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The initial boundary value problem for semilinear parabolic equation

WS e (55 ) =), zente .1
6t ii=1 &rl ij al‘j a ’ ' ' ’
with the coefficients afj(m) depending on a small parameter ¢ is considered.
We suppose that af;(z) have an order g3 (0 <y < 1) on a set of spherical
annuli G2 having the thickness d. = de?*7. The annuli are periodically
(with a period ¢) distributed in €. On the remaining part of the domain
these coefficients are constants. The asymptotical behavior of the global
attractor A, of the problem as ¢ — 0 is studied. It is shown that the global
attractors A. tend in a appropriate sense to a weak global attractor A of
the homogenized model as ¢ — 0. This model is a system of a parabolic
p.d.e. coupled with an o.d.e.

1. Introduction

We consider a semilinear initial boundary value problem

ouws Ko . | ou o e ‘

ot _i]z::l(?—:m(aij(m)a—xj)—l_f(u)_h (z), z€Q,t>0;

ou =0, z € 0Q,t>0; (1.1)
ov

us(2,0) = uj(a), e
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Upper semicontinuity of attractors of semilinear parabolic equations

We suppose that afj(m) depend on a parameter € and for any € these coefficients
satisfy the following condition:

n

|€|2 Z gzgk < ﬁ ( )|€|27 (1'2)

where
0<al®(z) < p92) <0, ze.

Under hypothesis (1.2) and natural assumptions on u§(z),h*(z) and f(u) the
existence and uniqueness of the generalized solution of problem (1.1) in the ap-
propriate classes follow from standard parabolic theory (see Theorem 2.1 below).

In this paper we suppose that af;(z) are of the order £3*7 (0 <y < 1) on the
union G. of spherical annuli G having the thickness d. = de?*7. These annuli
are periodically, with a period ¢, distributed along the directions of the axes in
2. On the set Q\|J, G these coefficients are equal to the Kronecker symbol §;;.

This paper deals with the study of asymptotic behavior of the global attractor
A, of problem (1.1) as e — 0. The main goal of the present paper is to learn how
the transition to homogenized system reflects on the long-time dynamics.

The asymptotic behavior of the solutions u°(z,t) of problem (1.1) as ¢ — 0
is studied in paper [1] for a finite time interval. It is shown (see [1]) that the ho-
mogenization of this problem leads to a system of a semilinear parabolic equation
coupled with an ordinary differential equation with respect to the variable #:

AT 0*u

E_sz”a o, Tl ) =h), 29 >0
@—0 € 0Q,t>0; u(z,0) = up(r) € Q;

E z , ;o ulx,0) = uglx), x ; (13)
9

S+ ba(v = w) + f(v) = ha(o), PEQ >0

U(%,O) = UO(x)v x € £

where the coefficients b;;(z,7 = 1,2,...,n) and bg(k = 1,2) are calculated from
the solutions of cellular problems and the parameters of the structure.

We consider the long-time dynamics of homogenized system (1.3) and show
that it possesses a finite-dimensional global attractor A (for the definitions and
basic facts see, e.g., [2-5]). We investigate the properties of A and prove that
global attractors A, tend to A in a suitable sense as ¢ — 0. For the first time the
homogenization problem for global attractors corresponding to nonlinear evolu-
tionary equations was considered in [6]. Here we use some ideas and methods
developed in [6].
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A problem that is very close to above mentioned problem is the problem of
homogenization of the nonlinear parabolic equations in the domains with ”traps”,
considered by L. Boutet de Monvel, I. Chueshov, and E. Khruslov [6] and by A.
Bourgeat and L. Pankratov [7]. Problem (1.1) with f(u) = 0 was considered
by E. Khruslov (see, for example, [8]). We also note that the homogenization
problem for (1.1) with uniformly nondegenerating elliptic operator was studied
by a number of authors (see, e.g., [9-11] and the bibliography cited there).

The paper is organized as follows. In the Section 2 we formulate some pre-
liminary theorems and also our main result on the upper semicontinuity of A..
Namely we formulate the existence and uniqueness theorem for problem (1.1)
and the theorem on the existence of the global attractor of the dynamical system
corresponding to (1.1). The last one is proved in the Section 3. We also formu-
late the homogenization result from paper [1] and the theorems concerning the
properties of the homogenized system (1.3). These theorems are proved in the
Section 4. The main result of the paper is proved in the Section 5.

2. Preliminaries and statement of main result

Let © be a smooth bounded domain from R" (n > 2). Let us introduce the
notation

G={2€Q:r.—d. < |z—2% <re}; Bulre—d:.)={z€Q:|z—2% <r.—d.};
Ge = U G?7 B. = U Ba(rs_ds); QEZQ\(geUBE)7
a€Ne a€Ne

where 2% = ae (o € Z") and N, is a set of multi-indices such that G2 C €;
re=re (r <1/4); d. = de*™ (0 < v < 1).
In the domain €2 we consider the boundary value problem (1.1). The coeffi-

cients af;(z) in (1.1) are defined as follows:

aj;(z) =

2.1
ae&j = a5¢j€3+7, (a > 0), x € G.. ( )

