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2-dimensional compact oriented Riemannian manifolds M. consisting of
one or several copies of some base surface I with a large number of thin tubes,
endowed with a metric depending on a small parameter £ are considered.
The asymptotic behaviour of harmonic 1-forms on M. is studied when the
number of tubes increases and their thickness vanishes, as ¢ — 0. We obtain
the homogenized equations on the base surface I' describing the leading term
of the asymptotics.

§1. Description of the problem

Let I' be a 2-dimensional compact manifold without an edge endowed with
Riemannian metric tensor {g,g(z); o, =1,2}. Let, for any small ¢ > 0, a
family of closed pairwise disjoint circles (holes) F.; C I' (i = 1,...,2N(¢g)) is
given. We suppose that the total number 2N (g) of holes tends to infinity and
their diameters (relative to the metric on I') tend to zero, as ¢ — 0.

Denote I', the domain on T’

2N(e)
r.=r\ |J Fu
i=1
and consider the disjoint union of m, m > 1, copies of I'.: {T*, k =1,...,m}.

Everywhere below the upper index (-es) will mean the relevance to corresponding
sheet (s).
We suppose that the set of all holes {F¥; i=1,...,2N (), k=1,...,m} is

partitioned into subsets of two elements (I, Féf]) — linked pairs of holes, and
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for each linked pair (F, F!. ;) we are given a 2-dimensional compact manifold Tfllj

diffeomorfic to the tube S; x [0,1] (S is the unit circle). It’s boundary 9T

€1}
consists of two components

kl k {
I I

€ig

Suppose as well that for each i, k& we are given a diffeomorphism:

h% : SIF & OF%

€2

i=1,....2N(e), k=1,...,m.

We construct a new manifold

(@)U

by attaching the tubes Tskll] (5,7 =1,...,2N(e), k,l=1,...,m) to I'* and T'L
gluing their boundaries to those of the holes FX, Fal] acc01d1ng to diffeomorphisms

RE.. (Here and everywhere below ”1.p.” denotes linked pairs ([i, k], [j,]) of holes.)

We equip M. with a differentiable structure and denote by {gaﬁ( z);o,0=1,2}
the Riemannian metric tenzor on M,.. Assume that the metric on M, coinsides
with the metric of the base surface I' outside of some sufficiently small neigh-
bourhoods of the tubes Tskll] In addition, M., is supposed to be orientable. Thus
we obtain the surface of N(¢)(m — 1)+ 1 genus, i.e., being topologically a sphere
with N(g)(m — 1) + 1 handles attached.

We will study differential 1-forms v(z) = v, (2)dz® on M, which can be iden-
tified with vector fields v(z) = {v¥(z), @ = 1,2} via the metric: v* = g2Pvg(z).
Here and everywhere below {g2%(z); o, 3 = 1,2} is the inverse metric tensor,
and, as usual, by repeated superscripts and subscripts summation is made.

Let us remind some definitions and facts from the theory of differentiable
manifolds. We have the exterior differentiation operator d, which maps r-forms
into (r+1)-forms (r =0, 1) according to the formulae

¢

Jwy  Ow
22, _ 2 1 1 2
where ¢(z) is a function and w(z) = w,(z)dz® is a 1-form on M.; A denotes the
exterior product of forms.

do =

The star conjugation operator * assigns to any 1-form w the 1-form
_ 1 2
*w = —wqdr + widz”.

The dual operator § (generalized divergence) maps 1-forms into functions. It

is defined by
(do,w) = (¢,0w),
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where (-, -) denotes scalar product of forms: (v, u) = [vA*u. (It’s easy to see that
right-hand side of the last equality can be rewrited as follows: (¢, dw) = [ ¢pdwd?z,
where d?z = \/]g-|dz! A dz? is the volume element on M., |g.| = det g..) In local
coordinates the operators § and * are defined by the following formulae:

1 0 s

ol 99D

sw = (c21/]9.lg7")d2",

ow = —

12
where €03

At last, we have the Beltrami—Laplace operator defined by

is the skew-symmetric tensor such that 633 =1.

A=ds+dd

and having the following form in local coordinates:

1 0 g 0
A= > 50 (\/|ge| gcﬁW)‘

9| a,f=1

A 1-form w is called closed (irrotational), if dw = 0, coclosed (solenoidal), if
dw = 0, and harmonic, if it is both closed and coclosed. A 1-form w is called
exact, if there exists a function ¢ such that w = d¢.

We will consider 1-dimensional smooth paths (curves) on M., which are para-
metrized by continuously differentiable functions z%(t), ¢t € [a, b], « = 1, 2. Closed
curves (for which 2%(a) = 2%(b), @ = 1,2) are called 1-dimensional cycles. Two
cycles 7y, Z5 are called homologous each to other if there exists a domain G C M,
for which 7 — 75 is the oriented boundary: 7y — Z3 = 0G. In particular, a cycle
7 is homologous to zero, if Z = 0G.

If w is a closed 1-form and Z is a cycle, then he integral

(w,Z):/w

A

is called the period of w along Z.

Due to Hodge’s theorem [1], there exists a unique harmonic form having
arbitrary preassigned periods with respect to the cycles, no linear combination
of which is homologous to zero.

Our manifold M, has the following classes of not homologous to zero cycles:
homology classes of A-cycles which go across the tubes and homology classes of
B-cycles going along the tubes. The integrals along A-, B-cycles are called A-, B-
periods respectively. (More exact description of A-, B-cycles needed for definition
of corresponding A-, B-periods will be given in detail in the next paragraph.)
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The main goal of this paper is to study the asymptotic behaviour of harmonic
1-forms u.(z) with prescribed A-, B-periods on M., as ¢ — 0.

Notice that this paper is related to the theory of homogenization of boundary-
value problems in strongly perforated domains. Such problems originate from the
need to construct averaged models of physical processes in strongly inhomoge-
neous media [2, 3]. This branch of mathematical physics has been intensively de-
veloping, therefore numerous new tools, approaches, unusual settings of problems
arised recently [4—6]. In particular, such objects as Riemannian manifolds and
differential forms were applied to investigations by many authors (see, e.g., [7, 8]).

The problem considered here, as many other homogenization problems, can
be reduced to a study of Laplace-Beltrami operator on Riemannian manifolds
M. endowed with a metric depending on a small parameter €. In [9] the Cauchy
problem for the diffusion equation was considered on special Riemannian mani-
folds with complicated microstructure. Different kinds of homogenized models
were obtained in dependence on the topological structure of M, and its metric.
The asymptotic behaviour of harmonic vector fields on n-dimensional (n > 3)
Riemannian manifolds was studied in [10].

