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Constant mean curvature surfaces of revolution in euclidean 3-space are
known as surfaces of Ch. Delaunay. They possess one remarkable property:
their profile curves (generatrices) are the trajectories of focuses of conic
sections by its rolling along the straight line. Analogous construction is
realized in the space forms H? and S® in the case of minimal surfaces of
revolution and the following theorem 1s proved.

Theorem. Generatriz of catenoid of revolution of space form H>(S3) is
the trajectory of focus of hyperbolic (spherical) parabola by its rolling along
the geodesic ray.

In differential geometry of euclidean 3-space are known Ch. Delaunay surfaces
of constant mean curvature [1, 2]. Their analogs in multidimensional euclidean
space were investigated by W.Y. Hsiang [3]. The surfaces of Delaunay are sur-
faces of revolution, whose generatrix has one remarkable property: it represents
a trajectory of a line, which focus of conic section describes by rolling along the
axis of rotation. In particular, the generatrix of catenoid of revolution in eucli-
dien space (its mean curvature vanishes) is the trajectory (the chain line), which
focus of parabola describes by rolling along the axis of revolution. In hyperbolic
3-space there is also catenoid of revolution and some of its properties are inves-
tigated [4]. In this work we point out the curves Py and Ps which are located
respectively in the hyperbolic plane and in the sphere and represent analogs of
euclidean parabola. It is appeared, that generatrix of catenoid of revolution can
be constructed by analogy with euclidean case, as a trajectory of a curve, which
is obtained by rolling the "focus” of curve P or Pg along rotational axis. Cur-
vature of space forms is assumed to be equal —1 (respectively 1), and the rolling
process is represented as a curve in the group of proper isometries of H%(S?).
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Theorem. Generatriz of catenoid of revolution of hyperbolic space H> (sphe-
rical space S®) is the trajectory of focus of hyperbolic parabola Py (spherical
parabola Ps) obtained by its rolling along the axis of revolution.

In the first section we consider hyperbolic case using Poincare model in the
upper half-plane and its group of proper isometries PSL(2, R). Short exposition
of this section was published in joint work with E.G. Kaliniuk [8]. In the second
section we deal with spherical case using standard embedding of unit sphere with
the group of motions isomorphic to SO(3).

1. Property of generatrix of hyperbolic catenoid

1.1. Cylindrical coordinates in H3. We consider hyperbolic space H? of
curvature —1 in the model of Poincare in the upper half-space R3 ((z,y, z), z > 0)
dz? + dy2 + dz2

2
choose as an axis of cylindrical coordinates, we fix an origin (0,0, 1) and introduce
cylindrical coordinates (¢,r,¢) of arbitrary point M(z,y,z) € H> according to
the rule

with the metric ds? = . On the geodesic (z =y = 0), which we

1
t = 5111(952+y2+z?), teR,

2 2 2
coshp= YT XV TZ
z

tan ¢ = %, ¢ €10,2n].

Geometric sense of sizes (t,r, @) is the following: size r represents a length of an
interval of geodesic, connecting a point M (z,y, z) with its projection M’ on the
axis of cylindrical coordinates; size ¢ is equal to the distance from the point M’
to the origin (0,0, 1); the angle ¢ determines direction of the geodesic M’'M and
is equal to the angle between the axis Oz and projection of geodesic to absolut
z = 0. The metric form of H? in cylindrical coordinates has the view

ds® = dr? + cosh? rdt? + sinh? rd? .

It is easy to receive this expression using the formulas for z, y, z in terms of ¢,

r, ¢:

r =e'tanhrcos¢, y=e'tanhrsing, z=-e"/coshr.

Set of singular points is located on the axis r = 0. Cristoffel symbols of cylindrical
coordinates of H? are the following (indices 1, 2, 3 correspond to ¢, r, ¢): the
rest of symbols are equal to zero, ', = I'l; = —sinhrcoshr, '}, = tanhr,
I3, = cothr.
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1.2. Some facts of differential geometry of surfaces of revolution
in 3 and the catenoid in particular. In the plane ¢ = 0 we consider a
curve ['(¢) := (¢,7(t),0), which is the profile curve of a surface of revolution in
H? with an axis r = 0. The surface is formed by the set of orbits of points of
generatrix ['(f) under the action of the group of isometries H?, isomorphic to
SO(2). Coordinates on the surface are parameters ¢ and ¢.

Proposition 1. The fundamental forms of a surface of revolution in H> have
the following form:

I = (Cosh2 r(t) + r’(t)z) dt* 4 sinh? r(t) do?

B cosh r(t)
~ (cosh? r(t) 4 1

(t)2)1/2 ((r//(t) — 2sinh T(t)r'(t)Q — sinh r(t) cosh T(t)) dt2

—sinh r(t) coshr(t) d¢2) .