This structure of the diffusion matrix allows us to interpret the problem as a
reaction-diffusion problem in a medium with traps B, (r. — d.).
We assume that the function f(u) € C?(R) has the following properties:

sup{|f'(u)| : v € R} < oc; (2.2)
and there exist positive constants By, By, B3 such that

uf(u) > Biu® — By; (2.3)
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Flu) = / F(€)de > Biu® — By, (2.4)
0
Let us introduce the notation
4 1 g g g
1) = IV . + Vg, + IV} (250)
M) = J.(w) + / (F(u®) - h*u®) de. (2.56)
Q
Here and below (-,-)2,0 and || - ||2,0 are the scalar product and the norm in the

space L*(0), O is a subdomain of €.
By standard way (see, e.g., [12, 13]), we can prove the following existence and
uniqueness theorem:

Theorem 2.1. i) Let h*(z), u§(z) € L*(Q2). Then for any time interval [0, 7]
problem (1.1) has a unique generalized solution u®(x,t) such that

u®(z,t) € C(0,T; LX) [V L0, T; W3 (Q))

and, moreover, this solution depends continuously in the L*-norm on the initial
datum and it satisfies the equality

S @IBa+ [ )dr + [ ) - B u (aadr = ShElEa (2.6

for any t > 0.
i) Let h*(z), u§(z) € W3 (). Then problem (1.1) has a unique generalized
solution such that

u(z,t) € C(0,T; Wy (Q));  ui(z,t) € L*(0,T;L*(Q)),

and we have the equality
¢
Aelw) + [ i, ) adr = A (5). (27)
0

Theorem 2.1 makes it possible to define an evolution operator S; on the
space L?(2) by the formula Sfu§ = u®(t), where u®(¢) = u*(=,t) is the solution of
problem (1.1). This evolutionary operator is a continuous mapping of L?() into
itself. It is also strongly continuous with respect to the time variable. The follow-
ing assertion gives a description of long—time behavior of the dynamical system
(S5, L%(Q)) generated by the operator S§ in the space L?(f2).
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Theorem 2.2. The dynamical system (S§,L%(Q)) for every ¢ > 0 has
compact global attractor, i.e., there erists a compact set A. in L*(Q) such that

SiA. = A, fort >0 and
tli?oo sup{distrz(q)(Siv,As) v € B} =0
for any bounded set B in 2. This attractor A, has the finite Hausdorff dimension

and it belongs to the space H?(s,9) consisting of functions u(z) € W3 () that
locally lie in W3(Q2:), Wi(G.), W3(B.) and possess the properties:

ou’
5 = 0, ze€0;
and
(u®)t = (u®)~; T € OBy(re);
Jus\ T out\ "~
(32 e () weami
(u®)*t = (u®)~; z € 0B, (re —d.);

dus\*t ous\ "~
aa<8y> - (81/) ’ $E(9Ba(7‘£—d5),

where a=1,...,N.,, and we denote by ” L7 the values of the function
u®(z,t) and its normal derivative on the external (internal) surface of 0B, (r.)

(or 0By(r: —d.)).

Let us recall that the Hausdorff dimension is defined as follows. Let M be
a compact set in the space H. For d,¢ > 0 define the value

w(M,d,e) = ianr;l,

where inf is taken over all coverings of M by the balls of radius r; < e. It is

evident that u(M,d, ) is a monotone function of e. Therefore there exists

p(M,d) = lim (M, d, &) = sup u(M, d, ¢).
e—0 >0

The value

dimgM =inf{d : p(M,d) =0}

is called the Hausdorff dimension of the set M.
We also note that H?(g, () is a Hilbert space with the inner product generated

by the norm
2
SR
. 8.132 4 &rj

Z7j:1 279

[ullr e @) = llullz.0 + J= () +

162 Matematicheskaya fizika, analiz, geometriya , 1999, v. 6, No. 1/2



Upper semicontinuity of attractors of semilinear parabolic equations

We suppose for sake of simplicity that 0 € Q. Let K be a cube in R™:
1
K={zeR" |4 < 2 1=1,2,....,n};
r
and B is the unit ball in R™:

B={z e K;» ai <1}.
=1

Define now in P = K \ B the functions v;(z), ¢ = 1,2,...,n, that are the
solutions of the following auxiliary problem:

Av; = 0, t€P=K\B;
ZZZ = (zi,n), z € 0B; (2.8)

vi(z), Dv(z) are K — periodic;

where v is the external normal vector to B. It is known that this problem has
a unique solution v;(z) up to a constant (see, e.g. [11]).