Homogenization of harmonic 1-forms on Riemannian surfaces of more simple
structure was studied in [11].

§2. Statement of main result

At first let us introduce some notations and state necessary assumptions.
Denote by z.; € F.; the center of the hole F;, by a.; its radius and by r.; the
distance from z.; to the union of the centers of the others holes:

Fsi = {$ cl: diSt($, $5i) S aai}7
re; = min dist(z.;, ;).
J#i

The distance is measured relatively to the metric g(z) on I'.
We suppose that when € — 0,

Ue; —> 0, Tei — 0, (2)

so that

h~ag) < O3, (id)
where C' > 0 doesn’t depend on ¢ and 1, i.e., the holes’ sizes become exponentialy
small in comparison with the distances from them to neighbouring ones.

Let us make an assumption about the distribution (relative positions) of holes
on I'. Let R.; be the annulus in R?, centered at the point z.; with inner radius
a.; and outer radius r.;/2:

T'ef

Ri={z€l:a;< dist(:c,:cai) < DRE
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Clearly that I' can be covered by a system of convex non-intersecting poly-
hedrons {Il.;, i =1,...,2N(g)} such that, for any ¢, R.; C Il;; C I'; I' C U; 1.
We assume that

d.; = diam(1l;;) < Crg, (727)

where C' > 0 doesn’t depend on ¢, i.e., covering polyhedrons are not very prolate.

Now let us introduce the quantities VE% characterizing the metric on tubes

Tskzl] For each linked pair of holes (F%, F!. ;) consider the following domain fo]
M.:
kl kl k l
Dszg TEZJUREZUREJ

Its boundary consists of two components

et

oDE; = Sk JSL;,

where .
S =Hz el 1 dist(z,2s) = % )

In the domain foj consider the boundary value problem

Av(z) = x € fo],
)20 aesh @.1)
) [
v(z) =1, T €95,
There exists a unique solution vfilj = vff]’(m) of this problem.
We set

kl kl kl

Vi = / dvgj; A *dvg; (2.2)

ee]

for linked pairs of holes (F%, F!. ;) and VE% = 0 otherwise.
kl

A solution vz, (=

(z) of the problem (2.1) minimizes the functional (2.2) over the
class of functions satisfying the boundary conditions on S% and Séj. Therefore
using variational methods, it is easy to obtain the inequality
kl -1
Vi < ClIn™" g, (2.3)
where @.;; = min{a.;, a.;}, C' > 0 doesn’t depend .

The quantities (2.2) are positive and because of vé’;Z =1k

<ij» possess the

symmetry VE% = Val]kZ They characterize the metric on tubes Tff] We assume
that this metric satisfies an additional condition which provides the inequality

VE > CIn=t agy), (iv)

£t
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where @.;; = max{a.;,a.;}, C' > 0 doesn’t depend on e. Here ([¢,k],[ 7,1 ]) are
linked pairs, that is why the inequality (iv) in view of (2.3) means that radiuses
of linked circles are of the same order, as ¢ — 0.

At last, we should focus our attention on the precise definition of basic A-,
B-cycles associated with A-, B-periods of a harmonic 1-form u.. We define A-
cycle corresponding to the tube Tf/] so that it envelopes the hole FfZ once and
oriented in such a way that FskZ remains on the left.

Now we are interested in the description of B-cycles. They consist of com-
ponents belonging to some tubes Tf/] and situated on some copies of ['.. We
reduce the study of B-cycles to the investigation of special unclosed paths Lg]

associated with the tubes. Let us turn to the precise definition of such paths.

Let us fix a point zg € I'; and define oriented curves Lﬁfj joining the points

zf and z) and going along the tube Tskilj:
vh = OFL — TH, — 1L — 2,

At first, we suppose that for any point z € I' there exists a smooth curve
L(zg,z) joining it with base point zg and oriented i 1n the d11ect10n from zg to x.
Then we assume that on I'® L];l] goes along L(zf, 2% from 2% to OFE bypassing
the holes met on I'* so that they are situated on the left. (Such a way of bypassings
of holes will be ment everywhere below as well.)

The tube 77 can be parametrlzed as (z,¢) € 51 x[0.1]. We assume that after

the path L¥

the curve ¢ = 0. On the tube Lm] goes along ¢ = 0 in the dlrectlon from OFF

meeting the hole F, goes along its boundary dF up to crossing

527 52] 7

to ang. Then it goes along OF. E] Meeting the path L(z},z! i) LF. goes along

£t
it in the direction from 8F£]- to !, bypassing the holes met on I'..

It’s evident that any cycle on M. can be composed by summation of deter-
mined above A-cycles and curves Lff] That is why we consider them basic for
our manifold.

We denote Ag] the integral of harmonic 1-form u.(z) along A-cycle associated

with the tube Tkl and BEL the integral of u.(z) along LE.. We will call the

ety e1g "

numbers A BM A-periods and B- quampenods respectively. Everywhere below

e1gr ey
saying ” A-periods (B-periods) are given”, we will mean that we are given a set
of numbers A (BE). Clearly that

£ty et

AR _qlk. gkl _ _plk

£t egw et gt

Now we introduce the following generalized functions on I' X I':

Veri(z,y) ZVE%(S —zs) Sy —z25), Kk I=1,my (2.4)
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aakl('rv y) = ZAZI](;( %2)5(9 - 'rej)7 k7 l= 17 m; (25)
i,
beri(z,y) Zszlg‘ E%(S (z —2)0(y — z5), k,l=1,m, (2.6)

where é(z) is delta-function on I'.
We suppose that these functions converge in the distribution sense (in D'(I' X
) to Viu(z,y), ari(z,y), bei(z,y) respectively, as ¢ — 0:

—_

w_lii}})‘/akl(xyy):‘/kl(x7y)v k,l=1,m; (U)

Il

—
3
—
o,
~—

'w—igr%)askz(l“,y):akl(f’y)v ki J
w_li_r&)bakl(xvy):bkl(xvy)v kil =1,m. (47)

At last, we assume the following inequalities fulfilled:

S AR [ Inée| < Cy; (739)
STIBELP [Indeg| ™' < Cy (Jv)
{.p.

with independent on e positive constants Cy, Cs.

We denote Ly(M.) the Hilbert space of 1-forms on the manifold M. with
scalar product related to the metric g.(z), L2(I") the Hilbert space of 1-forms
on I' with scalar product related to the metric g(z) and L*(I') the subspace in
Ly (I') of 1-forms that equal zero on all circles F,; (1=1,...,2N(¢)).