Proof. Letr=r(t) be the equation of meridian in the plane (r,t), which
generates the surface of revolution. We may regard (¢, ¢) as coordinates on the
surface. Substituting r = r(¢) in the formula for metric of hyperbolic space in
cylindrical coordinates, we obtain required expression for the first fundamental
form. Surface in cylindrical coordinates has the equation r = (r(¢),t, ¢), therefore
its tangent vectors are r; = (r/,1,0) and ry, = (0,0,1). Using expression of
metric form H3, we find the normal vector n = (n!, n?, n?) solving conditions of
orthogonality (n,r;) = 0, (n,ry) = 0 and norming (n,n) = 1 (in the metric of

H3):

B cosh r r'(t)
n—(/ 2 2 1/2<7_C08h27“7 )
r'(t)% 4 cosh r(t))

The second fundamental form /1 = (£;;), ¢, 7 = 1,2, of the surface is obtained
by using the formula (43.8) [5]: —€;; = gaﬁrf(ng + T8 rkn¥) = (r;, Vin)gs,

LY
where g,z is the metric tensor of H* and Fﬁy are its Cristoffel symbols, indices ¢,
7 take values 1 and 2, corresponding to coordinates t and ¢ on the surface. Now

calculate Vin = Vyn = (Vin!, Vin? Vin3):

on' 0 cosh r r'sinh r
V nl = ——|—F1y7"u’ny:— - _}_4 ,
! ot oot Ot \ \/r"? + cosh?r V1’2 + cosh? r
on? 0 r!
\v4 2 — F2 Bov 7
m ot thwrmn ot (cosh r(r’? + cosh? r)1/2>

sinhr  cosh?r — /2

cosh? r (r'2 4 cosh? r)1/2’
on?

V1n3 = W—I—Ff’wrﬁ:o
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Similarly we find Van = Vyn = (Vanl!, Van?, Van?):

8 1
Von! = —87;5 —}—Fiyrﬁbn” =0,
8 2
Von? = G—T;—FFfwrf;n”:O,
3 2
Vand = on LT phgy cosh®r

¢ wed sinh r(r'2 4 cosh® r)1/2"
Then we find coefficients of the second fundamental form:

0 coshr r2sinh r
_Q = ,V - '—
11 =(ry, Vin) =r It (r' + cosh®r)1/2 + (r'2 4 cosh® r)1/2

9 ( 0 r sinhr  cosh?r — r'? )
4+ cosh*r

Ot cosh r(r'2 4 cosh?r)1/2  cosh?r (12 4 cosh?® r)1/2
—r" cosh r + sinh rcosh? r + 2r2sinh r
(772 + cosh? r)1/2 '

Qg = <r¢,V1n> =0,

sinh r cosh? r

(r'2 4 cosh? r)1/2"

—Qyy = <7“¢7 Vz”) =

Corollary 1. Differential equation of catenoid of revolution in H> with ge-
neratriz I'(t) = (t,r(t),0) is the following:

r"sinh r cosh r — (2sinh? r + cosh? ) (r')® — cosh? r(sinh® r 4 cosh?®r) = 0.

Really, since the fundamental forms of catenoid are diagonal it is easy to find
Q Q
its principal curvatures: k; = $, ky = =22 We find
911 922

i cosh rr” — 2r"2sinh r — sinh r cosh? r
1= 3
(r"2 + cosh? r)3/2

cosh? r

ke = — .
2 sinh r(r'2 4 cosh?r)1/2

Using the condition of minimality k; + ko = 0, we receive required differential
equation.
It is possible to reduce the order of the found equation.
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Corollary 2 [4]. Generatriz of catenoid of revolution is determined by initial
condition (r(to),to) and satisfies the first order differential equation

(r')? = a®sinh? r cosh® r — cosh®r, a = const. (1)

In the paper [4] this statement is shown by a variational method, without
calculation principal curvatures of catenoid. For the sake of completeness we
give here this derivation.

The area element of catenoid has the form

dS = \/g11922 — 93, dtd$ = sinh r(t)\/r"? + cosh? r dtd¢ .

Therefore in variational problem for minimum of the area of the surface of rev-
olution the Lagrangian L(r(t),r'(t)) = sinh r(t)(r"> + cosh? 7)'/? doesn’t depend
explicitly on ¢ and the energy F = r'— — L is conserved along the extremal [6].

or’

Calculating, we obtain

r’sinh r
(r'2 4 cosh? r)1/2

E=r — sinh r(r"% + cosh? 7)'/% = ¢ = const

r"sinh r — sinh r(r'? + cosh? r)"/? = ¢(r'? 4 cosh? )/
¢ 2sinh?rcosh*r = r’? 4+ cosh?r ,

that coincides with the first integral, pointed out in Corollary 2.