Let {z“ = ac,a € Z"} be a lattice in R™. Let (). be a linear interpolation
operator that is defined as follows. For each node of the sublattice {z® = ae, a €

N.} we set

(Q:u)(z”) = 1 / u(z)dz, o€ N,

me
Ba(re—de)

where m, is the volume of the ball B, (r. — d.) of radius (r. — d.) centered at
z®. For each node {z® = ae, « ¢ N.} we set (Q.u)(z®) being equal to a mean
between the values of (Q.u) in the nearest nodes of the lattice. In the whole
(Q-u) is a polylinear spline, i.e.,

Q@) = X @) [Tx (2 o),

where z = (21,...,2,) € Q, @ = (01, ...,0,) € Z™ and x(7) = 0 for |7] > 1;
Xx(1) =1—|r| when || < 1. It is clear that (). is linear bounded operator from
L2(2) into W] (Q) for every € > 0 and

1Qeull2 < Cllullza,  w € L*(Q), (2.9)

with a constant €' > 0 independent of ¢.
We involve the following result of the paper [1]:
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Theorem 2.3. Let u®(z,t) be the solution of problem (1.1). We assume that
i) for any e € (0,0)

[ ugllZ e+ J-(ug) + [V Qaug||2q + (1A5]180)2 + IVQ-A%| 2 g < C,

where C' denotes any constant independent of € and || - ||$S)2 denotes a norm in
the space W} (Q);
ii) there exist the functions ug, vo, h1, hy from L*(Q) such that

lug — woll2,0. = 0, [|A° — hall2.0. — 0;
and
lug — voll2,5. = 0, [[A° — hall2,5. = 0

as € — 0. Then we have

lim {max " (z,£) = u(z, )30, + max[|u’(z.1) = v(z. O35} = O

)

where the pair of functions U(z,t) = (u(z,t),v(z,t)) is the solution of problem
(1.3). The coefficients b;; and by in (1.3) are calculated from cellular problem
(2.8) solutions and the structure parameters as follows:

bij = 5ij [1 - 17’_ /(Vvi,ij)da; s
He
bopt 7/ 2pn an
bl = — 9 =

T TTEE T
Here &;; is the Kronecker symbol and ' is the Gamma function.

The following theorem explains how to understand solutions of problem (1.3).

Theorem 2.4. Assume that (2.2)-(2.4) are satisfied and Uy = (ug,vo) €
Fo = L*(Q) x L*(2). Then the problem (1.3) has unique generalized solution
U(t) = (u(t),v(t)) belonging to the space C(Ry,Fy). Moreover, if Uy € Fy =
W) x L*(Q) then

d
U(t) € C(Ry,Fy) and %U(t) € LY Ry, Fo); (2.10)
if Uy € Fo = W3 (Q) x W3 (Q) and hy € W} (Q) then

U(t) € C(Ry, Fa) and %U(t)eL%OC(R+,L2(Q)xW21(Q)). (2.11)
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The proof of this Theorem is of standard character and relies on the methods
presented in [13].

Theorem 2.4 allows us to define the evolutionary semigroup Sy in each of
the spaces F; by the formula S;Uy = U(t), where U(t) = (u(z,t),v(z,t)) is the
solution of the problem (1.3) and Uy = (ug, vg). We prove the following assertion
on the existence of finite dimensional weak global attractor for the semigroup S
in the space Fs.

Theorem 2.5. Assume that (2.2)-(2.4) are satisfied and
by +inf{f'(u) :u € R} >0, ho(z) € W3 (Q). (2.12)

Then the dynamical system (Sy, F3) has a weak global attractor A. This attractor
has the finite Hausdorff dimension as a compact set in Fy.

Recall (see [2, 3]) that weak global attractor A is a bounded weakly closed set
in F, such that (i) SpA = A for any ¢ > 0 and (ii) for any weak neighbourhood
O of A and for any bounded set B C F; we have S;B C O, when t > to (B, O).

In fact Theorem 2.5 for b;; = §;; was proved in [6]. Here (see Section 4) we
repeat main points of the proof in more details. We also note that assumption
(2.12) is of prime importance for the existence of finite dimensional attractor A
(see Remark 6.2 in [6]).

At last using the methods developed in [6] and some estimates borrowed from
[1], we prove the main result of the paper.

Theorem 2.6. Assume that (2.2)-(2.4), (2.12) are satisfied and assumptions
of Theorem 2.2 that deal with h*(z) are satisfied. Then we have

li inf Pou® — |3 u® —v|3 = 0.
fim, sup { inf (170" — ullig + Quu = vll3a))

This theorem means that global attractor A, of the problem (1.1) tends to
a weak global attractor A of homogenized system (1.3).

3. Properties of the semigroup S}

The goal of this section is to prove the existence of the global attractor of the
dynamical system (S§, L%(€2)). We also obtain uniform estimates (with respect
to €) for the trajectories lying on the attractor. We rely on the following assertion
(see, e.g., [2-5]):
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Theorem 3.1. Suppose that a dynamical system (S, H) is compact, i.e.,
there exists a compact set K such that for any bounded set B C H we have
S¢B C K fort > to(B). Then w-limiting set

A=w(K)=[)d { U ST(K)}

>0 T>t

is not empty and represents a global attractor. It is unambiguously defined con-
nected set in H. Moreover, A=w(K) C K.

We first prove the dissipativeness of our dynamical system.

Lemma 3.1. There exists R. > 0 such that for any bounded set B, in L*(Q)
we have
[SFugll2e < R-

for all u§ € B., t > to(B:). The radius of dissipativity R. satisfies the estimate
Re < C(1+ A% l20),

where C' is a constant independent of ¢.

Proof of Lemma 3.1. Using the differential form of (2.6) and
assumption (2.3), we have

d 4 (4 - (4
Zlw®lza+ Billw*(lza < By (C1+ [1h]20)*,

where Cy = 2By B;|Q|.
Therefore Gronwall’s lemma gives

ISfudllze < e Pluglli e + Br2(1 — e PO (Ci+ [|h%]20)® (3.1)
Consequently we can choose
RZ =1+ Br*(Cr + [|h°]|l2.0)*.

