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We study the probability measures on the unit circle and the multipli-
cation operators acting on appropriate L? spaces. When such a measure
does not satisfy the Szegs condition, orthonormal polynomials form an or-
thonormal basis in this Hilbert space. The multiplication operator can be
represented by an upper Hessenberg matrix. The main result concerns cer-
tain infinite-dimensional perturbations of the "constant" Hessenberg matrix
which have a finite number of eigenvalues off the essential spectrum.

1. Introduction

Let p be a probability measure on the unit circle T = {|¢| = 1} with infinite
support, supp g The polynomials ¢, (z) = pn(z, ) = kn(p)2"+. .., orthonormal
on the unit circle with respect to p are uniquely determined by the requirement
that kp, = Kkp(u) > 0 and

/‘Pn(()‘ﬂm(C)dﬁ‘:(sn,ma n,m=0,1,..., CeT.
T
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The monic orthogonal polynomials ®,, are defined by
O, (2) = Bp(z,p) = 6, on(2) = 2" + ..., n=0,1,....

The numbers a,, = ®,(0,1), n=1,2,..., which play a key role throughout
the whole paper, are known as reflection coefficients. Since all zeros of ®,, are
inside the unit circle (cf. [11, Section 8, p. 9]), we have |®,(0,u)] < 1, n =

1,2,... . What is more to the point, given a sequence of complex numbers {7, }
with the only restriction |y,| < 1 there is a unique probability measure y with
infinite support such that v, = ®,,(0, ) for n =1,2,... . This result is known as

Favard’s Theorem for the unit circle (cf. [6]).

The orthonormal polynomials ¢, along with another sequence 1, of polynomi-
als, which are also orthonormal with respect to some probability measure 7 (and
known as the second kind polynomials), satisfy the (Szegs) recurrence relations

(&0 w0 )=me(0E 50)

1) (2 ) (1)

Knp—1

for n =1,2,... with the initial condition

(3 2)-( 3)
0o —%5 1 -1

(cf. [15, formula (8), p. 395]). Here the reversed *—polynomial of a polynomial p,
of degree n is defined by pj (z) def on Pn(271). The relation 4, (0) = —,(0) for
n > 1 follows directly from (1).
Note that the reflection coefficients a, determine completely the system of
orthonormal polynomials by (1), since
K2 -
:?:1 =1—|a,  k2=J[Q-lal?), n>1 k=1 (2)
k=1
(cf. [11, p. 7).
From (2) it follows that det Tj,(z) = 2. If we set

Tn(2) € T (2)Thei (2) ... T1(2) (3)

then det7, = 2", which implies that 7, is a fundamental matrix solution to
difference equation (1).
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Operator theory and orthogonal polynomials

G. Szeg6 and Ja.L. Geronimus developed an important theory for the ortho-
gonal polynomials which satisfy the Szegd condition

o0
logy' € LY(T) Z lan|? < o0, (4)

n=0

where p’ is the Radon—Nikodym derivative with respect to Lebesgue measure on
the unit circle (cf. [11, Chapters 8; 25, Chapters 10-11, p. 274-295]).

In the present paper we study certain classes of measures with reflection co-
efficients close in a sense to a nonzero complex constant a, 0 < |a| < 1 and
thereby not satisfying the Szeg6 condition (cf. [15, 16]). The orthonormal poly-
nomial system {¢y, }§° forms an orthonormal basis in an appropriate Hilbert space
of functions on the unit circle, so that it seems reasonable to invoke the multi-
plication operator and its matrix representation in this basis. Such approach is
well-known in the real line case (cf. [2, 5]). We are led to Jacobi matrices, which
contain coefficients of the three-term recurrence relation for the corresponding
orthogonal polynomials as their entries. Matrix representation of the multiplica-
tion operator in the unit circle case is much more complex, yet the Hilbert space
operators prove useful in this setting as well (cf. [15, Section 3; 9]).