1.3. An analog of parabolic curve in H2. In the upper half-plane
du? + dv?
w = u+iv, v > 0, with the Poincare metric dw? = LQU we define the
v
set of points Pp, satisfying the condition d(w,e®) = d(w,l), (0 < 6y < 7/2),
where d is hyperbolic distance in H?, [ is a straight line in H?, given by equation
Rew = 0. Obviously, given curve is analog of parabola in euclidien plane (fig. 1).
It is natural to call the point €*% the focus of parabola and the straight line  the

1 —sinfy 2y/tanfy/2

cosfy 1+ tanfy/2

directrix, the point ( ) corresponds to the vertex.
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Fig. 1. Hyperbolic parabola (directrix Re ¢ = 0, focus elg).

Lemma 1. 1) Equation of parabola Py with the focus €% and the directriz
Rew = 0 is the following:

2sinh g|w| = |w|* + 1 — 2ucosh by . (2)

In cylindrical coordinates (t,r), where Rew = e’ tanhr, Imw =

equation has the form

ht— sin 6
tanhr = 2070 _ £(g ) (2')

cos g

Proof. We use formulas for the distance between two points in hyperbolic

T
plane: coshd(z,w)=1+ |2 = wl [7, §7.2] and for the distance between a

2Im z Im w

point and a straight line: coshd(/,w) = I|L| [7, §7.20]. Substituting z = e'%,
m w
2 — f 2 — sin 6 2 ) 2
w = 4+ tv, we obtain 1+ (1 = cosfo) +(U sin o) _ve Rl . Simplifying,
2vsin g v
we obtain equation (2). To rewrite this equation we substitute in (2) |w| = €,

u = e’ tanhr and obtain the same equation recorded in cylindrical coordinates.

Lemma 2. a) The arclength of hyperbolic parabola Py from the vertex t =0
to the point t = tg is equal to

to /\/QtamHOf t 00 dt

1= F2(t, Bo) (3)
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b) Cosine of the angle 8 between normal to the parabola and the geodesic line,
projecting the point (r(t),t) to the azxis l is the following:

cos = (sinh 2r () tan ) ~"/2, (4)

Proof. We useequation (2) and write it down in unexplicit form: F'(u,v) =
(u?+v?+1—-2ucos )2 —4sin? 6 (u? +v?) = 0. Because of conformality Poincare
and euclidien metrics vector of normal is parallel to vector (Fy, F,), where

F, =2(u*+v* +1—2ucosby)(2u — 2cosby) — 8sin? by,

F, = 2(u2 +oi4+1-2u cosfy)2v — 8sin? 6y .

After reducing we can count that normal to parabola at the point (u,v) has the
same direction as vector

N = (— sin Gou + Vu? 4+ v?(u — cosby), —sin Opv + Vu? + v%) :

It is clear, that geodesic which projects the point of parabola (u,v) to the [
axis has just the same direction as vector 7 = (—wv, u) at this point. Because of
conformality between hyperbolic and euclidien metrics we can count the angle 8
in the usual way:

(N,7)  sinfouv — v(u — cosfp)vVu? + v% — wvsin by + uv/u? + v?
Nl \/u sin 20pvu? + v2yV/u? + v?

_ vcos by

- \/u\/msin 264

The length of arc of parabola of hyperbolic plane can be computed in cylindrical
coordinates in the following way: ds? = dr? + cosh? rdt? = (r’2 + cosh? r)dtQ. By

cosf =

= (sinh 2r(¢) tan 00)_1/2 .

! inh ¢
differentiating equation (2’) we obtain (tanhr)’ = - 5 = S On the other
cosh®r  cosfy
hand,
cosh=2r — 1 — tanh?r — cos? By — (cosh t — sin 6p)?
cos? 6y
Hence
[ 2. h*rsinh?¢
ds = \/r'2 + cosh? rdt = cosh rSmh + cosh? rdt
cos? 8,
— coshr cosh? rsinh? ¢ rdi= < 60+/2 sin By (cosh ¢ - sin ) dt
cos? By cos? y — (cosht — sin 6p)?

And Lemma 2 is proved.
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1.4. The rolling of parabola along the straight line in H2. We rep-
resent a process of rolling of parabola along geodesic in H? with help of a curve

: . : t)C+ b(t)
in the group PSL(2, R) of proper isometries of H?: = a(77
a(t), b(t), c(t), d(t) are functions of real variable ¢; ad — bc > 0. The following

lemma is central in the chain of arguments.

where

Lemma 3. Curve g;(¢) for everyt € [0,00) transforms parabola Py with the
focus wog = €% and the directriz | (Rew = 0) by proper motion into parabola,
tangent to axis | at the point, which is distanced on the length s(t) from the point
w = 1. Required curve is determined by the equation

w(0) = S, (5)
where 4 4
a(t) = cos 5 (|w] = ut v) +sin 5 (jw] - u—0),
b(6) = (cos 3wl — u—v) +sin S (jul — u+ ) o],
e(t) = cos (] — u —v) +sin §<—|w| fu-v),
d(t) = (cos 3wl = uv) + sin S(—Ju] +u+v) ) |ul,
where u(t), v(t), [w(t)| = u(t) + iv(t)]; 6(2) (the angle mentioned in Lemma 2)

represent parameters of the point of parabola Py distanced at the length s(t) along
the arc apart its vertex.