In this case if ||[u§|l2.0 < p we have that ||Sfug|ls.q < R. fort > T = 2B Inp
and Lemma 3.1 is proved.

In order to prove the existence of a compact absorbing set for the dynamical
system (S, L?(2)) we use the following Lemmas.

Lemma 3.2. Let uj € H*(¢,Q). Then the solution u®(z,t) of problem (1.1)
possesses the properties

ut(t) € C(0,T; H*(£,Q)); (3.2)
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ui (t) € C(0,T; LA() () L*(0,T; W3 (). (3.3)

Moreover, if ||h®||2.0 < C we have the estimate

luil3a+ [ J(ui)dr < A1+ L @) + uil o, (34)

with a constant Ay independent of e,t. Here in (3.4)

E 3% ( ZJ guj) — f(ug) + h°(z) (3.5)

Proof of Lemma 3.2. Since u(z) € L*(Q), using the second part of
Theorem 2.1, it is easy to see that w®(z,t) = uj(z,t) is the generalized solution
of the following problem:

L Jw
(% ’Za%(” 8])+f() =0, z€Qt>0;

Ou* =0, x € 00,t > 0; (3.6)
ov
w(z,0) = ui (2), reo.

Therefore standard methods (see, e.g., [12]) give (3.3). As for (3.2), it follows
from the first equation of (1.1), from the definition of the norm in the space

H?(£,9) and from (3.3).
Now we prove (3.4). It follows from (2.2) and (3.6) that

w3+ Jew?) < Cllu (37)

where (' is a constant independent of €, ¢. Integrating (3.7) over an interval (0,¢),
we get

|mnm+2/f w<c/wubwmemQ (35)

It is easy to see that

£ 1 4
Ae(u®) > = (Bs|Q + - [Ih°]13 0), (3.9)
4B,
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where the constants By, B3 are defined in (2.3)—(2.4). Hence from (2.7) and (3.6)
we obtain

1
(4 4 1 (4
/ll‘w 13.0d7 < A-(ug) + Bs|Q + Ellh 13,0 (3.10)
0

Now (3.8), (3.10) and the definition of A.(u§) imply (3.4) and Lemma 3.2 is
proved.

Lemma 3.3. Let u®(z,t) be the solution of problem (1.1) with u§ € Wy (£2)

and ||h®||20 < C. Then we have
2
t <M A1+ [fuglF o + e (u5)] (3.11)

2,0

> o (w5en)

7,7=1

with constants Aq, As independent of e, 1.

Proof of Lemma 3.3. Letu§€e H%(s,Q). It follows from (3.7) and
Gronwall’s lemma that

t
a3 < e [ llufll3adr (3.12)
0

Therefore from (3.10) and (3.12) we get
tlug 130 < € {A(ug) + Ca}- (3.13)

Here in (3.13) €'y and C; are constants independent of ¢, ¢.
It follows from (1.1)

t < Cst{[|h* |30 + IF ()50 + [[uill20}-  (3.14)

2
90 NS
2 5 (“ﬁ%@)

27]:1 279

Now the statement of the lemma with u§ € H?(e, Q) follows from (3.1), (3.13)
and (3.14). In order to complete the proof we only need to note that H?(e, ) is
dense in W} (Q). Lemma 3.3 is proved.

The following assertion together with Lemma 3.1 means that the dynamical
system (S%, L?(€2)) is compact.

Lemma 3.4. Let

sup ||Af]|2,0 < oo.
£€(0,20)

Then there exist constants Ry and Ry independent of € such that the sets

By = {u e W) : J.(v) < R?}
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and

By ={u€ H*,9Q):

Z (9u
iS5 8362 @i 33@

are absorbing sets for the dynamical system (S5, L2()).

Proof of Lem ma 3.4. In the proof of the lemma we use the standard
approach presented for example in [2, 4]. Let u§ € H%(s,Q) and let u®(z,t) be
a solution of (1.1). According to Lemma 3.2 this solution possesses the properties
(3.2), (3.3). Let us multiply the first equation from (1.1) by the function

—t Z 7 ( g_u:) = tL.us(t).

1,5=1
We get
t(uf, Leu®)z2.0 + t|Lew|[3 o = ¢(f(u%) = h°, Leu®)z0
Consequently
L o () + | Deu g < () — B2
S (1) + 1| Lo B < (%) — g

and therefore

%wufmwﬁww%@s&W@H@Mw%m@HWm@-<ma

It follows from (2.6) that
¢
JRATE dr<W@bQ+c/|w B+ 114113 ) d.
0
Therefore (3.15) and (3.1) imply
¢
tJe(u" (1)) + /T||L5U6(T)||§,Qd7 < Cr(1+ [[P]I3,0 + [|ug]l3,0) (3.16)

for u§ € H%*(z,Q) and ¢ € [0, 7], where T is an arbitrary positive number. Since
H?(e,9Q) is dense in L?(Q), this inequality remains true for any generalized solu-
tion u*(t) with an initial datum u§ from L%(Q).