Given a probability measure p on T with infinite support, let L2(u, T) be the
Hilbert space of measurable, square-integrable functions on the unit circle with
the inner product and norm

(f, 0 = / FQOF@du, A2 = (P (5)
T

respectively. The orthonormal polynomial system {¢p}3° forms an orthonormal
basis in L?(u, T) if and only if (4) is violated:

logp! ¢ LNT) <= Y an|* = 0 (6)
n=0

(cf. [20; 17, Theorem 3.3(a), p. 49]).
The key role in our investigation is played by the unitary multiplication ope-
rator U(u) which is defined by

and its matrix representation in the orthonormal basis {¢n}°. We have (cf. [21,
Proposition 4.2, p. 45; 14, formula (6), p. 394])

h; 1/2
(h_k) aj180ppK(2), (8)

J

N 1/2
w0 = (B2) o -1

k=0
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where
J
hj = ||®;1[7, = H 1—lag?), ho=1.
Therefore
Uugp  Uo1
U(,Lt) = Y10 Uil --- Uk = (U(N)WjaSDk)u ) (9)
where for j =0,1,...
—aHlﬁnézkH(l —lap?)/?, fork=0,1,...,7,
Ukj =4 (1 — |aj1]?)Y?, for k= j+1, (10)
0, fork>j+2

(cf. [15, p. 401; 26, p. 409]). The infinite matrices (9)—(10), in which all entries
below the subdiagonal vanish are called the Hessenberg matrices.

Given a sequence of complex numbers {a,}$°, such that ey = 1,
lan| < 1 for n > 1, consider the operator U in £? space defined by (9)-(10) in
the standard orthonormal basis {e,}2%,. It can be checked by direct calculation
that UU* = U*U = I, i.e.,, U is a unitary operator (we call such operators
Hessenberg operators). The spectral measure Ey(B) of the operator U is defined
on Borel sets B of the unit circle. If |a,| < 1, n > 1, the operator U is unitarily
equivalent to multiplication operator (7) in L?(u, T) with u(B) = (Ey(B)eg, e)”.
In particular, supp p coincides with the spectrum o(U) of the operator U. The
set of mass points of the measure p is exactly the discrete spectrum o4(U) (i.e.,
the set of all eigenvalues) of the operator U. Therefore we can shed the light upon
the connection between measures and their reflection coefficients by employing
the spectral theory of unitary operators in the Hilbert space (cf. [27, p. 60-65]).

Let U be a unitary operator in the Hilbert space H with spectral measure
Ey(B). According to the Spectral Theorem for each continuous on T function F
and for any vectors f,g € H the relation

(PW)1.9) = [ FQdE(Of.9) (1)
T
holds. For |r1| = |r2| = 1 we denote by (11, 72) ([11,72]) the open (closed) arc on

T swept out as 71 moves to 7o counterclockwise. Let

T, =(7,7), 7=¢€¢% 0<a<m. (12)

“The operator U is simple with eo being a cyclic vector.
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The following proposition from spectral theory of unitary operators is of particular
importance for our purpose.

Theorem 1. Let there erist a subspace Hy C H with codim Hy = N such
that for every g € Hy and for some 0 < a <=

.9 "
(RUg,g) < (1-2sin” T) llgll®, RU =5 (U+U") (13)

1
2
holds. Then the arc Ty, (12) contains no more than N points of o(U).

P roof. Assume the contrary. In that case there exists an arc 'y C T'y
such that . B
dimH > N, H = Ey(Tp)H.

From (11) we see that for h € H

I = DAE = [ 1= 1P B ) < dsin® § [P < 4sin® 5 H]E. (14)
B

Since codim Hy = dim H]~VJ‘ = N, we can find a vector hg € I:I, which is ortho-
gonal to Hyt, i.e., ho € HN Hy. Relation (14) then yields

. a
1T = Dholl* = 2{|hol|* — (RUho, ho)} < 4sin” - [|ho||*

or
(RUhg, ho) > (1 — 2sin? %) Ilol[2,
that contradicts (13). ]
Note that assumption (13) is equivalent to
(Tg,9) <2cos” T |lgl>, T=RU+1I. (15)

In the present paper we are primarily interested in the set of mass points of the
measure g (in other words, in discrete spectrum of the corresponding operator U)
on arc I'y, (12)". We proceed as follows: in Sections 2 and 3 we study the discrete
spectrum for constant reflection coefficients and its perturbations. In Section 4 we
discuss the relation between linear difference equations, orthonormal polynomials
and resolvents of the Hessenberg operators (cf. [8, 9]). The main result on
finiteness of discrete spectrum is presented in Section 5.