Proof. Required motion of parabola we realize in four steps, each of whose
have evident geometric meaning.

1
1) The first motion ¢1(¢) = ﬁC represents homothety with center at origin.
w
By this motion the point w passes to a point of unit circle || = 1 and the angle 6
of normal with projecting geodesic is preserved.

2) The second motion represents parallel translation of parabola along the
geodesic |(| = 1 from the point w/|w| to the point 7. Analytically it may be
written so:

(14 tan 5 )C—}—tan -1
(-1+tan$ )C—I—tan 41’

where ¢ = argw. It is needful to check, that gg(ew) = 1; really,
1—cos¢\ _ip 1l—cos¢
(1 + “sing ) + Tsing -1

(—1+ 55t eio 4 Lot 1

92(0 =

gz(ei‘b) =

88 Matematicheskaya fizika, analiz, geometriya , 1999, v. 6, No. 1/2



Generatrix of catenoid of space 3-form

(14 sin¢ — cos¢)(cos¢p + ising) + 1 — cos ¢ — sin ¢

~ (1 —sin ¢ — cos ¢)(cos ¢ + isin @) + 1 — cos ¢ + sin ¢
(14 sin ¢ — cos ¢)isin ¢ + cos ¢ + sin pcosp — cos? ¢+ 1 — cos ¢ — sin ¢
(1 —sin¢ — cos ¢)isin ¢ + cos ¢ — sin ¢pcos ¢ — cos? ¢+ 1 — cos ¢ + sin ¢
B (14+sin¢ —cos¢)i — 14 cos¢ + sin ¢ .
o (1—sin¢—cos¢)i+1—cosq§+sin¢_l
Then we have to verify, that vector 7/ = — sin ¢ + 7 cos ¢, tangent to the geodesic

|| = 1 at the point €'® under the action of differential of mapping g, passes to
the vector —\ € R_, parallel to the real axis. Really,

_ 9 ) /
g;(T'):( 1 27_/_ (cz+d) r_ <<tan§—1) e_w—}—l—l—tan?) T

cz+d)2 |Cz—}—d|4T 2) |ez+d*
1—cos¢ . 1—cos¢)2 T
S | . 1
<< sin ¢ )(COS¢ isin ) +1+ sin ¢ lez + d|*

,]_/

sin? ¢|cz + d|4
= (sin2¢+6082¢—}— 1+ 4sin¢ — 4sin ¢ cosp — sin2¢— coslp—1

= (sin¢ — cos ¢ + 1 + i(sin ¢ + cos ¢ — 1))2

o Tl 4(1 = cos ¢)(sin ¢ + cos d) 7'
2i(sin” ¢ — (cosé —1)%) sin? ¢|cz + d|4 - ( sinzb)qb(|ciji dl* 2
4(1 — cos ¢)(sin ¢ + i cos @) (—sin ¢ + i cos P) 4(1 = cos ¢)
- sin? ¢lcz + d|4 ~ sin? dlez +d|* € fi-
3) The third motion represents an anticlockwise rotation about the angle 8

[ 0
cos 5(—|—sm 3
7

—sin %C + cos 5
After accomplishment third motion we obtain parabola contacting to axis [ at

around the point 7. It has the following view [7, §7.33.]: g3(¢) =

the point 1.

4) The fourth motion transforms parabola Py to parabola touching the line
[ at the point €"*(!) at hyperbolic distance s(t) apart the point 7. It is easy to see
that g4(¢) = e*®¢. Composition g(C) = gaogzoga0g1(C) has the following view:

8
—}—sm§

)|'w| 2
)

L—}—tan%—l 0 ’
+ cos 3

2 (—1+tan ) 5y +tan $+1
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1 —cos w| — U
where tan ¢ = — 3 ¢ = [l . Simplifying, we obtain required expression
sin v

for g;(¢) in the following view:

) =e cos %(GC + b|wl|) + sin %(bc + alw|)
g _sin%(CLC-Fb|w|)—}-cosg(bc_|_a|w|)

(where @ = |w| + v — u, b = |w| — u — v), which coincide with (5), q.e.d.

Fig. 2. Moved parabola touching axis Re{ = 0 at the point ¢
and corresponding generatrix, passing through its focus.