Let us introduce the operators Q.x, ¥ = 1,...,m, mapping Lz(M.) into
LY*(T") by the formula

@i = {5 SEGE

The main result of the paper is follows:

Theorem 1. Let u. be a harmonic 1-form on Riemannian surface M, with
given A- and B-periods. Suppose that conditions (i)—(v), (j)-(jv) are fulfilled, as
e—0.

Then for any k, 1-form Q.ru. converges weakly in Ly(I') to 1-form ug(z)
which is represented by

up(z) = *dpr(z) + dipp(z), k=1,m, (2.7)
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where functions i (), Vi (z) satisfy on ' the following homogenized equations:

App(z i/am (z,y) d*y, k=T,m; (2.8)
=1}
Atpg(z —I-Z/szfﬁy [¢u(y) — :i/ (2, y) d*y; (2.9)
=17 =17
) = b 9) Vi) S [ [ apa0) + Vit ) 0) — 20
pg=11 1
x[whi! (v) — whif (W] d*pd®v,  k=T,m,

where d, *, A are exterior derivative, star operator and Laplace operator on I
relative to the metric g(z), Vi(z,y), ar(z,y), br(z,y) were defined above by
(2.4)-(2.6) respectively, wqu( ), k=1,...,m, is a solution of the problem

M)+ 3 [ Vil OO — W] dc =0, + e T\ 12

(W) (2) = (W)~ (2) = &5, 2 € LI

(*dwgg’“)+(z) — (*d.wqu)_(z) =0, z¢€ ngk,
Z/ wqu =0;

|wqu| <C onT.

Here contour
LEYF = 68 LP (20, 2) + 05 L (y, 7o)

consists of one or two components or may be absent on I';

5k :{1, k€ {p q};
P

0, otherwise;

(;lv%k)"'(z) ((wBI*)=(z)) is the limit value of wkiF(z) on the left (right) side of
the cut.
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§3. Representation of harmonic 1-forms on M,

First we note that a harmonic 1-form u. on M, with given A-, B-periods can
be represented in the form
Ue = Ve + We, (3.1)

kl .
cij and some B-periods,

and v. is a harmonic 1-form whose A-periods are all equal zero and B-periods
are given. We will denote Bfilj B-pseudoperiods of w,., and Bffj = Bfilj - Bfilj
B-pseudoperiods of v,..

Let us make cuts on M. along the middle contours Sfll] on each tube Tfllj
Thus our manifold is divided on m components MF. The boundary of the cut

manifold is the union
kl lk
U(Seij Sei)s

where w, is a harmonic 1-form with given A-periods A

i<
where Sff] and Sg;l (2 < j) denote different banks of the cut ng Besides, it will
be useful to denote wa ng the components of cut tube, i.e.,
kl k {
T =15 UTaj'
Let us consider a collection of harmonic functions ¥, = {Yer, k=1,...,m}

on MF
Atpey = 8dipe, =0, z € ME, (3.2)

which have ”jumps” on cuts SZ_“ZZ] equal to B-pseudoperiods Bfilj of v.:

Veklsp — velgie, = Blj; (3-3)
d¢€k|Sf}] — d¢€l|5é’;i =0. (3.4)

Setting
Ue = dibe, z € MEF, k=T,m, (3.5)

we obtain a harmonic 1-form with trivial A-periods and some B-periods. B-
pseudoperiods of @, are not equal to the numbers Bfilj. But B-periods of o,
and v, derived from the corresponding sets of B-pseudoperiods will be the same.
Hence 7. = v..

It is well known, that a collection of functions ¥,[,) = {¥ex, £ =1,...,m}
exists and minimizes the functional
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over the class H'(MF) of functions satisfying the conditions (3.3), (3.4) on MZ
(k=1,...,m).

Now let us consider a harmonic 1-form w, from (3.1). We will show that it is
represented on MF as follows

w, = *dpey, ©eME, k=T m, (3.7)

where @, is a harmonic function on Msk7

A@ak = 5d995k =0, z€ M§7 (38)
satisfying the following conditions on cuts ng:
) 5 — Rk .
perlse — walsn, = Beijs (3.9)
d.gosk|sk_z — d.gosllslk_ =0 (3.10)
2] gt
Kl 1k
€] gt

where ng are arbitrary constants, Algj = —Ag;i is A-period of w. associated
with the tube Tskll]
A collection of functions ¢.,,) = {@ek, £ =1,...,m} exists and minimizes

the functional

Jael@epm)] = / dpey, A xdeey — > AL B, (3.12)
k Msk i,k

over the class H'(MF) of functions satisfying the conditions (3.9)—(3.11) on MZ
(k=1,...,m).

Thus we obtain representations of harmonic 1-forms v., w. on M, that will
be used for investigation of the asymptotic behaviour of these forms, as ¢ — 0.
Notice that existence and uniqueness of these forms follow from above represen-
tations if solvabilities of minimization problems (3.6), (3.12) are proved.

Theorem 2. Let v. be a harmonic 1-form with given B-periods and trivial
A-periods. Assume that for B-pseudoperiods Bfilj of v. the conditions (i)-(v)
and (77), (jv) are fulfilled, as ¢ — 0.

Then

Qerve — v weakly in Lo(D),
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where vp (k=1,...,m) are ezact 1-forms on ' such that vy = di,
{¢Yr(z), k=1,...,m} is the collection of functions being the solution of the prob-
lem

A’L/Jk-FZ/sz(fU,y)[‘Lbk(x) — Yi(y)] dPy = Z/Bkz(%y) d’y, zel, k=Tm.

I=1p I=1p
(3.13)

Theorem 3. Let w. be a harmonic 1-form with given A-periods Algj and
represented by (3.7)-(3.11). Assume that the conditions (1)—(v) and (j), (jj7)
are fulfilled, as ¢ — 0.

Then

Qerwe — wy  weakly in La(l),
where wy (kK = 1,...,m) are I-forms on ' such that wi = xdyg,

{¢er(z), k=1,...,m} is the collection of functions being the solution of the prob-
lem

Apy, = Z/akl(ac,y) d*y, z€eTl, k=1,m. (3.14)

With a help of these theorems we obtain the asymptotic behaviour of 1-forms
starting from given B-periods of v. and given A-periods of w.. But we have
to study the contribution produced by B-periods of w. as well (see §6). Hence
we will obtain the complete asymptotic description (2.7)—(2.9) of harmonic
1-form wu,. .