“Concerning the set of mass points on the complement arc see [15, Section 5].
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2. Constant reflection coefficients

We begin with the simplest case of the measures with constant reflection coef-
ficients (cf. [13, p. 93-94; 15, p. 402]) and the associated multiplication operators.

Consider operator U = U, (9)—(10) in £2 space withag = 1,a; = as = ... = a,
0<]a| <1
—a —ap —ap?
p  —la* —la?p ...
Us=1] o P’ =1—|al% (16)

p —lal> ... |>

This operator is unitarily equivalent to multiplication operator (7) in L2(ug, T)
for a certain measure p,. If the eigenvector z = (g, 1,...)" corresponds to the
eigenvalue A € T, then

o0
—aZpkmk = Az, (17)
k=0
o
pTn_1 — |a|? Zpk_”a:k =A,, n=12,.... (18)
k=n

Combining the adjacent equations from (18) gives
PNl — (A + 1)z + p2—1 =0, n=1,2,... . (19)

The characteristic equation pzt? — (2 + 1)t + p = 0 for the three-term recurrence
relation (19) has two solutions

T P R S VA CR 0 [ )

2
. 2% , (20)

where @ = 2arcsin |a| and that branch of the square root is chosen for which
r_(0) = 0 (cf. [15, p. 398]). For the arc

T, = {(7,7), T = e}, o = 2arcsin |a , (21)

denote A, = T\I'y. The function r_(z)(r4(z)) maps the domain C\A, con-
formally onto the open unit disk I (the exterior of the closed unit disk). Note

that 41
r+(z>+r_<z)=zp . @) =2 (22)

|r+(¢)] =1 for ¢ € Ay and 74 (¢) # r—(¢) for ¢ # e**®, where

re(() = lim ri(rc).
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Hence
Ty = Tp(N) = a()\)tfﬁ(k) + b(A)t™ (A), n=20,1,... . (23)

As 3% |z |? < oo, it follows from (20), (23) that A € T'y and a(A) = 0. For
such A the equality [t_(\)| = [r—(A)A~!| < 1 holds, so that
= (1,t_()),t2(N),...) € £~ (24)

It is easily seen that vector z (24) satisfies (18) for each A\ € T',. Substituting
(24) for z into (17) leads to the equality A = a(pt_(A) — 1)~!. Combining the
latter one with (18) for n = 1, we obtain

_ 14
A= (N1 —-a)”
Finally t_(\) = p(1 —a)~! and
1—a
=10 (25)

Conversely, let A be taken from (25) for some a, 0 < |a|] < 1. Define a para-
meter 3 by the equality 1 —a = |1 — a|exp(56). We have now
8 1—Ra

A= iﬁ, 2 26
e COS 9 ‘ | ( )
From the elementary inequality

37|
12|

<lz|, |z <1,

wherein the equality is attained if and only if |z — 3| = 3, it follows that

Cx
|sin§| - ‘Jia‘d‘ < |a| = sin

5 )
i.e., A €T for |[a — 3| # 1, and vector z (24)—(25) satisfies (18). It remains only

to make sure that z satisfies (17). We have

P (1 — pt_(e¥) +a

= %(eiﬂ_1+eiﬂ/2\/2(cosﬁ—cosa))+1_|1_a|eiﬂ/2

= %eiﬂ/2(2i Sing + \/2(cosﬁ —cosa)) + ez‘ﬂ/z(e_ig/g ~|1—al
= 5 2loos f—cosa) + ¢ (cos § — 1 =]

- %ew/Q\/Q(cosﬁ —cosa) — ef/? la — |11/2_|2a|— 1/4 '
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It can be directly derived from (26) that

2
V/2(cos B — cosa) = T—al |la — 1/2> - 1/4],
-a
which yields (17) as long as |a — | > 3.
Thus we come to the following conclusion.
Theorem 2. The discrete spectrum o4(Us,) is empty for |a — 3| < 3. For

la — | > % the operator U, has the only eigenvalue X (25), which lies on the arc
Ty (21) and corresponds to the eigenvector

(1—la[)'

To=(1,t,t2,..), t = -
—Qa

(27)
Remark 3. Let (U, +2I)(U, — 2I)~! = {wk;j(2) }5j=0- A straightforward
calculation yields the formula for wgo(z)

(+z
(—z
T

1—az—pr_(z)
1+az— pr_(z)

woo(2) = d(Ey,(¢)eo, e0) = (28)

(the first equality stems from the Spectral Theorem). This relation enables one
to find precise expression for the measure p,. As it turns out, the measure y, is
absolutely continuous with respect to the Lebesgue measure on the arc A,, and
supp fo on the arc I'y is either empty or consists of one point A (25) (cf. [13,
formulas (XI. 26) and (XI. 27), p. 94]).

