(c)$ be an isometric immersion, where \overline{M} is a space form with constant curvature c and let G be the set of points in M where $\mu(x) = \mu_0$. Then

- (i) G is an open subset of M;
- (ii) $x \mapsto L^0(x), x \in G$, is a differentiable and involutive distribution in G;
- (iii) the foliation L^0 is totally geodesic in M;
- (iv) each leaf of the foliation is immersed as a totally geodesic submanifold of \overline{M} .

Lemma 3. With the above conditions and assuming M complete, we obtain that the relative null foliation is geodesically complete.

In particular, we observe that when \overline{M} is the pseudo-Euclidean space E_s^{n+p} , each leaf of the foliations is immersed as an affine subspace of E_s^{n+p} .

As a consequence of these lemmas and Theorem 1 we have

Proposition 1. Suppose M_1^{ℓ} is a timelike complete submanifold in a pseudo-Euclidean space E_1^n , with nullity index $\mu_0 = \min_{x \in M_1^{\ell}} \mu(x) > 0$ and $Ric(X, X) \ge 0$ for all timelike vectors. If there exists a point $q_0 \in M_1^{\ell}$ such that $\mu(q_0) = \mu_0$ and $L^0(q_0)$ is Lorentzian, then the submanifold M_1^{ℓ} is a cylinder with 1-dimensional timelike generators.

P r o o f. It follows from Lemma 2 that the leaf $L^0(q_0)$ is a Lorentzian μ_0 -dimensional plane in E_1^n . Let $\overline{\ell} \subset L^0(q_0)$ be a timelike straight line of the ambient space. Then the submanifold M_1^{ℓ} satisfies the hypothesis of Theorem 1 which concludes the proof.

Let $X(u_1, \ldots, u_\ell)$ be a local parametrization of a pseudo-Riemannian ℓ -dimensional submanifold M_s^ℓ of the pseudo-Euclidean space E_s^{n+1} . We consider \tilde{M}^ℓ the submanifold of the euclidean space E^{n+1} , given locally by the same parametrization. Then each normal vector to M_s^ℓ corresponds a normal vector to \tilde{M}^ℓ , and we can associated their second fundamental forms with respect to these normals as follows.

Lemma 4. Let M_s^{ℓ} be an ℓ -dimensional pseudo-riemmanian submanifold of E_s^{n+1} and let \tilde{M}^{ℓ} be the corresponding ℓ -dimensional submanifold of the euclidean space E^{n+1} . Then their second fundamental forms with respect to corresponding normal vectors are proportional.

P roof. Let x_0, x_1, \ldots, x_n be an orthogonal system of coordinates for E_s^{n+1} and E^{n+1} . We also consider their respective metrics $ds^2 = -dx_0^2 - dx_1^2 - \ldots - dx_{s-1}^2 + dx_s^2 + \ldots + dx_n^2$ and $d\tilde{s}^2 = dx_0^2 + dx_1^2 + \ldots + dx_n^2$.

Let $X(u_1, \ldots, u_\ell)$ be a local parametrization of $M_s^\ell \subset E_s^{n+1}$ and we take \tilde{M}^ℓ the submanifold of E^{n+1} given by the same parametrization.

Let $\xi = (\xi^0, \dots, \xi^n)$ be a unit normal vector to M_s^ℓ , then $\langle \frac{\partial X}{\partial u_j}, \xi \rangle = 0, \ 0 \leq 1$

 $j \leq n$, where \langle , \rangle is the inner product in E_s^{n+1} . We will show that there is a corresponding unit vector $\tilde{\xi} = (\tilde{\xi}^0, \dots, \tilde{\xi}^n)$ normal to \tilde{M}^ℓ in the euclidean space with scalar product (,). In fact, since $\tilde{\xi}$ must satisfy

$$\left(rac{\partial X}{\partial u_j},\ \tilde{\xi}
ight)=0,\quad 0\leq j\leq n$$

rewriting these equations in coordinates, we obtain

$$-\sum_{r=0}^{s-1} \frac{\partial x_r}{\partial u_j} \xi^r + \sum_{k=s}^n \frac{\partial x_k}{\partial u_j} \xi^k = 0,$$
$$\sum_{r=0}^{s-1} \frac{\partial x_r}{\partial u_j} \tilde{\xi}^r + \sum_{k=s}^n \frac{\partial x_k}{\partial u_j} \tilde{\xi}^k = 0,$$

for $0 \leq j \leq n$. Since ξ and $\tilde{\xi}$ are unit vectors we have

$$-\sum_{r=0}^{s-1} (\xi^r)^2 + \sum_{k=s}^n (\xi^k)^2 = 1 \quad \text{and} \quad \sum_{k=0}^n (\tilde{\xi}^k)^2 = 1.$$