Lemma 4. Trajectory which the focus €% of parabola Py describes during its
rolling along the line | has the following equation in the complex plane w (fig. 2):

cos o+/F (%, Bo) + iv/5in 200) VT = 20, 6o)
sinh t\/f(t, 80) + 11/sin 26, '

F(t) _ gt(eiﬁo) _ es(t) <

P roof If we substitute in formula (5) instead of ¢ the focus €% and
assume for the sake of brevity |w|+ v — u = a, |w| — v — v = b, then we get
equation of the trajectory described by the focus of parabola during its rolling
along the line:

(acos g + bsin g) etfo 4 |w]| (asin g + bcos g)

[:D(t) = el : :
(—a sin % + bcos g) et + | (a cos% — bsin g)
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Now we calculate the fraction multiplying numerator and denominator by ex-
pression, conjugate to the denominator. Then the numerator is equal to

0 . 7] 0o ) . 0 0 . 0 0 —16p
<<QCOS§—|—bsm§) e + |w] <asm§—|—bcos§)> <<—asm§—|—bcos§) e
, [ 0 B 50 . o0 9 9 o . 0
+|w] (acos§ — bsin 5)) =ab (COS 3 — sin 5) + (0" —a )COS§SIH§

: 6 6 : 6 6
+e% |w)| <a2 cos? 3 b* sin? 5) + 70 || (—a2 cos? 2 + b%sin? 5)

] ] ] ] 1
o2 20 .ol 2 g2 %) 1. 2 2
|w] <ab (cos 5 sin 2) + (a b*) cos 5 sin 2) abcosf + 5 sin 8(b* — a*)
2 1 5 2 s 20, 5 2 .90, 2
+|w] abcosﬁ+§(a — b*)sin 6 ) +|w| cos by | cos i(a + b°) — sin 5(@ +b°)

1
= cos fab(|w|* + 1) + §sin 0(a? — b*)(Jw|* + 1) + |w| cos By cos By (a® + b?)

+|w| sin By (a? — b%)i.

Calculating the denominator, we obtain
] AN ] .0
((—asm§—|—bcos§)e + |w] <acos§—bsm§)>
.0 0\ g, 0 .0
><<<—asm§—}—bcos§)e + |w] <acos§—bsm§))

6 0\? 6 0\?
= (bcos— — asin —) + |w|? (acos— — bsin —)
2 2 2 2

] ] ] ]
+2 cos fg|w| (cos2 §ab + sin? §ab — sin 2 cos §(a2 + b2)>

6 6
= cos? 5(1)2 + a?|w|?) 4 sin® §(a2 + b%w|?) — sin Bab(1 + |w|?)

+2 cos bp|w| <ab — %sin 0(a* + b2)) = COSOT—}—l(l')2 + a*|w|?)
1—cosl, 5 5 |2 . 2 . 2 | 22
—I—T(a + b%|w|*) — sin Bab(1 + |w|*) + |w| cosby(2ab — sin §(a” + b*))

1 1
= §c050(a2 b (lw]* = 1) + 5((12 + 63 (Jw* 4+ 1) — ab(1 + |w|*) sin 8
+|w| cos By (2ab — sin fp(a* + b*)) .

Since ab = (|w| — u)? — v? = 2u(u — |w|), a® + b* = 4|w|(|w] — u), a® — b? =
4v(Jw| — u), we can reduce numerator and denominator on 2(|w| — u). Then
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r(t) =e'®

—u(|w]? 4+ 1) cos§ + v(|w|? — 1) sin @ + 2|w|? cos by cos 6 + 2|w|vsin by?
v(|w|? — 1) cos@ + u(1 + |w]?) sin 0 + |w|(Jw|? + 1) — 2|w| cosby(u + |w]| sin §)

It is convenient to make subsequent simplifications in cylindrical coordinates. We
¢
e

remind that u = e’ tanhr, v = , lw| = €’. Then the numerator of the last

o cosh r
fraction is equal to

2t+1) V1= f2(t,6)

2tan Oof(t, 00)

(e?' — 1) sinht
cos fg\/2 tan by f (¢, 6p)

+€t 1_f2(t700)

—e' tanhr(e

V 1- f2(t7 00)
\/Qtan Oof(t,go)

— htcosfy +sinh?t +cos? 6, . .
—oett 1 g2 (2ot 0 0
¢ / ( cos /2 tan by f Hrsinfo
[ 5 (sinfg(cosht —sinfy) . .
o2t [ <sm o p >
¢ f v/2tanfq f cos by +osinfo

) [ f .
:262t\/1—f2811100 ( S tandy +1] .

Denominator is equal to

1— f2 sinh ¢
t /1 — 22t 1) — tf(1 x
€ Fe ) 2tan by f teflte )COSOO' 2tan b f

sinh ¢

cos fg+/2 tan by f

o [ sinh#(1 — f2) cosfy + sint coshtf — cosfgsinht .
= %2¢ + sin fq
cos fg\/2 tan by f

9¢ [ sinh tcosfy — f%cosBysinh t 4 sinh t coshtf — cos @y sinh ¢ .
= e + sin fq
cos fg\/2 tan by f

= 2¢e*sin 0o (M + 1) .

+2¢%t cos b, + 2e%\/1 — f2 (t,60)sin Byi

+2sin fpe? — 2e?! cos b,

4/2sin 6y cos fq

From here follows formula (6), q.e.d.
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We denote by X (t) = Rel'(t), Y(t) = ImI'(¢) and pass to cylindrical coor-

VX2 1 y?2
dinates (R,T) using the formulas cosh R = X}/7+}7 T = flog(X%+Y?).