3. Perturbation of discrete spectrum

Let p and p, be positive Borel measures on the unit circle with reflection
coefficients {ay } and {a}, U and U, be corresponding multiplication operators (7)
which act on the different Hilbert spaces L2(u, T) and L?(pq, T), respectively. To
study both these operators simultaneously it is convenient and instructive to move
them on to the same Hilbert space £? by means of their matrix representations
(10) and (16). In our concept the Geronimus operator U, is the unperturbed
object, while the operator U is the perturbed one.

Of particular importance is the difference (or perturbation) V : £2 — ¢2

V=U- Ua = {Uk,j}lc;?j:m Vg,j = Uk,j — u%,j - (29)

An intimate relation between closeness of the sequence {a,} to the constant
sequence {a} and the properties of perturbation V (29) can be revealed. For

10 Matematicheskaya fizika, analiz, geometriya , 2000, v. 7, No. 1
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instance, the convergence lim,, ,, a, = a provides compactness of the operator V'
(cf. [15, Theorem 3])". We continue studying such phenomenon in this section.

To begin with, consider the finite perturbation of the constant sequence {a}
(cf. [13, formula (XI. 25), p. 94]).

Theorem 4. Let ay = any1 = ... =a, 0<|a| <1. Then the arc T'y (21)
contains no more than N + 1 points of supp u.

Proof It is actually not hard to see that under the assumption of Theo-

rem 4 perturbation V' (29) is of finite rank. In fact, for ¥ > N and p? defy lak|?
we have

J
Vek—1 =Pk — P =0, vg;=—aj10x H pp+lal?p’F =0, j>k,

p=k+1
and hence
N—-1
Vh=>"(hv)er, vk = (040, 91,...) €2, k=0,...,N—1.
k=0
Then
N—-1
U-T=U—T+V=Us—T+Y_(-vr)ex-
k=0

For |g — 3| < 5 arc T, (21) is free from o(U,). By the Spectral Theorem for every
het

. o
|(Ua = DA|* = / ¢ = 1? d(Bu, (¢)h, h) > 4sin® 5 IR]?,  Aq =T\Ta.
Aa

Let H(vo,...,vn—1) be the subspace generated by the vectors vg,...,vn—1
and Hy = {H (v, - .. ,fuN_l)}J-. Then codim Hy < N and forevery h € Hy (U—
Ih = (U, — I)h. Therefore ||(U — I)h|| = ||(Us — I)h|| and

mU—nmP24aﬁgnw% heHy.

The rest is immediate from Theorem 1.

“As a matter of fact, a somewhat weaker assumption known as the Lopez condition

. An+1
lim 2+

n—o0  Ap

=1, 1i_>m lan| =la|, 0<]a| <1, (30)

already provides compactness of the perturbation.

Matematicheskaya fizika, analiz, geometriya , 2000, v. 7, No. 1 11
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For |a— %| > % the operator U, has the only eigenvalue A € I, corresponding
to eigenvector z, (29). It remains only to replace in the foregoing argument the
subspace H(vg,...,vn—_1) by the subspace H(zq,v0,...,UN_1) [ |

Further in Section 5 we make use of the result which is actually established
in the proof of Theorem 4.

Theorem 5. Let U(A) and U(B) be the unitary Hessenberg operators, asso-
ciated with the sequences A = {a,} and B = {b,}, respectively. If a,, = b, for
n > N then the difference V.= U(A) — U(B) is of finite rank at most N.

In our next statement the sequences {a,} and {a} are assumed to be close enough
in £°°-norm. It turnes out that the perturbation V' has now small enough operator
norm.

Theorem 6. Suppose that

2
def alp(l—p
7 supaj —a| < {%} . pP=1—laP (31)
j>1

and define the value 8 by

o B def 2 & 3y
S“ — = cos” — + ,
2 2 p(l—p)(lal =)

Then for |a — 3| < & the arc

CO

a = 2arcsin |al. (32)

Ly ={(7,7), 7 =€’} (33)

is free from supp p. For |a — %| > % the arc T'g contains no more than one point
of supp p.