If we shift in (1.1) an initial moment from 0 to s > 0, then (3.16) implies

TJ:(u(r + ) < Cr(1+[[w(s)]30), 7€[0,T].
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Therefore, using Lemma 3.1, we find that for any bounded set B. from L?(Q)
there exists sp = sg(B:) > 0 such that

T (uf (14 8)) < Cr(1+ R2), uf € B.,s> so=so(B.), 7 €[0,7].

Setting now 7 =T = 1, we obtain for ¢t > so(B) + 1 that J.(u*(t)) < CRr, where
R = sup,,o R. < Ry. This means that B; is an absorbing set. This fact and
Lemma 3.3 allow us to prove in a similar way that B, is an absorbing set, too.
This completes the proof of Lemma 3.4.

Now the existence of the global attractor A, follows from Theorem 3.1.
The finiteness of the Hausdorff dimension of A, one can prove by the same way
as in [2, 5]. We note that Lemmas 3.1 and 3.4 imply that
> g (a5@) )

7,7=1

2
Ao C { € H2(e, ) : ulli g + 7. (u) +

< Rg} (3.17)
2,0
provided

sup ||A¥]|2,0 < C.
£€(0,20)

Here R3 is independent of . Besides it follows from (3.4) that

sup [uf ()20 < C (3.18)

<00

for any trajectory u°(¢) belonging to the attractor A., where C' is independent
of e.

Lemma 3.5. Let L + by > 0, where L = inf g f'(u) then
IVQ.u*(t)||20 < C, —oo <t < oo, (3.19)

for any trajectory u®(t) lying in A. and € small enough. Here C is a constant
independent of €, t.

Proof of Lemma 3.5 Using the method developed in [6] and
modifying slightly the proof of Lemma 4.1 from paper [1], we get

IVQeu®(t)l|2.0 < Crlllw|3 o+ (u)]+Coe ™ [|uf|[3 o+ e (ug) +[|VQeu® (1)]|2.0]

t
+Co(6) [ e Ol g + Je(0) + IV QR Dl + (1K),
0

where for € and ¢ small enough

we = (L(14 p(e)) — 2nA5 — &) > 0.
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Here above p(e) = o(1) as ¢ — 0 and
a
lim A\ = ——.
al—r>% 2 2rd

Therefore for any trajectory u®(t) € A. from (3.17), we obtain
IVQew (t)ll2.0 < Ca + Cse™< U= (1 4 [|VQot (5) |12.0) (3.20)

for all ¢+ > s. Since, due to the definition of the polylinear spline Q. and (3.17),
we have

IVQ-u®(s)l2,0 < Cile)[lu*(s)[lan < Cale),  —o0 <5 < oo,

then letting s — —oo in (3.20), we obtain the statement of the lemma.
Lemma 3.5 and properties (2.9), (3.17), (3.18) give that for any trajectory
{u®(t) : t € R} lying in the attractor A. we have the following uniform estimate:

lus(@®)13.0 + Je(u () + [[ui B)]5 0 + Qv (®)]3 0

HIVQeu (t)|I2,0 + 1Qeui ()20 < C. (3.21)

for —oo < t < 0o, where (' is a constant independent of .

4. Weak global attractor of the homogenized system

In this section we prove Theorems 2.4 and 2.5. We act here along the line of
the arguments given in [6].
We rewrite system (1.3) as the following first order evolution equation in the

space Fo = L*(Q) x L*(Q):

d
U+ AU=BU), t>0, U

= 4.1
dt UOa ( )

t=0

n 82
v (M), az| X tignan th O gy (B S
v Hy=1 0 b bou — f(v) + ho
2

It is easy to see that A is a positive self-adjoint operator in Fy such that
(AU, U)5, > C(r,n)|[Vul3 o+ 7Ul%, U e D(AY?), (4.2)
where v = min(by, b2), and

I1BU)]l7 < My(1+[[Ull5), [|B(U1) = B(Us)|l7 < Ma|[Ur = Usllz,,  (4:3)
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If we consider the equation (4.1) in the integral form
t
U =M+ [ A B (), (4.4)
0

then, using fixed point method in the space C'(0,7; ), we can easily prove (see,
e.g., [13]) the existence and uniqueness of solutions for 7" < Ty, where T is small
enough. It is clear that the function U(t) gives a generalized solution of the
system (1.3) on the interval [0, 7], T" < Ty. If we multiply (4.1) in the space Fy
by U = (bgu, byv) then using the properties of the function f(u) we easily get the
differential inequality

d

ET(t) + B1Y(t) < 2By (by + b2)|Q| 4+ By (ba| k1|3 0 + b1]|R2ll3.q),

where
Y (t) = bllull3.q + b1l|v]3 q-

Now from this inequality we obtain

U7 < CillUsllme™" + Ca(1 — e, (4.5)

where w, C7 and Cy are positive constants. This estimate allow us to continue
the solution U(t) on the whole R, . The proofs of the properties (2.10) and (2.11)
are also of standard character. This proves Theorem 3.2.