It follows that $\tilde{\xi}$ is given by

$$\tilde{\xi} = \frac{1}{\sqrt{1 + 2\sum_{r=0}^{s-1} (\xi^r)^2}} (-\xi^0, -\xi^1, \dots, -\xi^{s-1}, \xi^s, \dots, \xi^n).$$

Now we calculate the coefficients of the second fundamental forms of M_s^{ℓ} and \tilde{M}^{ℓ} with respect to ξ and $\tilde{\xi}$, respectively. We obtain that

$$b_{ij}(\xi) = < \frac{\partial^2 X}{\partial u_i \partial u_j}, \quad \xi > = -\sum_{r=0}^{s-1} \frac{\partial^2 x_r}{\partial u_i \partial u_j} \xi^r + \sum_{k=s}^n \frac{\partial^2 x_k}{\partial u_i \partial u_j} \xi^k$$

Matematicheskaya fizika, analiz, geometriya , 1999, v. 6, No. 1/2

and

$$\tilde{b}_{ij}(\tilde{\xi}) = \left(\frac{\partial^2 X}{\partial u_i \partial u_j}, \tilde{\xi}\right) = \frac{1}{\sqrt{1 + 2\sum_{r=0}^{s-1} (\xi^r)^2}} b_{ij}(\xi),$$

which completes the proof.

This result for the pseudo-Euclidean space E_1^3 was considered by Sokolov [11] and the analogous result for submanifolds in space forms was proved in [4].

Lemma 5. Suppose that a submanifold M_s^{ℓ} of E_s^n has nonnegative Ricci curvature for all spacelike vectors at a point $q \in M_s^{\ell}$ where the null space $L^0(q)$ is a k-dimensional pseudo-Euclidean plane E_s^k , $k \ge s$. Then there exists a normal vector ξ at q such that the second fundamental form of M_s^{ℓ} with respect to ξ , restricted to the subspace of the tangent plane, orthogonal to $L^0(q)$, is positive definite.

P r o o f. Let $I\!H$ be the mean curvature vector at q. We consider an orthonormal basis $\xi_1, \ldots, \xi_{n-\ell}$ normal to M_s^{ℓ} at q such that ξ_1 is in the direction of $I\!H$. Let e_1, \ldots, e_{ℓ} be an orthonormal basis tangent to M_s^{ℓ} at q which diagonalizes the second fundamental form in the direction of ξ_1 in such way that $e_1, \ldots, e_{\ell-k}$ are spacelike vectors.

We introduce the notation $b_{ij}^{\alpha} = \langle B(e_i, e_j), \xi_{\alpha} \rangle$, $1 \leq i, j \leq \ell, 1 \leq \alpha \leq n-\ell$, where *B* is the second fundamental form. From Gauss equation, the sectional curvature along the plane generated by e_i, e_j is given by

$$K(e_i, e_j) = \epsilon_i \epsilon_j \left[b_{ii}^1 b_{jj}^1 + \sum_{\alpha=2}^{n-\ell} \left(b_{ii}^\alpha b_{jj}^\alpha - (b_{ij}^\alpha)^2 \right) \right],$$

where $\epsilon_i = \langle e_i, e_i \rangle$.

The Ricci curvature in the direction of e_i reduces to

$$Ric(e_i, e_i) = b_{ii}^1(H - \epsilon_i b_{ii}^1) - \epsilon_i \sum_{\alpha=2}^{n-\ell} (b_{ii}^{\alpha})^2 - \sum_{\substack{\alpha=2\\j\neq i}}^{n-\ell} \epsilon_j (b_{ij}^{\alpha})^2,$$

where we use that

$$I\!H = H\xi_1 = \left(\sum_{j=1}^{\ell} \epsilon_j b_{jj}^1\right) \xi_1 \quad \text{and} \quad \sum_{j=1}^{\ell} \epsilon_j b_{jj}^{\alpha} = 0, \text{ for } \alpha \neq 1.$$

Using the hyphotesis on the Ricci curvature and on the null space, we obtain that

Matematicheskaya fizika, analiz, geometriya, 1999, v. 6, No. 1/2

$$b_{ii}^{1}(H - b_{ii}^{1}) \geq 0$$
, for all $1 \leq i \leq \ell - k$

It follows that $b_{ii}^1 > 0$, for $1 \le i \le \ell - k$, which proves the lemma.

Now we can prove our main result.