Proof. We proceed in three steps.

Step 1. It can be easily shown that relation (32) actually defines a certain
value (. Indeed, under (31) it is clear that

la]* | 63|al

< 2 — =i

TS <grr 17>

and
2
2 & 3y 2,3 10 ( 64 ) 2
cos” —+ <p'+-la 1— — | <p"+p(l—p)=p<1.
A I 1 lal"p(1=p) 63/a] p +p(l—p)=p

12 Matematicheskaya fizika, analiz, geometriya , 2000, v. 7, No. 1
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Step 2. We are aiming at proving (15) (with « replaced by ). To this end
let us estimate the norm of operator V' (29). We can write V as

V=8D_+) DS, (34)
k=0

where S is the shift operator given by the matrix representation

SO OO
SO O
S O = O
S = O O

and Dy, are diagonal operators with the elements

. _ ('UO,kavl,k—}-la .. .), for k = 0, 1, ceey
dlang_ {(Pl_PaP2_Pa---)a fOI‘kJ:—]., (35)

pr =1 —|ag|? (cf. [15, p. 403]). To prove that infinite series in (24) converges in
the operator norm, set

ro=1, r,= S_1>1189j+19j+2---Pj+m, m=12,....
3>

Under assumption (31) |a;| > |a| —v > 0 and p? <%y (la| —7)?, so that
o0
_ 1+6 2
T < 0™, rm < (1 =681 = < . 36
E ( ) 1—62 ° (Ja| — )2 (36)

m=0

Our further consideration is based on the explicit expression for the matrix
elements ug; and ug; (see (10) and (16)). We have

k k
[vokl = |uok — Ug,k| = lak+1 H Pp — aPk| < lag+1 — G|Plc + |ak+1||H Pp — Pk|,

j+k
0ikril = ks — sl = larrsmd [ pp —lalo”|
p=j+1
j+k
< agrjn@ — lal’lp" + laksjiaagll [T po— 0", k>1.
p=j+1

Matematicheskaya fizika, analiz, geometriya , 2000, v. 7, No. 1 13
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To evaluate the second terms in the right-hand sides we make use of the identity

Jj+k j+k jtk
H Tp — H Yp = Z Tjp1Tj42 - Tp—1(Tp — Yp)Up+1 - - - Yjtk -
p=j+1 p=j+1 p=j+1
Hence
k
vokl < laksr —alpk + > p1---pp-1lpp — pl* 77,
p=1
j+k .
kel < (laksion—al+laj—a)p® + Y pjy1---pp-ilpp — plp" ™7
p=j+1
k
< (lakyjt1 — al + laj — a])p* + ij—f—l <Pyl — plo*!
=1
(37)
for k,7 =0,1,... . Next
jan|* = 1al| _ |an| +|a
jon —pl = Dm0l Janlblal ) (38)
Pnt+p Pnt+p
and ||D_1]| can be estimated as follows:
an| + |a 2
1D-1 = sup lpn — p| <  sup L2212l 2 (39)
n>1 n>1 Pn+pP p
In a similar way we obtain for Dy with k> 0
k
1Dl = suplvjpeil < 290" + |D_1)| D it k=12, (40)
I= =1
and
[ Dol = sup |vj,;| < 2. (41)
1>0

It follows now from (39)-(41) that series (34) converges in operator norm and

[e's) x k
VI < Dol + 2y 4293 4 IDo ) 33 aph !
k=1 k=1 1=1

J— 2y
D_ 14— _ —
e g

14 Matematicheskaya fizika, analiz, geometriya , 2000, v. 7, No. 1
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Taking into account the relations (36) and (39), we come to the conclusion

6
p(1—p)(la| =)
Step 3. According to the general result from operator theory the spectra of
two normal bounded operators W7 and W, are close to each other whenever their

difference W7 — W5 is small in operator norm. Indeed, for resolvent R(z, W;) =
(W1 — 2zI)7! the equality

VI < (42)

7 -

1
 dist (2, 0(W1))
holds (cf. [19, p. 277, formula (3.31)]). Let dist (z,0(W7)) > ||W2 — W1||. Then