§4. Proof of Theorem 2

Let B = {Bfilj} be the set of B-pseudoperiods of harmonic 1-form v. and let
Vefm] = 1®ek, k =1,...,m} be the collection of functions of the class H'(MF, B)
(defined by (3.2)—(3.4)) minimizing the functional (3.6).

Let us introduce a collection of functions 'ng[m] = {(x), k=1,...,m} of
the class H'(M?F, B) and set

9c(2) = D _(¥er(@) = ek (2))xer(@); (4.1)

k

v = dpdxer (), (4.2)
k

where Y. (z) is the characteristic function of MF. It follows from properties of
Ve[m]» Qﬁg[m] that ¢. is the function of H'(M.) minimizing the functional

J(60) = [ do.nsdo.+2Y [ dulinvdo. (4.3)
M.
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It’s easy to see that v, = v + d¢. on M.. We will choose below a collection
ng[m] so that, for any k, Q.xv? — 0 weakly in Lél)(F), as € — 0. Then to prove

Theorem 2 we will show that Q.rd¢p. — doy weakly in Lgl)(F), where ¢ (z) is a
function on I'" with square integrable derivatives that minimizes the functional

= |V | *d?*x
/e

+Z//Vkl z,y)[or(z) — o1(y)]*d*x d2y+22/bk1 z,y)op(z)dzdy. (4.4)
kL { kL
Here

8 2
|V¢k|2 — ¢k

3

Vir(z, y) and by (z, y) were defined by (v) and (j7) respectively, integrals are taken
with respect to Lebesgue measure on I'.

At first we describe the abstract scheme of the minimization problems (4.3),
(4.4).

Let H. be a Hilbert space depending on a parameter ¢ > 0, with scalar
product (-, ). and norm ||-||., F% is a continuous linear functional on H. uniformly
bounded with respect to €.

Let H be another Hilbert space with scalar product (-, ) and norm || ||, F' is
a continuous linear functional on H.

Let ¢. and ¢ be solutions of the following minimization problems:

Jnt fld 2+ R0, (4.5)

inf P+ F ] 4.6
it (161 + F(9) (4.6
respectively.

The questions are in what sense and under what conditions ¢. converges to ¢.

Theorem 4. Assume that we are given a dense subspace M C H and, for
each € > 0, linear operators Q. : H. — H, P. : M — H_ that satisfy conditions
(a)~(c):

|Qeuel] < Cluelle; (a)

for any u. € H,, any u € M and any v. € H. such that QQ.v. — v weakly in H,
as € — 0, we have:

Q-P.u —u weakly in H, ase — 0; (b1)
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i all? = 2,

ll_r%”PEUHE_ ||U|| ’ (b2)
T |(Peu, ve)e| < Cllul| [Jo]]; (b3)

iy Fe(ve) = F(v). (©

Then solution ¢. of the minimization problem (4.5) converges to solution ¢
of the minimization problem (4.6) in the following sense:

Q0 > ¢ weakly in H, & — 0.

We will apply this theorem, which was proved in [9]. In our situation H. =
H'(M.,) is the Hilbert space of local square integrable functions ¢.(z) on M.
having square integrable derivatives and for which

Z st¢5 =0.
k
Scalar product in H. is defined by

(e, 2)e = / dé. A % dip..
M,

The Hilbert space H = HI(F we define as the space of local integrable
vector-functions ¢(z) = {¢x(z), k =1,...,m} on I' that have square integrable
derivatives and for which

=[]
S —
Ao

We endow it with scalar product

(6,1) = t/d¢kA*dvk
T

+ 3 [ [ Valeplone) - awlivnis) - bily)] de dy.

kIt 1

Linear functionals F in H'(M.) and F in H'(I') are defined by the formulae

PW#ﬂZ/MMM%,@UﬂM% (4.7)
k Atk
QZ/bM (z,y)¢(x) dedy, ¢ e HY(T). (4.8)
ki i
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Then minimization problems (4.3), (4.4) can be reformulated as (4.5), (4.6)
respectively. To apply Theorem 4 we must define operators ()., P. and functions
Y% so that conditions (a), (b1 — b3), (c) of Theorem 4 are satisfied.

By virtue of (i) there exists an extension operator Q. : H'(M.) — H'(I')
such that

||Ql¢a||H1 < Cll@ellm (Me) (4'9)

for any ¢. € H'(M,) [10]. Here and below we denote H'(GG) the Sobolev space
of functions on domain G C R?, constant C' doesn’t depend on €.

Such a continuation, of course, is not unique. However, we may choose a
unique one that minimizes norms in spaces H(F:;). Keeping in mind this, we
define the operator Q. : H'(M.) — H'(T') in the following way:

[Q:0.|0) = @lo. - QL. 0. € ().

It obviously follows from (4.9) that . is a linear operator satisfying the condition
(a) of Theorem 4.

Now let us define the operator P. : M — H'(M.) and functions %2, (z)
representing the functional F; in (4.7). First let us introduce on M., the following
functions:

1, x € Tfl,
ehie) = e () o e R
1, x € Tf27
ghie) =1 e (), we R

where ¢(t) > 0 is a twice continuously differentiable function on real line such
that ¢(f) = 1 for ¢ < 1 and ¢(t) = 0 for ¢ > %, other notations correspond to
introduced in §§ 1, 2.

We choose the space CZ(T') of twice continuously differentiable functions with
compact support in I' as a dense subset M in ﬁl(F) and set

P26 (2) = o1 (1—2% )+Z¢k<wa>¢z<x>
2 v8 (9n(ee) = du(zei)) (=),
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Besides we define the functions 9(z) as follows:

ZZBW H)eh(x), zeMF k=1,...,m. (4.10)

Here v¥.(z) is a solution of the problem (2.1) and B = {B¥

e1j
B-quagziperiods of 1-form under consideration.