Proof of Theorem 2. Let $q_0 \in M_s^{\ell}$ be a point where the null space $L^0(q_0)$ is pseudo-Euclidean. We consider a plane $E^{n-k} \subset E_s^n$ through q_0 , which is orthogonal to the totally geodesic leaf $E_s^k(q_0)$ (see Lemma 2). In a neighbourhood of the point q_0 the submanifold $N^{\ell-k} = M_s^{\ell} \cap E^{n-k}$ can be parametrized by $\rho(u_1, \ldots, u_{\ell-k})$. From Lemmas 3 and 4 it follows that the submanifold \tilde{M}^{ℓ} of the euclidean space E^n , which correspond to $M^{\ell} \subset E_s^n$, is a strongly parabolic submanifold with nullity index $\mu(q) = k = \text{const.}$

Let $E^k(q), q \in N$, be the totally geodesic leaf at q. We consider $e_{\ell-k+1}, \ldots, e_{\ell}$ an orthonormal basis of $E_s^k(q_0)$. Let $\eta_r(u_1, \ldots, u_{\ell-k}), \quad \ell - k + 1 \leq r \leq \ell$, be a basis for the planes $E^k(q), q \in N$, such that their orthogonal projections on the plane $E_s^k(q_0)$ coincides with e_r . Let $v_r, \ \ell - k + 1 \leq r \leq \ell$, be coordinates in the plane $E^k(q)$ with respect to the basis η_r . Then, in a neighbourhood V of the point $q_0, \ \tilde{M}^\ell$ can be parametrized by

$$X(u_1, \dots, u_{\ell-k}, v_{\ell-k+1}, \dots, v_{\ell})$$

= $\rho(u_1, \dots, u_{\ell-k}) + \sum_{r=\ell-k+1}^{\ell} v_r \eta_r(u_1, \dots, u_{\ell-k}).$ (1)

In V we have

$$\eta_r = e_r + \sum_{j=1}^{\ell-k} C_r^j \rho_{u_j} + \sum_{\alpha=1}^{n-\ell} S_r^{\alpha} \tilde{\xi}_{\alpha}, \qquad (2)$$

where $\tilde{\xi}_{\alpha}$, $1 \leq \alpha \leq n - \ell$ is an orthonormal basis, normal to the submanifold \tilde{M}^{ℓ} . Since $\frac{\partial X}{\partial v_r} = \eta_r$, it follows from Weingarten formulas that

$$\frac{\partial \eta_r}{\partial u_i} = \sum_{s=1}^{\ell-k} \tilde{\Gamma}_{ir}^s \frac{\partial X}{\partial u_s} + \sum_{t=\ell-k+1}^{\ell} \tilde{\Gamma}_{ir}^t \eta_t + \sum_{\alpha=1}^{n-\ell} b_{ir}^{\alpha} \tilde{\xi}_{\alpha}, \tag{3}$$

where $\tilde{\Gamma}_{ir}^{s}, \tilde{\Gamma}_{ir}^{t}$ are the Christofell simbols of the submanifold \tilde{M}^{ℓ} . Since \tilde{M}^{ℓ} has constant nullity index and considering the choice of the basis η_{r} , it follows that $b_{ir}^{\alpha} = 0$, for $k + 1 \leq r \leq \ell$. On the other hand, we obtain from (2) that

$$\frac{\partial \eta_r}{\partial u_i} = \sum_{j=1}^{\ell-k} \frac{\partial C_r^j}{\partial u_i} \rho_{u_j} + \sum_{j=1}^{\ell-k} C_r^j \rho_{u_j u_i} + \sum_{\alpha=1}^{n-\ell} \frac{\partial S_r^\alpha}{\partial u_i} \tilde{\xi}_\alpha + \sum_{\alpha=1}^{n-\ell} S_r^\alpha \frac{\partial \tilde{\xi}_\alpha}{\partial u_i}.$$
 (4)

Matematicheskaya fizika, analiz, geometriya, 1999, v. 6, No. 1/2

Now, using Weingarten formulas for the submanifold $N^{\ell-k}$, we get

$$\frac{\partial \rho}{\partial u_{j} \partial u_{i}} = \sum_{s=1}^{\ell-k} \Gamma_{ji}^{s} \frac{\partial \rho}{\partial u_{s}} + \sum_{\alpha=1}^{n-\ell} \delta_{ji}^{\alpha} \tilde{\xi}_{\alpha},$$