Wo—2I=W; —2zI+Wy—W; = (W1 —ZI)[I—I—R(Z, Wl)(W2 — Wl)],

1R (z, W1)||

and the operator Wo — 21 is invertible, since

IR W)W, — W) < A2 =Tl <,

ist (z,0(W7))
that is, o(Ws) € {z : dist (z,0(W7)) < ||[Wo — W1]|} (cf. [18, Chapter 11, Prob-
lem 86]).
In our particular situation we can gather some more quantitative information.
We know that o(U,) C A, as long as |a — 3| < 3, and by the Spectral Theorem
for the operator U, we have, as above

Lo
I~ Dgl? = [ 16 =1 d(Bu (©g,9) = 4sin* 5 ], g € 2.

Ag
Let

T:§RU+I, Ta:%Ua—i_I,
so that T =T, + R V. Then (Tg,g) < 2cos® % ||g||* holds for all g € ¢2. Hence
by (42) the relation

(Tg,9) = (Tag,9) + (RVg,9)

« 6y B 2
<ofco2® 4 )||g||2=2cos2—||g||
( 2 p(1—p)(la] —7)? 2

is true for all g € £2.
Much the same sort of argument is applicable when |a — %| > % and
o(Us) NTy = {A} (see Remark 3). In this case

B
(Tgag) S 20082 5 ||g||25 gJ_:va,

where the vector z, is given by (27). The assertion of Theorem 6 follows now
from Theorem 1. ]

Matematicheskaya fizika, analiz, geometriya , 2000, v. 7, No. 1 15
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Corollary 7. For each 8 < « there exists a small enough value v = y(«, 3)
such that the arc T'g (33) contains no more than one point of supp p whenever

sup,>1 |aj —al <.

Remark 8 By (32) the distance between endpoints of the arc I'g, which
is free from supp p (at least for |a — 3| < 3), and the endpoints of the arc I' is
a— 3 =0(y), v — 0. Notice that this result is sharp with respect to order. In
fact, let a;j = b, j > 1 with 0 < b = a — . Then the largest arc, which is free
from supp i is exactly I'g with 8 = 2arcsinb and o — 8 > 2.

Note that under the premises of Theorem 6 the orthogonality measure p can
have no “large” gaps on A,.

The operator series expansion (34) works in various settings (see, e.g., Lem-
ma 13 below). For instanse, the only slight modification of the argument, applied
in Step 2 above, leads to the following

Theorem 9. Let U(A) be the unitary Hessenberg operator, associated with
the sequence A = {a,}, which satisfies |an| < 1 and

0< A% inf |a,] < suplan| ¥ A, < 1.
n>1 n>1

Then for every sequence B = {b,} which is close enough to A in £*° — norm:

1
0% o sup |bp, —an| < -min(A_,1 - Ay),
n>1 2

the associated Hessenberg operator U(B) is close to U(A) in operator norm:
IU(B) —=U(4)|| < C(4)y,

where the constant C(A) depends only on A.

4. Linear difference equations associated with orthogonal
polynomials on the unit circle and resolvent
for Hessenberg matrix

We adopt here the arguments from [8, Section 2| (cf. also [9]) and start with
the vector analogue of equation (1) (see also (3))

—

X (z,n) = Ty(2) )—(’ (z,n—1) = Tp(2) )—(Z (2,0), n=12,..., (43)

and its two solutions

16 Matematicheskaya fizika, analiz, geometriya , 2000, v. 7, No. 1
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semrna[!]-[50] venno] ][ 5]

(44)

The Wronskian W of any two solutions )_() (z,m) and )7 (z,m) of (43) is defined
by — — — —
WX (z,n),Y (z,n)] = det[X (z,n),Y (z,1)]. (45)
From (43) and the relation det T},(z) = z we find
%

W[)—(> (z,n),}j(z,n)] =W [)_() (z,n—1),Y (z,n—1)] = z”W[)_() (z,O),?(z,O)].