Since vf (z) = 1 — vk, (2), P.¢p € H'(M.) and @bg[m] € H'(MF,B). Hence

et eJt

-} is the set of

etg

one can show that conditions (@) and (b;) of Theorem 4 are fulfilled. It remains
to check only the condition (c).
Let ¢.(z) be a function of ﬁl(ME) such that Q.¢. converges weakly to ¢ in
H'(T'), when & — 0. Taking into account (4.7), (4.10) and properties of functions
kl

vkl (z) and @k (), by using Green’s formulae we obtain

qbs =2 EZ BEU / EZ]j¢£i) A *qbs (411)

o,k g, RE.
€

and according to (2.2)

R, oFk
ki kO kl ki kl
—/ Vg A *dug;; = /dvﬂ]/\*dvm] Vi (4.12)
e:z]

We can triangulate I’ by convex polyhedrons Il.; containing the sets R.; and
satisfying the condition (ii¢). For such polyhedrons the Poincare inequality

[ ¢ dady< |2t + i [ Vol dudy (4.13)

€t e

holds true for any ¢ € H'(Il.;) [10]. Here ¢; is the mean value of ¢ on Il
constant C' does not depend on «. L

Let x<;(z) be the characteristic function of the polyhedron Il.; and qbik be the
mean value of the function (Q:¢.)x in Il.;. We set

Xsk Z ¢aanz

and

= E E Bfll]‘ a‘%lHaA_IXEi (m)
Jil

7
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Then according to (4.11), (4.12) and properties of functions vf}, ok we get
Fo) =2 Y [ Ba()al@) d'a + o], (414
k
where
(ba - QEBEZ] /A 52]9952 Q£¢E)k - Xsk] d2$' (415)

Since (Q-¢.)r weakly converges to ¢y, as € — 0, it remains uniformly bound-
ed in H'(I'), therefore converges strongly in Lo(I'). Then from the Poincare
inequality and condition (i) we obtain that x.x(z) also converges to ¢y in Lo(T').

Then, taking into account (57), (jv) and (2.3), it is easy to obtain that

i Y [ Barle)er(a) de = Y [ bu(o,p)énte) dedy.  (4.16)
k k,l

With the help of the estimates

Cli et el etls = 07
Dok (a)] < fnac]™ linpei ]
! Cllnacsi|™ p;, laf =1,2;
pei = dist(z,z.); = € RE, (4.17)

for the solution vfjj of the problem (2.1), we get the following estimate for F.[¢.]
n (4.15):

1/2
2000 <Y ) L MQu6k = Ketllar
7 &1 k

Then in view of (4), (¢¢) and the convergence of (Q-¢:)r and i to ¢ in Lo(I)
lim E[¢.] = 0. (4.18)

It follows from (4.14), (4.16), (4.18) and (4.8) that condition (¢) of Theorem 4 is
fulfilled.

Applying Theorem 4, we conclude that @.¢. converges weakly to
¢ = (¢1...0m) in HY(T'), where ¢. and ¢ are solutions of the minimization
problems (4.3), (4.4) respectively. It means that 1-form d(Q).¢.)r converges to
1-form d¢y weakly in Ly(I'), as ¢ — 0. We have

Qak[d(ba] = d(Qs¢a)k - d(Qs¢s)k A Xe

with y. the characteristic function of the union of all circles F.;. In view of
conditions (7), (i7) we have

lim [ x. = 0.

e—0
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Therefore d(Q:¢:) A x- converges weakly to zero in Ly(I), so Q.x[d¢:] converges
to dey,. Finally, it follows from (4.2), (4.10) that Q.x[v?] converges weakly to zero
in Ly(I"), when € — 0, what can be shown in the same manner, using estimates
(4.17) and (jv).

Thus a harmonic 1-form v, = vg + d¢. converges to diby in the sense defined
above, and this proves Theorem 2.

§5. Proof of Theorem 3

Let @, = {@ex(z), k,...,m} € H'(M{) be a collection of functions mini-
mizing the functional (3.9). The function

Se(2) = Y _(@ek(2) — Pai(@))xer ()

k

and a collection of arbitrary constants B, = {Bau} (considered as independent
variables) minimize the functional

/ dé. A xdd. + = Zx;;; BE,)?

+2 E szl] / 521]3‘9].;) A *dﬁoi - Z Algzl]szlﬁ (51)
Rk Z7k

where
‘/;ljé—/d(viljgoi)/\*d 62]9952 +/ a]zg‘oa] /\*d( a]zg‘oa])
Rk,

kl

Taking into account (2.2), properties of functions v.j; (), ©F. () and condi-

tions (4), (i7), (fv), we obtain
VA = VEL (1 4 o(1)) (e = 0). (5.2)

£t £t

The third term in the right-hand side of (5.1) we transform with a help of the
Green’s formula and represent .J(¢., B:) in the form

’](¢€7 BE) = ‘]0(¢€7 BE) - ZA];I]BSJ (53)

with
/ dbe Axdd, + ~ Z VAL(BEL)?
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+22Bi‘czl] /A 52]3‘952 A*¢€‘ (54)

Using the estimates (4.17), the Poincare inequality (4.13), properties of func-
tions vffj(m), ©F.(x) and conditions (i), (i1), (iv), and (2.2), one can prove (see

[10]) that there exist positive constants Cy and gg such that for ¢ < gq
Toldes B) > Co | [ do Axdo. + 3 | Inaui| ™ (BE))?| (5.5)

Since J(¢., B.) < J(0,0) = 0, from (5.3), (5.5), and (jjj) we get

/dqba Asdpe + 3 |Inan| "1 (BH)? < CZ AR Inay < C', (5.6)

where C, C" are constants independent of e.

Hence the sequence of functions {Q.¢., € > 0} is weakly compact in ﬁl(F)
and we can select a weakly converging subsequence {Q., ¢.,, £, — 0,}:
Q.,P:, — ¢ weakly in HY(I'). So, by the compact embedding theorem this
subsequence in fact converges in Ly(I"). Without loss of generality we may also
consider condition (v) fulfilled, as e = ¢, — 0.

Since derivatives of the functional (5.3) in respect of the variables ng is equal
to zero at the point of minimum, we have

VB, = A% + / A(vh k) A 22 + / AWl ) Asoe (5

Using the cutoff function, in the same way as in proof of Theorem 2 we get

VAL BEL _ gkl {Akl +V£§( . )} + EM (5.8)

Y Y] et £t IR
where qf)lk is the mean value of the function (Q.¢.)r in the polyhedron Il.;,
0%, — 1 uniformly with respect to i, j, when € = ¢, — 0, and E*'. satisfies the

g1} £1]
estimate

1/2
1 1 n
|EE| < CW /l(Qe%)k— ol dre
1/2
1 . .
—I_CT '|1H(L | / |(Qa§0£)l_ il|2 d*z . (59)
e e

€3
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Taking into account (5.8), (5.9), (7)—(#%), (v), (§), and the convergence of
subsequences {Q., ¢, } and x., to ¢, we conclude that

I;Ekl($7 y) = Z‘/E];é szl](s( xaz)a(y - $5]‘)

Y]
converges, as € = ¢, — 0, weakly in D'(R?) to

brr(z,y) = arr(z,y) + Vir(z, y) (Pr(x) — d1(y)). (5.10)

It follows from (5.6) that the collection of constants {Bfilj} also satisfies the
condition (jv), so all conditions of Theorem 2 for 1-form w. with pseudoperiods
Bffj are fulfilled, when € = ¢, — 0. Applying Theorem 2 in view of (5.10), we see
that the limit ¢ corresponding to the subsequence ¢, is a solution of the problem
(3.14). Since this problem has a unique solution, Theorem 3 is proved.