Let S¢ be the evolutionary semigroup defined by the formula S;Uy = U(#),
where Uy = (ug, vo) and U(t) is the solution of the problem (4.1). Since

|APe= || < Ct=Pe™, t>0,0<8 <1,

and D(AY?) = F; = W} (Q) x L%(), we have from (4.4) and (4.5) the following
dissipativity property of S; : there exists a constant R > 0 such that for any
bounded set B in Fy we have

I|S:Us|l7, < R forall Uy€e B and t>ty(B). (4.6)
Now we rely on the following assertion (see [3]) that follows from general

considerations of [2].

Theorem 4.1. Let a dynamical system (H,S;) be dissipative and the evolu-
tionary operator S; be weakly closed, i.e., for any t > 0 the conditions: u, — u
and Siu, — v weakly in H as n — oo imply that v = Siu. Then this system
possesses a weak global attractor.

In order to prove this theorem in our case we need in the following lemmas.
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Lemma 4.1. Assume that (2.12) is satisfied. Then Sy is a dissipative semi-
group in the space Fy = W1(Q) x W1(Q), i.e., there exists a constant R* > 0
such that for any bounded set B in Fy we have

[|S:Us]|7, < R* forall Uy€e B and t>ty(B). (4.7)

Proof of Lemma 4.1. Because of (4.6) it is sufficient to prove
the dissipativity in v-direction only. Using (1.3) we have that the function
wg(z,t) = 05, v(z,t) satisfies the equation

d
%wk(t) + (b2 + f'(v(t))wg = bodp,u+ Oz, ho.
Therefore from (2.12) we have

~—llor®3. + 8wk )30 < CLUSH? + (1h2)15'2)%],

where 6 > 0 and || ”85)2 is a norm in the space W3 (Q). Consequently, using (4.6),
we obtain

10,0120 < (lo(s)]I1S0) 2P0 4 Cr, > s> to(B).

This estimate and (4.6) imply (4.7), and Lemma 4.1 is proved.
The weak closeness of the semigroup S; follows from the following

Lemma 4.2. The semigroup S; is weakly closed in the space Fs.

Proof of Lemma 4.2. Let Uyy — Uy and S, Upy — W weakly in the
space Fy as N — 4o0o0. We denote the solution of (4.1) with the initial datum
Uon by Un(t). Let [0,T] be an interval that contains ¢;. It follows from (4.5)
and (4.7) that

I[TO%IIUN(t)IIB <C.

It is also easy to see that

T
0
S5 Un Ol de < C.

0

These estimates and the Dubinsky theorem [16] imply that for some subsequence
{m} C {N} we have that U,,(t) — U(t) in the space C'(0,7; Fy) and the func-
tion U(t) satisfies equation (4.1) with the initial datum Uy, i.e., U(t) = S:Up.
Moreover, Sy, U,, — U(t1) = S, Up. So we have Sy, Uy = W and Lemma 4.2 is
proved.
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Now the existence of the weak global attractor A follows from Theorem 4.1.
This attractor is a bounded weakly closed set in Fs.

As in [6] (see Remark 6.1) we can also prove that A coincides with unstable
manifold M (N) of the set A of stationary points of system (1.3).

It is also easy to see that initial data from F, is C'! with respect to the semi-
group St. Therefore in order to prove the finiteness of the Hausdorff dimension
of A we can use the approach presented in [5] (see also [3]).

First we consider some general facts concerning this approach and then for-
mulate the theorem that allow us to complete the proof of Theorem 2.5. Let us
suppose that a dynamical system (H, S¢) is generated by a differential equation

O
a_l; = F(u), u(0)=u€ H. (4.9)
Then considering the first variation equation corresponding to (4.9):

%—lt] = F'(Siuo)U, U(0)=¢ (4.10)

as in a finite-dimensional case it is possible to prove the Liouville formula that
describes the evolution of N-dimensional volumes (see, e.g., [3, 5]):

Vol(Ui(t), ...,Un(t)) = Vol (&1, ..., EN) - exp {/ Tr(F'(Stug) -QN(T))d.T} .

Here above Ug(t) is a solution of (4.10) with an initial condition &, Qn(t) =
Qn(t,u,&) is an orthoprojector in the space H on a subspace generated by the
elements Uy (t), ..., Un(t),

Vol(hy, ..., hy) = | det{(hs, h;)}V._,|.

7,7=1

Let us introduce the contraction coefficient of N—dimensional volumes at the
point ug € H by setting

wn (t, ug) = sup{Vol(U1(t),...,Un(t)) : & € H,||&]| < 1,7=1,2,...,N}.

Then for the contraction coefficient on the attractor the following estimate is
valid:

W (t) = sup{wn (t, uo) : uo € A} < exp{tgn (1)}, (4.11)

where

¢
qn(t) = sup sup {%/Tr(F’(Stuo) -Qn(r))dr & € H, & < 1} .
0

ug €A
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Let us consider now the values
o 1/t
Iy = lim [wn(?)]
and introduce the uniform Lyapunov exponents by the formulae
p1=Inlly, p;=1Inll; —Inll;_4,j7 > 2.

Asin [6] in the proof of the finiteness of the Hausdorff dimension of the attractor A
for the dynamical system corresponding to homogenized problem (1.3) we rely
on the following assertion [5] (see also [3]).