%
The latter implies that $ (z,n) and ¥ (z,n) (43) are linearly independent solu-
tions of (43) for z # 0.
Another helpful solution of (43) is given by

— L (z,n e - -
b o) = | S0 | E L @+ F@ B @], <1

Fz) = /
T

This solution is known to be the unique (up to a constant factor) square summable
solution of (43):

with

(+=z
C_zdu. (47)

2 (zn)| <lpi(zn)l, D leh(zn) < oo (48)

n=0

(cf. [8, Theorem 2.4]).
Our immediate objective is to calculate a matrix representation for the resol-
vent

R(z,U) = (U =2I)7" = |Rl%j=0s Brj = Rej(2) = (R(2)ej,en), |2 <1,

of the unitary Hessenberg operator U (9)—(10) with |a,| < 1, n > 1, in the stan-
dard basis {e,} in £2. Such operator is unitarily equivalent to the multiplication
operator (7) in the appropriate L?(u) space.

The definition of resolvent R(z) (U — 2I) = I can be displayed in terms of the
matrix entries

00
E Rn,kuk,m - ZRn,m = (5n,m
k=0
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or by (10)

m m
- Z Rn,k Am+10k H Pp + Rn,m+lpm+1 - ZRn,m = 5n,ma
k=0 p=k+1

where p2 =1 — |a,|*. Setting

m m
def _
Ln,m = ZRn,kak H Pp, Ln,O = Rn,O (49)
k=0 p=k+1
yields
pm+1Rn,m+1 = ZRn,m + am-}—an,m - 6n,m- (50)

It is clear from (49) that

Ln,m—l—l = pm—l—an,m + Em—l—an,m—}-l-

If we multiply the latter equality through by p,,+1 and take into account (50),
we obtain

_ 2
pm—|—1Ln,m—|—1 — am+1pm+1Rn,m+1 + pm—l—lLqu
— 2 — 2
= afm—|—1an,m + |am—|—1| Ln,m - am+15n,m + pm+1Ln,m

= a771,4—1251%71,m + Ln,m - am—|—15n,m-
It is convenient now to combine this relation with (50) in a system

{pm—l—an,m—i—l = ZRn,m + a'm—l—an,ma n 7é m, (51)

Pm+1Ln,m+1 = Zam—HRn,m + Ln,m7 n 7& m,

which can be written in the matrix form (see (1))

— Rum —
i () | ot ) B (), A, el <1, 62

and

- - —1
Branst (2) = Tos1(2) B () — [ _ Pui1 } n=m, |l<1l  (53)
On+1Pp41

As the vectors (2,0) and $+ (2,0) are linearly independent we have from
(52)

Bus (2) = An(2) @ (2,8) + Bu(2) 4 (2,8), s=0,1,....n, |z|<1, (54)
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%.
for certain scalar functions A, and B,. Next, the vectors ¢ (z,n+1) and

$+ (z,m + 1) are also linearly independent unless z = 0:
W6 (z,n+1), 6 (z,n+1)] = —2"+, (55)

and hence for 2| <1, z#0

Ens (2) = Cn(2)  (2,5) + Dn(2) ¢4 (2,5), s=n+1n+2..., (56)

for certain scalar functions C), and D,,. From (53), (54) and (43) we conclude
- — — —1
i () = Ta@) (4a02) B () + Bale) B () = | Pt |
On+1Pp 41

—> — —1
= Au(2) @ (z,n+1)+ Bp(2) ¢4 (z,n+1) - [ _ Poil, ] :
On+1Pn41

If we compare the latter equality with (56) for s = n+ 1, we come to the relation
— 5 ol
(An(2) = Cn(2)) @ (2,0 +1) + (Bu(2) — Dn(2)) 4 (zn+1)=| _ """ |,
an+1Pp+1
(57)

which holds for |z| < 1, z #0.
To take advantage of (54) and (56) let us determine the functions A, B, Cyp
and D,,. It follows from (56) that

Rn,s(z) = Cn(2) ps(z) + Dn(2) (,D}F(Z,S), s>n+1.

Since {pl (z,k)} € £2 for |z| <1 (see (48)) and

o o
D [Rap(2PF =) | (B(2)er, en) [P = |IR* (2)enl® <00, 2] <1,
k=0 k=0

then {¢g(2)} € £? unless Cp(z) = 0. But this is not the case under the basic
assumption (6) (cf., e.g., [12, Theorem 21.1]). Hence Cy(z) =0, |z| < 1.
Next, by (49) Ly0 = Ry, and (54) with s = 0 provides

1+ F(z)
2

—1+ F(2)

An(2) + Bal2) =,

= Rn,O(z) = Ln,O(z) = An(z) + Bn(z)

so that By (z) = 0.