§6. B-periods of harmonic 1-form w,

Here we will study B-periods of harmonic 1-form w. = xdg. defined by (3.7)—
(3.11). Taking into account their asymptotics, we will be able to obtain the
asymptotic description of harmonic 1-form u. and thereby to complete the proof
of Theorem 1.

Let us fix a tube T%L and make cut on it along the corresponding contour

(see §2) .

At first let us consider the function w?,(2) being a solution of the following

problem:

qu

est

Awgy, = 0, 2 € Mi, = M.\ L (6.1)
(Wl ™ — (wlf)™ =1, z € LZ; (6.2
(dwli)* — (dwil)™ =0, z € L, (6.3)
and such that
Zstwggt =0; (6.4)
k
|wZgl < C. (6.5)

Notice that a solution of this problem is unique. Really, let w1, w9 be solutions
of the problem (6.1)—(6.5), wy # wq. Their difference will be a harmonic continu-
ousely differentiable function everywhere in M. exept points zf € ['?, zf € T
(the ends of the contour LZ%). Then according to the theorem of removal of
isolate singularity, we obviously obtain w; = ws.

Let us construct the solution of the problem (6.1)—(6.5). At first let us consider
the complex surface C with Euclidean metric and make the cut along a curve
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joining the points @, b € C. In some neighbourhood U(a) the bounded harmonic
function u, = %arg(z—a) has jump equal 1 on the cut and continuous derivative.
In a similar manner we can construct a bounded harmonic function u; in some
neighbourhood U (b) with the needed properties.

Now consider our Riemannian surface I' with some fixed local chart on it.
Then we can find the functions ug(z), us(z) in some neighbourhoods U(zf),
U(z?,) of the (U(zh), U(a®,) C I'?\ LE,) corresponding explicitly constructed
above Uq, up. (Here LE, = L(JUO7 ,) is a curve joining the points 2§, 22, being the
component of L% 81tuated on I'?. ) Both of them are harmonic in corresponding
neighbourhoods with cuts, having jumps equal 1 and continuous derivatives on
the cut.

Let us choose the finite covering

k
Uui, U cre\Le,

=1

of L, containing chosen above neighbourhoods U(zy), U(zE,) (U; = U(zf),
Ui = U(z?,)) and such that the points zq, z., covered only by U(zg), U(z.s)
respectively.

Let v;(z), z € U;, i = 1,...,k, be the functions having jumps equal 1 on LE,,
moreover, v1(z), vg(z) equal uo( ), us(z) constructed above respectively. Let
vi(z) €eC*®, i =1,...,k, be a partition of unity, i.e.,

Yvi=1 @i(z)=0, 2\ U

Then the function
e z -

will be a solution of the following problem:
Awg.s:fp7 ZEFP\LES;

(wgs)-l— - (wgs)_ = 17 (dwgs)-l— - (dwgs)_ = 07 z€eLL

£s?

where fP is some function that equals zero in neighbourhoods of holes and such
that fp f? =0.
We can construct by analogy a function wg,(z) being a solution of the following
problem:
Awg, = f?, z e\ Li;

(wgt)+ - (wgt)_ =1, (dth) - (dwm)_ =0, z€ Lsta
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where L, = —L(z{, z%,) is a curve joining the points z.;, o being the component
of LY, situated on I'?; f? is some function that equals zero in neighbourhoods of

holes and such that [ f?=0.

Now let us construct the function w{ (2) being a solution of the problem
Awg =0, zeTH\ (L) (6.6)

(wo)* = (wg)™ =1, (dwg)* —(dwg)” =0, =ze (LY.  (6.7)

Here (LF%)T is the component of L2, belonging to the tube,

5 . Tei
R’; ={z €l :a,y < dist(z,z) < f .

After parametrization we can consider 774 \ (L?%)7 as a rectangle. It’s easy
to construct a function wd (2) being harmonic in our rectangle and satisfying the
following boundary conditions. We set it equals u,(2), u¢(2) on corresponding
opposite edges of a rectangle. On the another pair of opposite edges it is to be
equal to 0 and 1 respectively and is to have equal derivatives on both of them.
Thereby we obtain the function wl'(z) being the solution of the problem (6.6)—
(6.7).

At last we construct on M, the function wq.(z) in the following way:
woe (2) = wo(2) + (w] (2) — wo(2)) ¢4 (2)

+ D vl () ek (2) (wolze;) — wg(ze:),

{.p.
where wo(2) = {wk(2),k=1,...,m} is a vector-function of the following form:
wps(2), k= p;
wo(2) = § wy(2), k= q;
wh(2), otherwise,
where w§ is a harmonic function on I'*, k #£ p, ¢,
L 2 € T8y
o (2=l Pp .
Pra(2) = SO< Tes )’ Z € I
est ) <|z—x5t|) s e Rq .
® ret ’ azh R R
07 z € ME \ (Tfs%f U Rgs U Rgt)7

reiy,
)

RE={zeT: % < dist(z,xe) < 2
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ki
z € TEZ]7

1,
99];'(2): 99(|Z :lEt')v ZERI;U
0, z€ M.\ (TH.URE).

et

Here ¢(t) > 0 is a twice continuously differentiable function on R such that
@(t) =1fort < X and ¢(t) = 0 for t > I; L.p. denotes the set of all linked pairs

except ([s, pl, [¢, g])-
Thus we have the function wq.(z) being a solution of the following problem:

AwOe(Z) — f+f£7 Z € M \Last7

(woe(2)) " = (woe(2))” =1, (dwoe(2))" = (dwoe(2))” =0, z€ L. (6.8)

Here f equals zero on I'*, k # p, ¢, and on all tubes, and equals fP, f? on ', I'?
respectively; f. appears because of bypassings of the holes on I'..
Clearly, that
Qerwoe — wk, k=1,...,m, (6.9)

as € — 0, by the construction.
Let us take into consideration a smooth function wy. satisfying

Awy. = —f - f., z€ M.. (6.10)

Then
wege(2) = wos(2) + w1<(2)
will be the solution of the problem (6.1)—(6.5).
Lemma 1. The solution of the problem (6.1)-(6.5) converges in the sense

k k T
QEkwast - wp;] ( \qu )7 k = 17 m,

as € — 0, to the solution wpq (2) of the problem

A+ 3 [Vl O € - Wi =0, s r IS (o)
()P () = (whi™) ™ (2) = 88, 2 € LA (6.12)

(dwlf)* (2) = (dwlf*)~(2) =0, 2 € LI (6.13)

Z / pak (6.14)

Wl (2) < €, zeT, (6.15)
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where the contour
LE% = §ELP (20, 5) + 8EL(t, 20)

consists of one or two components or is absent on I';

rq

0, otherwise.