According to Lemma 4, we can represent variable T" in the form

1 1 t,0 . t,0
T= s(t)§log(1 — f3(t,00)) + 5log <% + 1) — log (smht JQI(Sin gz + 1)

Remind that function f(t,6p) is defined by equation (2').

Lemma 5. The derivatives of functions R(t), T'(t) with respect to parameter t

are
dR sinh ¢ dT V2 tanfg

dt 9. Jeosh? t — sin? o e 2/f(t,80)(f (2, 60) + 2 tanby) |

X /76,

Y  2tanb,’
. On the other hand,

Proof. From the definition of R it follows that sinh R =
d(sinh R)
cosh R

f(t,Ho))_l 1 sinht  dt

Differentiating with respect to ¢, we have dR =

d(sinh R) = d =-
(sinh ) ( 2 tan 6y 2 \/f(t,0y) cos by /2tanfy ’

VXZI1Y? t,0 1/2
cosh R = e <f( ,b0) + 1> . (7)
Y 2 tan fg
Hence
AR — 1 1 1 sinht 1 1 sinht

dt =
\/Qta{1€0+1\/2tan002\/7c0800 f+2tanfy2cosby /f

1 1 sinh ¢ sinh £ dt

~ 2/cosht t sinf /cosh —sin By \/COSth—SiHQ 9, '

So, we have proved the first formula. Let us prove the formula for % We have

. . sinh?
AT JTtanf, SN anmemt 1 coshtVT+ gp
- 2 2 : sin
dt 1—f 1-f ﬁ_}_l v/2sin 8y %_}_1
sinh
B \/7(\/2tan00 - \/ZTgot) N sinh ¢ B 2f cosh t cos gy + sinh? ¢
N 1—f2 2(cosht +sinfy) 2+/f cosby(sinh t/f + /sin 26,)
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_ 2f(sin26 — fsinh®t) — (1 — f?)(2coshtcosfy + sinh?¢) sinh ¢
N 2¢/fcoso(1 — f2)(sinh t/f + /sin 26p) + 2(cosh t + sin 6p)
B cos? 0o(f% - 1) sinh ¢
2/ fcosBy(1 — f2)(sinh ty/F + \/sin 26;) + 2 cosby(f + 2 tanby)
_cos?8o(1 — f?)(f +2tanby) 4 fsinh®t + /[ sinh ¢/sin 26
B 2cosfo(fsinht 4 /fsin26y)(f + 2 tan 6y)

B v/ [ sin 264 B v/2 tan g
"~ 2cosbo/f(f +2tanfy)  2/F(f+ 2tanfy)’

q.e.d.
., dR . . . . .
Lemma 6. Derivative a7 satisfies the following differential equation:
dR\? 2 20 12 4
T + cosh® R = 4 tan” 6y sinh“ R cosh™ R.
. . . dR
Proof. From the previous lemma we can obtain expression for a7

T~ 2 cosbo/f+/f + 2tan gy V2 tan b N V/sin 26,

Now we compute the left hand side of stated formula, using (7):

(dR)2+cosh2r— sinh? ¢(f + 2 tan o) f

dR sinh ¢ 2 f(f+ 2tanfy)  sinhty/f + 2tanfy

dT sin 26q 2 tan fg
sinh? ¢ 1 f+2tanfy (-1 + cosh?t + cos? 6o)
(f + 2tan bo) (sin 20y  2tan 00) 2 tan cos? 6y

[+ 2tanfycoshi —sinfgcoshi +sinfly [+ 2tanéy
~ 2tané, cos b cos by ~ 2tané,

_ [f+2tanby f [+ 2tanbp
~ 2tanfy, 2tanfy 2tané,

f(f +2tanfy)

4tan? 0y = 4 tan® 6y cosh? Rsinh? R,

q.e.d.

1.5. Proof of the theorem for hyperbolic catenoid. It follows from
Lemma 6 and Corollary 2 that curve I'(¢) satisfies the differential equation char-
acterizing generatrix of catenoid of revolution of hyperbolic space. It is easy to
verify that origin of the curve I'(0) (see Lemma 4) coincides with position of the
focus of parabola touching at its vertex the straight line / at the moment ¢t = 0.
By virtue of uniqueness of solution of first order differential equation with given
initial condition focus of parabola during its rolling describes the curve I'(¢).
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2. Property of generatrix of spherical catenoid

2.1. Cylindrical coordinates in S3. Now we consider the unite sphere
53 with the metric ds? = d¢? + cos? ¢ dp? + sin? pdA?. The parameters ¢, ¢,
A have the following geometric meaning: 0 < ¢ < 27 measures arclength along
the chosen geodesic (the axis of spherical cylindrical coordinates), 0 < ¢ <«
is the distance from the axis ¢ = 0 to the point (¢, ¢, ), and the parameter
A determines the direction in the totally geodesic sphere ¢ = const. Since the
method of proof of spherical version of theorem is similar to hyperbolic one we
try to contract our exposition.