Theorem 4.2. Suppose that the uniform Lyapunov exponents possess the
property py + ... + pn41 < 0 for some N > 1. Let uy = max(u,0). Then
Un+1 < 0 and the estimate is valid

dimg A < N+ |ungr |7y + oo+ pn) e < N+ 1. (4.12)

Let us consider now the first variation equation corresponded to (4.1):

d !
ZW = (A= BU1))W

for trajectory U(t) lying in the attractor A. As in [5] it is necessary to estimate
the quantity

on(t) = —tr{(A = B'(U(1)))@n}

for any N dimensional orthoprojector ¢y in the space Fy such that QnFy C Fi.
We can do it in the way similar to one presented in [6]. It is clear that for
W = (w1, wg) € F; we have

([A = B (U@)IW, W)z > C|[Vor|* + asllw||* + 8[| Ve,

where
(b1 + b2)2

as=b——

+ inf f'(u)
and

fs = by +inf ' (u) = 4.

Here § is any positive number such that 85 > 0. Let {W* = (wf, w5)}, be
orthonormal basis in @ xFg. Using the equality

N N
Do llwsl? = N = [y,
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we have

N N
on(t) < =BsN = C Y [[Vwri[® = (a5 = 55) Y [|wh]*.
k=1 k=1

Now we use the following version of the Sobolev—Lieb—Thirring inequality
b Y IVt + =t [ p(e)de > [ pla) ¥nde,
i [d($2)]
Q Q
which follows from [14, Theorem 2.1]. Here above
N
k=1

k1 and ky are constants dependent on n and the shape of Q, d(Q) is a diameter
of 2. We obtain

—on(t) 2 sV + [ { o)+~ dpte) L,
Q

where

(b1 + 52)2

A==l + b+

Since

14n/2
st )

for any z > 0, we have

Q2 /1 Mk 1+n/2
—on(t) > BsN — | |_<C ln))

ki n (n+2

Let Ng be an integer such that

2019| / Men >1+”/2
No—1< No.
0= 'S UhBs <C(n—|—2) < o

Then for N > Ny :
¢

— 1
1+ oo+ puy < lim —/UN(T)dT <0
t—oo {
0

and according to Theorem 4.2 dimg.A < Ng. Thus Theorem 3.3 is proved.
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5. Upper semicontinuity of the family {A4.}

Now we prove Theorem 2.6 on upper semicontinuity of the family {A. : £ > 0}
of attractors for the problem (1.1), as e — 0.

Let P. be a linear continuation operator from . to Q (see, for example, [15])
having the properties:

i) P.: W(Qe) = Wi(Q) for [ = 0,1 such that
{
1Py < Cllull$d,, 1=0,1,

where C' is a constant independent of . It follows from (3.18) that for any
trajectory {u®(tf) —oo < t < 0o}, belonging to attractor A., we have the uniform

estimates )

ou

'PEW VP ) + [P ()30 < O, (5.1)
2,2
and
ous ||? . ) . ,
Q7| TV Dlza+1Q:u*(1)50 < Co, (5.2)

for all ¢ € (—o0,00) and ¢ small enough.
Let B
A = {(ﬂ57 ﬁe) = (Psue7 que)y u® € -Ae} )
and let us suppose that Theorem 2.6 is not valid. This means that there exists
a subsequence {ug,e =¢, — 0} such that uf € A and

distz, {(Poug, Q-uy), A} > 6 >0, e=¢,. (5.3)

Let v:(t) = {u®(t), —00 < t < oo} be the full trajectory of the system (5§, L%(Q2))
such that *(0) = uf. Let us consider now an arbitrary interval [a, b], then u*(t)
is a solution of problem (1.1) on this interval such that

t=a

It follows from (3.21) that there exists a subsequence ¢ = ¢, such that (5.3)
remains true and u°(a) satisfies the first condition of Theorem 2.3. For this sub-
sequence we also have that u®(a) — u(a) in L?(2.) and v®(a) — v(a) in L%(B.).
Applying now Theorem 2.3, we obtain that for any interval [a,b] (P.u®, Q-u®)
converges weakly in C'(a, b; Fy) to a solution (u(t),v(t)) of (1.3), and according
to the Dubinsky theorem [16], we get

ma (1) = () 2.2+ max 0. (1) = v(2) |22 = O (5.4)
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as € = g, — 0. For this solution (u,v), according to (5.1), (5.2), we have
2

|5
at |l

ovl? 9 9
¢l T IVelza+vlize < €2

27

T IVull3.0+ [[ull3o < C1,

)

and

for all —oo < t < oco. Consequently U(t) = (u(t),v(t)) belongs to weak global
attractor A. We also have from (5.4) that

Pouf(0) = ug, Q-u(0) = v

as € = g, — 0, where (ug,vg) € A. This fact contradicts to (5.3), so Theorem
2.6 is proved.
Theorem 2.6 gives the following

Corollary 5.1. Let

sup [|h¥]]z 0 < o0,
e>0

and let u®(zx) be the stationary solution to (1.1). Then u® € H?(,Q) and verifies
the estimate

2
& & & 1 - a 1> 8U/E
w30 + Jo(u) + Qe 3.0 + [VQeu |30+ | Do 5~ | afj(2) 5~ <C
A~ Oz 0z
=1 2,0
(5.5)
with a constant C independent of €. Moreover,
li inf (|| Pou® — ull3 -u® — v|3 =0. 5.6
Jim, sup {(u}g)ez (117w = w3 g + Qv vllm)} (5.6)

Here Z. (respectively 7 ) is the set of stationary solutions to (1.1) (respectively to
(1.3)).