P roof. At first let us study the asymptotic behaviour of f.. As it was
mentioned above, f, appears because of bypassings of holes on I', so it equals
zero on tubes. Let us show that

f- = ¥, weakly in L), k=1,...,m, (6.16)

as € — 0, where
@) =Y [ Vile: Oubo) - wh(adc, =€,
=1

To obtain the sought convergence of f. we will show that

/ffdz < C, (6.17)

where C doesn’t depend on ¢, and

/gffdz - /9(2) (i/‘fkl(%@(wé(() - 'wS(Z))dC) dz, z€T, k=1,...,m,
=1

(6.18)
as ¢ — 0, for any g € C%(T).

Let us consider
[ #2dz = [1A(wo. - wo)f

= [ (0 - wole) e
RL.JRL,

+ 3 [ [whlass) - whlea) AW () )P

€t

{.p.
=L+ I

Because of boundness of functions w{, wo, and properties of % (2), the first
term of the right-hand side of the last equality is bounded:

|]1| < C(17
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where C'; doesn’t depend on €. Taking into account properties of functions vfilj (2),

©F.(2), we can estimate the second one as follows:

|I,] < CQZ ~

|lnam|27

with C not depending on . Hence the estimate (6.17) holds.
Now let us take a function g € C*(I') and consider

/gfkdz—Z/ mﬂfdz—l—Z/ g(z<) fdz

= Z/g(xﬂ) Z(wé($€])_w(l§(xﬂ))A( le]( )‘1‘952( ))dZ+I3+I4+I57 k = 17 -ee, M,
i i,
(6.19)

l= 3 [(9) = glea)) Solwh(zey) — whle) A ()0 ().

¢ 0,0

In view of properties of functions w{, wo, vE; (2), ¢%%,(2), ¢Fi(2), and the estimate

(4.17) we obtain:

1/2
[I5] < CS{ZT;} ; (6.20)

7

1/2
[14] < 04{27“32} ; (6.21)

7

1 1/2
75| < CS{Z m} ; (6.22)

where constants C3, Cy4, C'5 do not depend on €.
The first term of the right-hand side of (6.19) can be expressed in the following
way:

3 [ 90 o (ub(as) = whlaa) AWt (2)e(2)) dz

z 2,7,0

:Zg(.rm)z:(wg)(.ﬁaj xaz /A az] 9952 ))

[ ,7,0
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_Zg T Z wo(mej) wlg(mﬂ)) / *dvm]

7]71 8F5k;

= Zg (i) Z wo(rej) ‘wlg(:cei))vs%, k=1,...,m. (6.23)

1,5l

Hence from (6.19), (6.23), and the estimates (6.20)—(6.22) we obtain the conver-
gence (6.18), thereby (6.16) is proved.
Taking into account this result, in a similar manner as in [9] we obtain that

Qerwie — wt  in L), k=1,...,m, (6.24)

as € — 0, where wf(z) satisfies the equation

Awf+Y [ Vi, ) wh (€) — wh (2))dc = ey [ Vaz ) wh() — wh ).
=1 =1

Then in view of (6.19), (6.24), (6.25), w? (z) converges in the sense
Qupw’?, — wP*  in Ly(l), k=1,...,m,

to the solution of the problem (6.11)—(6.15), so Lemma 1 is proved.

Lemma 2. Let wly, be a solution the problem (6.1)-(6.5). Then the following

asymptotic formula holds true:

/ *dwest - ‘/e]:;(( ast) . (wsst) ) + Elep (626)
Kl
€13
where
|EF| < C ! + ! (6.27)
et rai| In Ue; |2 7“5]‘| In Qej |2 ‘

with constant C' not depending on €.

Proof. Let us write down Green’s formulae for functions w’?, and vm]
Pq kl Pq
/ *dwsst A Usu - dvazy A *dwast + / Awsstvam?
aDk! ¢
e1] €13 51]
kl re _ kl Prq
/ *dvam A Wegr — dvszy A *dwast + Avm] ast'
apkl
e1] 51] sz]
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Since vfilj, wr? are harmonic and by the definition of vfilj (see §2) we have
/ sdwl?, A vkl = / *dw?!
"est g1y est*
D¢, 5
Consequently,
*dwl?, = *dvffj A wri, (6.28)
Stk dDH!
Jt €1]
Set
(@)% 1 Pq
est Sk est?
Bl
Rk

where |RE.| is the volume of the ring RE. We can represent the right-hand side
of (6.28) in the following form:

e est —

/ sdvEl A wP?, = / xdvl A whl, + / xdvl Awhd,  (6.29)

eij eig eig

\(DE))

where r € ]%];Z(}A%i_]), v! is a solution of the problem (2.1) on

r ekl r r
(ng) :Tsij (Rleci) U(Ri-j) ;

(RE) = {2 €T :ay < dist(v,z) < r};
d(DE)" = (k) J(sL)s
(Sfi)r ={z el :dist(z,zs) =71}

Let us consider

/ sdv? A wb? = / sdvl A (@7%)" + / sdvl A (@P8)7

S(szl])r (sz)r (Si])r
b [ A - @)+ [l A 2 - @)Y, (630)
(S5) (Se,)

Using the Poincare inequality and (4.17), we obtain that
1/2

r — 7 c
[t At = @) < | [ 1vwl|
(st R
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where constant C doesn’t depend on €. It’s obvious that the analogous estimate
holds for f(sl yr #dvl A (wh?, — (wki)h).
The other two terms of the right-hand side of (6.30) we rewrite as follows:

[ oz @yt [ el A ) = (VA (@) - (622",

(S&)r (S,)"
where
(V= / dvl A xdul.
sz] T

By using variational methods we obtain the following estimates:

(V2" = VA + (EE))" i (D)) (6.31)
where

(EM T < ¢y ! + ! (6.32)
£1] rm.| ln am.|2 r5j| ln aaj|2 ’

where 7 doesn’t depend on €.
Moreover, it turns out that

1 1
Vi <c D\ (D 6.33
|( EZ]) | =2 <r5¢|lnam’|2 + T'EJ'“n(lEle) in =¥ \( 62]) 3 ( )
where (5 doesn’t depend on e.