2.2. Differential equation of generatrix of spherical catenoid. In the
sphere A = 0 we choose meridian (¢, ¢(¢), 0) that generates spherical catenoid of
revolution. Arguing as in 1.2, we may state the following assertion.

Lemma 7. Generatriz of spherical catenoid of revolution is determined by
initial condition (o, ¢(vo)) and satisfies the differential equation

(¢,)* = cos® p(a’sin® pcos® ¢ — 1), a = const.

2.3. Analog of the spherical parabola. We determine set of points on
the sphere by the rule: d(F, M) = d(l, M), where F(¢ = 0,¢ = ¢¢) is the focus
and equator /(¢ = 0) is the directrix of spherical parabola. The definition may
be restated in the following way: d(F, M) 4+ d(I*, M) = 7 /2, where [* is the pole
of the geodesic .

Lemma 8. FEquation of spherical parabola with the focus F(p = 0,¢ = ¢q)
and the directriz [(¢ = 0) has the form
— €08 (p co8s Pg

1
t =
an ¢ sin ¢g

= 9(997 ¢0) : (8)

P roof. For spherical distance d between the points I’ and M (¢, ¢) we
have cosd(F, M) = cos ¢ cos ¢ cos ¢g + sin ¢ sin ¢g. On the other hand, spherical
distance from M (g, ¢) to equator [ is ¢. From here the desired equation follows.

Lemma 9. a) The differential of arclength of spherical parabola is equal to

ds— [29lpid0)
singo 1+ g(p, do)?

b) The angle 6 between normal to spherical parabola and the geodesic that projects
the point of parabola to | is equal to

COSQ:\/SiH%_ sin o (14 ¢2)

sin 2¢ 2¢g
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P roof. To obtain expression for the differential of arclength we use (8)
and metric form of the sphere ds? = d¢? + cos? ¢ d?.

b) The mentioned angle 6 is equal to the angle between tangent vector to
parabola (¢', ') and vector (0,1) tangent to the parallel (¢ = const). Since
1= (¢)?+cos? ¢(¢')* we have cosf = cos ¢¢’. On the other hand, differentiating

/

(8), we get = cotdp sin ¢’ and the statement follows.

cos? ¢
2.4. Process of rolling of spherical parabola P, along the equator /.

By R.(s) we denote the rotation about the angle s around Oz axis (anticlockwise
in 20y plane). The next statement is clear from visual geometric reasons.

Lemma 10. Motion A(s) = R,(s)R.(—0)Ry(—¢)R.(—) is the motion of the
sphere that transforms the spherical parabola P; to parabola touching the geodesic
[ (equator) at the point (s,0).

Successively multiplying four matrices, we receive expression for A(s). The
following statement may be verified by direct calculations.

Lemma 11. Trajectory which the focus F'(cos ¢g,0,sin ¢o)* of spherical para-
bola P, describes during its rolling along the equator [ has the following view:

where
X (s) = (cos scos ¢ cos g + sin s cos @ sin ¢ + sin ssin #sin ¢ cos @) cos ¢g

+(cos ssin ¢ — sin ssin # cos ¢) sin ¢g ,
Y (s) = (sin s cos ¢ cos ¢ — cos s cos #sin ¢ — cos ssin #sin ¢ cos ) cos ¢y
+(sin ssin ¢ + cos ssin # cos ¢) sin ¢g ,

Z(s) = (sin @ cos ¢ — sin ¢ cos @ cos f) cos ¢g + cos b cos ¢ sin ¢ .

2.5. Proof of the spherical version of theorem. We have to check that
spherical curve I'(s) satisfies to differential equation cited in Lemma 7. Therefore
we have to rewrite this equation in terms of coordinates of I'(s) introduced by
the rule sin¢ = 7, tanp = % From here we deduce

7z, Y'X=XY dp  2NI-7°
cosé i z2 T T X24Y? 'dp Y'X - XY

¢ =
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Substituting in the equation cited in Lemma 7 instead of Z—¢ its expression in
terms of functions X (s), Y (s), Z(s), we receive the following differential equation
to be verified (ﬁf = a?Z%(1 — Z?) — 1. First of all we calculate X (s),
Y (s), Z(s):

Z(s) = cos.qbo @—sm@ — T cos @\/sin ¢o [L1+9° €os ¢p
/2 sin ¢0 N/ V1+ g2 2 g

n singg [1+ g2 1 n o
sin
V2 g Vitgr

1 sin ¢y [ cos® ¢ . 2 , .
= NG (singbo sin” ¢ — g cos ¢ cos ¢g + sin ¢g

= sin” do <c0t2¢0 +1- COS.SDQCOSQ%) = gsin ¢o .
29 sin” ¢g 2

Here we used formulas:

l—cospcosgg  [singg 1+ g°

sin ¢ » P 2 N/ ’

g:

cos ¢g

) 1
! = cos? ¢ coteg sin g’ = \/m ﬁ7

[singo [1+4g7 ;o g
cosf = cos g’ =/ —— , sinf = ¢, singp = ——.
i 2 g V1+g?