$$\frac{\partial \tilde{\xi}_{\alpha}}{\partial u_{i}} = -\sum_{m,s=1}^{\ell-k} \delta_{mi}^{\alpha} g^{ms} \frac{\partial \rho}{\partial u_{s}} + \sum_{\beta=1}^{n-\ell} \nu_{i\alpha}^{\beta} \tilde{\xi}_{\beta},$$
(5)

where g_{ij} are the components of the metric tensor, Γ_{ji}^s are Christofell simbols, δ_{ji}^{α} are the coefficients of the second fundamental forms of the submanifolds $N^{\ell-k} \subset E^{n-k}$ and $\nu_{i\alpha}^{\beta}$ are the components of the normal connection. Substituting (5) in (4), we obtain

$$\frac{\partial \eta_r}{\partial u_i} = \sum_{s=1}^{\ell-k} \frac{\partial \rho}{\partial u_s} \left[\frac{\partial C_r^s}{\partial u_i} + \sum_{j=1}^{\ell-k} C_r^j \Gamma_{ji}^s - \sum_{m=1}^{\ell-k} \sum_{\alpha=1}^{n-\ell} S_r^\alpha \delta_{mi}^\alpha g^{ms} \right] \\
+ \sum_{\alpha=1}^{n-\ell} \tilde{\xi}_\alpha \left[\frac{\partial S_r^\alpha}{\partial u_i} + \sum_{j=1}^{\ell-k} C_r^j \delta_{ji}^\alpha + \sum_{\beta=1}^{n-\ell} S_r^\beta \nu_{i\beta}^\alpha \right].$$
(6)

Since at a point q of the submanifold \tilde{M}^{ℓ} either $\{\frac{\partial X}{\partial u_s}, \eta_r\}$ or $\{\frac{\partial \rho}{\partial u_s}, \eta_r\}$ provides a basis of $T_q \tilde{M}$, it follows that (3) can be rewritten as

$$\frac{\partial \eta_r}{\partial u_i} = \sum_{s=1}^{\ell-k} \beta_{ir}^s \frac{\partial \rho}{\partial u_s} + \sum_{t=\ell-k+1}^{\ell} \beta_{ir}^t \eta_t.$$
(7)

Comparing (6) and (7), we obtain that $\beta_{ir}^t = 0$ for all t. Therefore

$$\frac{\partial \eta_r}{\partial u_i} = \sum_{s=1}^{\ell-k} \beta_{ir}^s \frac{\partial \rho}{\partial u_s}.$$
(8)

The integrability conditions for this system, taking into account (5), are

$$\frac{\partial \beta_{ir}^{s}}{\partial u_{j}} + \sum_{m=1}^{\ell-k} \Gamma_{mj}^{s} \beta_{ir}^{m} = \frac{\partial \beta_{jr}^{s}}{\partial u_{i}} + \sum_{m=1}^{\ell-k} \Gamma_{mi}^{s} \beta_{jr}^{m},$$

$$\sum_{s=1}^{\ell-k} \beta_{ir}^{s} \delta_{sj}^{\alpha} = \sum_{s=1}^{\ell-k} \beta_{jr}^{s} \delta_{si}^{\alpha}.$$
(9)

Lemma 5 and the hyphotesis on the Ricci curvature imply that there exists a normal ξ to M_s^ℓ at $q \in N^{\ell-k}$ such that the restriction of the second fundamental form of M_s^ℓ to the tangent space of $N^{\ell-k}$ at q is positive definite. From Lemma 4 it

follows that there exists a vector $\tilde{\xi}$ normal to $N^{\ell-k}$ such that the second quadratic form of $N^{\ell-k} \subset E^{n-k}$ with respect to this normal is also positive definite. Denote by Δ the matrix of this fundamental form. Since the submanifold $\tilde{M}^{\ell} \subset E^n$ is complete along the leaves and

$$\frac{\partial X}{\partial u_i} = \frac{\partial \rho}{\partial u_i} + \sum_{r=\ell-k+1}^{\ell} \frac{\partial \eta_r}{\partial u_i} v_r = \frac{\partial \rho}{\partial u_i} + \sum_{r=\ell-k+1}^{\ell} \sum_{s=1}^{\ell-k} \beta_{ir}^s v_r \frac{\partial \rho}{\partial u_s},$$

$$\frac{\partial X}{\partial v_r} = \eta_r,$$

we conclude that

$$det\left(I+\sum_{r=\ell-k+1}^{\ell}\beta_r v_r\right)\neq 0,$$

for all values v_r , where β_r denotes the matrix with entries $\left(\beta_{ir}^j\right)$ and I is the identity matrix. Therefore we obtain that

$$det\left(\Delta + \sum_{r=\ell-k+1}^{\ell} v_r \beta_r \Delta\right) \neq 0$$

for all values v_r .