Then from (6.28), using (6.29), (6.31)—(6.33), we come to the asyptotic for-
mulae (6.26), (6.27). Lemma 2 is proved.

Lemma 3. Let w. = xdyp. be the harmonic 1-form defined by (3.1), (3.6)-
(3.10). Then its B-pseudoperiods are expressed by the formula

B — / rdp, = ZBEU / rdw?, (6.34)

pgq kl
Lest Sei]

where ng were defined above in (3.9) as "jumps” of p. on SE..

etg "

Proof. Letus make cuts SQZJ,LSJ along contours accociated with A-

and B-cycles respectively on M.. Taking into account the orientation, we denote
(SEN+ (SELY=, (LEL)* (L*.)~ different banks of them. We obtain m domains

e1j e1j €1 eig
MF (k=1,...,m) with piecewise smooth boundaries. Functions ¢, from (3.7)-
(3.11) and the solution of the problem (6.1)—(6.5) w’?, are twice continuously
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differentiable on M} (k =1,...,m). Writing down Green’s formula for ¢. and
w?? on MF (k=1,...,m) and summing by k, we get

est

O_Z/ AS‘OE est Awest@i)

= | [ saentir [ osdeatih [ sdoati+ [ sapl

Lp. (SKLY+ (5K )= (LKL )+ (LkL )=

1% e1g 1) €1]

/ *dwsstg‘oi + / *dwastg‘oi + / *dwastg‘oi + / *dwastg‘gi
Lp. (SkL )+ (SkL)— (LKL )+ LKL )=

€1] 51] 1% e:z]

According to properties of functions ., w?%, we have:

est?

/ xdp.wl?, + / xdp.wll, = 0;
(SEL) (SE)-

€1 1%

[ sdulipot [ wdulle. =0

(L)t (L2
Z / *dgpi sst + / *dg‘oi ast - / *dg@
(L) (1) 2,
From this we obviousely obtain
Bfgt = / *dgﬁ EBEZ] / *dwsst
LPq Sk.l
€s %]

Thereby Lemma 3 is proved.
Remark The function w??, doesn’t belong to the class WJ (MF) (k =

est
1,...,m), because it’s derivatives grow in neighbourhoods of points zf (k =
1,...,m). That’s why applying of Green’s formula needs an additional justifica-
tion, that is omitted here.

It was proved above (see §5) that

BE = 05 [(VE) T AR 4+ (8l — )| + (VD TUEE, (6.35)
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with Eff] satisfying the estimate (5.9), 0521] — 1 uniformly with respect to i, j,
as € — 0. Thus we have the asymptotic representation (6.34), (6.26), (6.35) of
B-pseudoperiods of the harmonic 1-form w..

To apply Theorem 2 we should check the conditions (57), (jv) for the found
B-pseudoperiods B, of w, . It’s easy to see that, due to the conditions (iv),

(777), and the estimates (2.3), (5.9), (6.27), the condition (jv) holds true. To
check the condition (j5) let us consider the following generalized function on (I')?:

bepy = > VEIBI (2 — 224) 8(y — 220), (6.36)
s,t
B = 303 (AR 4+ VAL (G — gl ()™ = (whd) ).
k,d 4,7

Taking into consideration the conditions (7), (i7), (v), and (j), asymptotic for-
mulae (6.26), (6.35), the estimates (5.9) and (6.27), the convergence of (Q.¢:)k
to ¢ and the convergence of Q.rwl?, to (wh)g, as € — 0, we conclude that the
function (6.36) converges weakly in the sense of distributions to

b (,9) = Vi (219) 3 [ [ fasativ) + Vi, ) onla) = 1))

kl=11 1

X (Wi (n) — wil! (v)) d*pd?v.

ry

Hence, applying Theorem 2, we finish the proof of Theorem 1.
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AcumMnroruuyeckoe rnopeageHuue rapMOHUYEeCKHUX 1-(1)0pM
Ha PUMaHOBUX MHOF006p83I/IHX BOo3dpacTamlomero pojga

A.Il. [Tann-Bann

PaccmaTtpuBatoTca 1ByMepHble KOMIIAKTHBIE OPUEHTUPYeMbIe pUMAHOBEI
MHoroo6pasus M., cocTofilliue U3 OIHOTO UJAU HECKOJIbKUX DK3eMIIAPOB Ha-
30Boit moBepxHOCTHU [' ¢ 6OABIINM YHCAOM TOHKENX TPYOGOR U Haj/leleHHbIE MeT-
pHUKOI1, KOTopas 3aBUCUT OT Maloro mapametpa £ > (. M3yuaerca acumi-
TOTHYEeCKOe TMOBe/leHHe rapMoHuYeckux 1-dopm Ha M, mpu ¢ — 0, Koraa
yucao TpyOGOR pacTeT, a UX TOJAIMUHA yMeHbmmaeTcA. [loaydeHbl ycpenHeH-
Hble ypaBHeHUsI Ha 6a30Boil moBepxHOCTU ', omHChIBaOIUe TAaBHbINH YiaeH
aCUMNTOTUK.

AcuMnTOTHYHA MOBeAiHKa rapMoHIYHUX 1-dopm
Ha piMaHOBUX MHOTOCTaATHOCTAX 3POCTAlO4Y0ro poay

A.Il. [Tann-Bann

PosrasgaioTbes ABOBUMIpHI KOMIIAKTHI OPIEHTOBAH] piMaHOBI MHOTOCTAT-
HOCTi M., 10 CKJAaaloThcA 3 OHOrO ab0 KIIbKOX eK3eMIIApiB 6a30BOI Mo-
BepxHi [' 3 BeIMKUM YHCIAOM TOHKHUX TpPYOOK 1 Hajl/leHI MeTPUKOIO, fAKa 3a-
JdexsHA BiJl Majoro nmapamMerpa € > (. BuBuaeTbcd acHMNTOTHYHA TOBEIHKA
rapMoHiuHuX 1-dopMm Ha M, mpu € — 0, KoaAW 4yucao TpyOOK 3pocTae, a iX
TOBIIMHA 3MeHbINyeThcsl. Ofep:aHo ycepe/iHeHI piBHfIHHfA Ha GasoBiil no-
BepxHi [, 1[0 OMUCYIOTH TOMOBHUN YileH ACHMITOTUE.
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