Similarly we calculate

1 1
X = F i , Y — (& _F 7
(s) = (coss+ F(s)sins), Y (s) Ty (sins (s) coss)

g
2sin ¢g

where F(s) = cos ¢gsin ¢

1—|—g2

2
Lemma 12. a) 7' = , D) Y'X — X'Y = sin ¢

Proof. a)
sin qbo sin ¢g cos ¢g sin e 14+ g%  cosgpsinp(l+ g%
v 2 2\/_\/72 smoo T G ig '
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b) Since Y'X — X'Y = (%)IXQ, we have

Y'X - X'Y = i(
ds

sin s — F'(s) coss) (cos s + F(s)sin s)? _ 1+ F%(s) — F'(s)

coss — F(s)sins 1+ g2 1+ g2

sin ¢o (1 + g?)?
49
Now we are able to point out explicit value of constant @ mentioned in Lem-

Calculation of the numerator yields , therefore formula b) is valid.

ma 7.

Z/ ? 2 2 2 2
L 13. ([— 2 ) = 721 - 72) - 1.
emma (Y’X — X’Y) <sin ¢0) ( )

Proof. First, using previous lemma, we have
Z/
(Y’X - XY

2¢sin — sin? 14+ g2
_ g b0 . ¢0( 9)+1:g<
sin“ ¢q

2
) +1= Cot2qb0 sin? p+1

Sin Qg )
in ¢ ’
On the other hand,

-2
2
a2Z2(1 — ZQ) = QQ%SiH do (1 — %sin qbo) = a281n4¢og <sin %0 — g) .

It is clear that if we take a = , both expressions coincide, q.e.d.

sin ¢g
Finally, to prove spherical version of the theorem we may repeat without

changes arguments given in 1.5.
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l'eHepaTpuca kKaTeHou[a NpPOCTPaHCTBEHHOI 3-dopMbl

JI.LA. Macanbliien

HOBerHOCTI/I BpalleHHudA MOCTOAHHOM Cpe,[[Heﬁ KPHUBH3HEI B €BRJAWJOBOM
TpexXMEpHOM IMPpOCTpaHCTBE M3BECTHBI KaK IIOBEPXHOCTH II. r[[e.HOHe. OHu
o6JaaaT 3aMedaTe]bHbIM CBOHCTBOM @ HUX HpO(I]HIIbH];Ie KpHUBEIE (reHepaT—
pI/IChI) €CTh TpPAaeKTOpHH (bOHyCOB KOHUYECKUX cedyeHu IpHu MX Ka4dYeHUHn
BJ10/Ib HpHMOﬁ. PeanuzoBana anaiorudnas KOHCTPYRIOHNA B IPOCTPpaHCTBEH-
HBIX [I]OpMaX H3 n 53 . Usnosenne OorpaHn4dumMBaeTCq cia1ydaeM MUHHUMaJbHBIX
HOBerHOCTeﬁ N JOoKa3aTe/lbCTBOM C.ﬂe,[[yIOH_[eﬁ TeOpeMBEI.

Teopema. [‘enepampucoll KameHouda 6pauUleHUs NPOCMPAHCIMBEHHOL
Popmoe H3(S3) asanemea mpaexmopus @oryca sunepboauveckoil (cPepuyec-
K01i) napaboavl npu ee kaveHul 60016 2e0desuteckozo aya.

I'enepaTpuca kKaTeHoiga npocTopoBol 3-gpopmu
JI.O. Macanbien

IToBepxH1 o6epTaHHA MOCTiH{HOI cepeIHbOI KPUBUHHU B €BKJiIOBOMY TpPH-
BUMIpHOMY npocTopi Bifomi Ak nosepxHi II. Jlerone. Bonu mMaioTh BugaTHY
BIACTUBICTh: 1X NpodinbHi KpUBI (reHepaTPUCH) € TPAEKTOPIT HOKRYCIB KOHIU-
HUX TIepepi3iB MpHU 1X KOTIHHI B3/IOB# MpAMOI. AHAMOTIYHY KOHCTPYRIIIO pe-
ali30BaHO B npocTopoBuX dopmax H3 i S3. Buraaj o6MeseHO BUNALKOM
MIHIMAJAbHUX TOBEPXOHK 1 JJOBEJIeHHAM HACTYITHOI TEOPEMHU.

Teopema. [lenepampucorwn kameHoida 00epmaHHa NPOCMOPOBOL Hopmu
H3(S3) e mpaexmopia @oryca einepboaiunoi (cPepuunoi) napaboau npu ii
KOMIHHT 830063 2200e314H020 NPOMEHS.
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