Proof of Corollary 5.1. Since any stationary point u* belongs to
the attractor A. we have estimate (5.5) from (3.17) and (3.21). Let U = (u,v)
be a certain limit point of the family {(FP.u®;@Q.u®)} as ¢ — 0. From (5.5) and
from the compactness of the imbedding of W] (2) into L?(€2) it follows that

[Pou® = ull3 g + Qe — vl[5o — 0 (5.7)

along the subsequence ¢ = ¢,, — 0. It is also clear (cf.(5.4)) that there exists
a bounded in Fy full trajectory U(t) = (u(t), v(t)) such that U(0) = U = (u,v).
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This trajectory belongs to A. Since u®,¢ = ¢, is a stationary point for (1.1),
using (5.7), it is easy to see that U(t) is independent of t. So U = (u,v) is
a stationary point of the system (1.3) and therefore (5.7) and the contradiction
argument imply (5.6).
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IlonyHenpepbIBHOCTL CBEPXY aTTPAKTOPOB HEJIUHEHHBIX
napaGoiuyecKUX ypPpaBHEHHI ¢ aCUMIOTOTHYECKH
BhIpPOKaaOMUMICA Ko3dpuuueHtaMu

N.1. Yyemos, JI.C. [TankpatoB

PaCCManHBaeTCH Ha4daJbHO—KpaeBaf 3ajgada [OJs HeJUHEeHHOoro HapaGO—
JAUYECKOro ypaBHEHHUA BUaA

ou® - 7] B Ou® €Y _ L€
- Z oz; (aij(l)a—%) + f(w')=h*(z), z€Qt€(0,T),

i,7=1

RO QUIUEHTEI ajj(;r) KOTOpOTO 3aBUCAT OT MAaJ0Oro mapamMeTpa &, Tak 4TO
ajj(:v) umeror nopazok 377 (0 < 4 < 1) Ha MHOKecTBe clepUUYecKUX Kouell
G2 ronmuuel d. = de?T7. Koabua nepuoanuecku (¢ nepuonom €) pacmpeje-
aenrl B obmactu Q. Ha muomectBe Q\ |J, G 9TH KO3DPUIHEHTHI pPaBHEI
nocTosiHHOl BeamuuHe. HMsydaeTcA acuMmnTOTHUYecKOe MOBejleHUE TI06aTb-
Horo atTpakTopa A, atoil 3anauu npu ¢ — 0. IlokaszaHo, 4To rioGaibHble
aTTpakTophbl A, CXOJITCA B COOTBETCTBYIOINIEM CMbICE K CllaBoMy riobaib-
HOMY aTTpakTopy A ycpelHeHHOH MOJeaH, KOTopasi npefcraBiserT coGoi
CUCTeMY, COCTOAINYIO U3 MapaboduIecKOro ypaBHeHN S B YaCTHLIX TPOU3BO/]I-
HBIX U CBABAHHOTIO C HUM OOLIKHOBEHHOrO AuddepeHnalbHOTO ypaBHEHUA.
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HamniBHenepepBHicTh 3BEepXYy aTTpPaKTOPIB HeEMHIHHUX
napa6Go/iiyHuX PiBHAHBb 3 KoedillileHTaMH, [0 aCUMITOTUYHO
BUPO/IKYIOThCA

I.10. Yyewos, JI.C. ITankpaToB

Posraspaerhes nmoyaTkoBo—KpaiioBa 3ajjaua Al HeJiHIHHOTO mapaBonaiy-
HOT'O PIBHAHHS

€ n €
aait - Z a% <a§j(;p)g—zj) + f(uf) = h*(x), ze€Q,te(0,T),
1,j=1
KO2(illieHTH aj; () AKOrO 3a1eKaTh Bijl MAIOr0 NapaMeTpy &, TaK 1o ag; ()
MaoTh nopsanok 217 (0 < 4 < 1) Ha MHO®HHI chepuunnx Komenn G2
ToBmuHN d. = de?tY. Riawbus nepioguuHo (3 mepiosioM €) posmofiiieHo B
o6aacti Q. Ha muosuni Q \ Ua G¢ i KoedillieHTH NOPIBHIOIOTH CTamiii Be-
anduHi. BUBYagThCA acUMNTOTHYHA NOBe/liHKA r106albHOro arTpakTopa A,
1iel 3asiaui, kKoau € — 0. Iokasano, mio raobaibhi arTpaktopu A, 36iraioThb-
csl Y BUINOBIIHOMY CeHCl /10 ciiaBKoro rioGaibHoro arrpaktopa A ycepente-
HOT MO/jIedll, SIKa € CUCTEMOIO, 0 CKIANAeThesl 3 NapaBoaidHOrO PiBHAHHSA Y
YACTUHHUX NOXI[HUX Ta 3BUYAHHOrO JiuepeHIiaibHOr0 PiBHAHHS.
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