Since the matrix $\beta_r \Delta$ is symmetric by (9), it follows that $\Delta + \sum_{r=\ell-k+1}^{\infty} v_r \beta_r \Delta$ is also symmetric. Using the continuity of the determinant and the fact that Δ is positive definite, we conclude that the last inequality holds for all values v_r , if and only if, $\beta_r \Delta$ is a null matrix. This implies that $\beta_r = 0$ at every point, i.e., $\beta_{ir}^j = 0$ for all indices i, j. Hence from (7) we get $\frac{\partial \eta_r}{\partial u_i} = 0$, $\forall i$, and the expression (1) gives that \tilde{M}^ℓ is a cylinder with k-dimensional generators at some neighborhood of the point q_0 . The hypothesis on the nullity index and the condition on the Ricci curvature imply that \tilde{M}^ℓ is globally a cylinder with k-dimensional generators. The same is true for the corresponding submanifold $M_s^\ell \subset E_s^n$. This concludes the proof.

References

- K. Abe & M. Magid, Relative nullity foliations and indefinite isometric immersions.
 Pacif. J. Math. (1986), v. 124, p. 1-20.
- [2] K. Abe & M. Magid, Indefinite Kahler submanifolds with positive index of relative nullity. — Ann. Global Anal. Geom. (1988), v. 6, p. 231-258.
- [3] A.A. Borisenko, On the structure of a continuous surface containing a straight line.
 Ukr. Geom. Sb. (1975), v. 14, p. 21-24.
- [4] A.A. Borisenko, Surfaces of nonpositive extrinsic curvature in spaces of constant curvature. — Math. Sb. (1981), v. 114, p. 339-354; Math. USSR Sb. (1982), v. 42, p. 297-310.
- [5] A.A. Borisenko, On complete parabolic surfaces. Ukr. Geom. Sb. (1985), v. 28, p. 8-19; Soviet Math. (1990), v. 51, p. 6-14.
- [6] J.H. Eschenburg, The splitting theorem for space-times with strong energy condition. — J. Dif. Geom. (1988), v. 27, p. 477-491.
- [7] G.J. Galloway, The Lorentzian splitting theorem without completeness assumption.
 J. Dif. Geom. (1989), v. 29, p. 373-387.
- [8] L. Graves, Codimension one isometric immersions between Lorentz spaces. Trans. Amer. Math. Soc. (1979), v. 252, p. 367–392.
- [9] P. Hartman & L. Nirenberg, On spherical images whose jacobian do no change sign.
 Amer. J. Math. (1959), v. 81, p. 901-920.
- [10] A.C. Newman, A proof of the splitting conjecture of S.T. Yau. J. Dif. Geom. (1990), v. 31, p. 163–184.
- [11] D.D. Sokolov, The structure of the limit cone of convex surface in pseudo-Euclidean space. — Uspechi Mat. Nauk. (1975), v. 30, p. 261-262.
- [12] S.T. Yau, Problem section. Ann. Math. Stud., 102, Princeton Univ. Press, Princeton, N.J. (1982), p. 669-906.

Сильно параболические временеподобные подмногообразия пространства Минковского

А.А. Борисенко, М.Л. Рабело, К. Тененблат

Р.П. Ньюмен доказал, что геодезически полное во временеподобных направлениях лоренцево пространство с неотрицательной кривизной Риччи для временеподобных векторов, которое содержит временеподобную линию, является метрическим произведением этой прямой и риманового многообразия. В этой статье доказывается внешнегеометрический аналог этой теоремы для многомерных поверхностей пространства Минковского. Более того, показано что k — сильно параболические геодезически полные подмногообразия в псевдо-евклидовом пространстве с неотрицательной кривизной Риччи в пространственноподобных направлениях являются цилиндрами с k-мерными образующими.

Строго параболічні часоподібні підмноговиди простору Мінковського

О.А. Борисенко, М.Л. Рабело, К. Тененблат

Р.П. Н'юмен довів, що геодезично повний у часоподібних напрямках лоренців простір з невід'ємною кривиною Річчі для часоподібних напрямків, в якому існує часоподібна пряма, є метричним добутком прямої і простороподібного ріманового простору. В цій статті доводиться зовнішньогеометричний аналог цієї теореми для багатовимірних поверхонь простору Мінковського. Більш того, доводиться, що *k* — сильно параболічні геодезично повні підмноговиди в псевдо-евклідовому просторі з невід'ємною кривиною Річчі у простороподібних напрямках є циліндрами з *k*-вимірними твірними.