Matematicheskaya fizika, analiz, geometriya , 2000, v. 7, No. 1 19



Leonid Golinskii

We can now solve (57) for A, and D,, to obtain

@i (zn +1) = @19} (2, +1)
— — ’
pnt1 W [(’0 (Z,TL + 1)’ Yy (z,n + 1)]
Due) = —FmllE)Znben) 0 (o
pnt1 W [(’0 (z,n + 1)’ L (Z,TL + 1)]

It is easy to see from (43) that for arbitrary solution )_() (z,m) =
(X1(z,n), Xo(z,m))" of (43) the relation

XQ(Z,TL + 1) —Qp+1 Xl(za n+ 1) = Pn+1 XQ(Z,T),)
holds. Hence the right-hand side in (58) can be presented in the form

An() = —— wi(zi&) 7
W[e (z,n+1),¢4 (2,n+1)]

Da() = ——— 02 -
W[(P (z,n+ 1)a Y+ (z,n+ 1)]

In view of (54)—(56) we have now

2 2712 (z,n Z,8), s=0,1,...,n,
B (2) = A ) ¢ ¢ (29)
—z "Lk (2) P4 (2,8), s=n+1,n+2,...

or for the first element

—27"" 13 (2, 1) m(2) m < n,
Ry m(z) =
—2 "Lk (2) ol (z,m), m>n

It is worth summing up the results obtained above in the following statement.

Theorem 10. Let R(z,U) = (U — zI)™! be the resolvent of the unitary Hes-
senberg operator U (9)—(10) with |ayn| < 1, which is unitarily equivalent to the mul-
tiplication operator in the appropriate L2(u) space. Then its matriz entries in
the standard basis take the form

—32 " om(2) (F(2)pn(2) —n(2)),  m<m,
Ry m(z) = (59)
—327" L oh (2) (F(2)om(2) +9m(2)),  m>n,
for |z| <1, z#0. Here @, and 1, are orthonormal polynomials of the first and
second kind, respectively, and F is C—function (47).
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Remark 11. According to the known property of orthonormal polynomials
(cf. [11, p. 11, formula (1.19)]) the expressions in the right-hand side (59) have
removable singularities at z = 0.

We employ Theorem 10 in the case U = U, (16) and py = us. Now @, = @p,
Py = z/p\n are the Geronimus orthonormal polynomials of the first and second kind,
respectively. An explicit expression for such polynomials and their *-reversed
can be found in [15, formulas (17)-(20), p. 399]: @y = Po = oy = 12)\3 =1,

R zZ+a

Ple) = TEEA) s 2),
Pnlz) = TS A(e) = A (), (60)
forn=1,2,..., and
Pae) = o) = s (),
B = ) @) (61)
Here
An(2) aof 7H(2) Z12(2) oy g (62)

ri(2) —r-(2)
and the functions r4 are defined in (20). We are able to evaluate matrix entries
in (59) by using (22) and the limit relation

i e Yn(z) _1—az—pr(2)
F(z) _Fa(z) _nli)ngo (P\ﬁ(z) - 1+Ez—pr_(z) (63)

for C—function (47) (cf. [11, p. 11, formulas (1.16)] and (28)). We have for
n, m>1

= %An(Z) (Fa(2)(1 +az) — (1 —@2)) — 2An_1(2) (Fa(z) — 1)

—2azr_(z)An(2) + 2a2°Ap_1(2) _ B 2az
1+az—pr_(z) T 1l+az—pr_(2)

r(z);  (64)

Fo(2) Bm(2) + Pm(2)
- %Am@) (Fa(2)(z +a) + (2 — @)) = 2Am_1(2) (Fa(2) +1)
2z

T 1+az—pr(2) {Am(2)(p = 7-(2)) = Am—a (2) (1 = pr—(2))}-
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Since by (22)

Am(p—71-) = Am_1(1 — pr_) = =(p—r_)rm !
T+ —T-
we obtain finally
~ ~ 22(p—1(2)) -1
F, = .
2 (6) Bnl) + Tinle) = e el (65)
Note that (64) and (65) are valid for n = m = 0 as well.
According to (59) we now have
R F U= @z "r (2)m (2), m < n,
Rym(z) = (66)

for |z| <1, z # 0, where f(z) S pr—(z).
Of particular interest is the location of zeros of the function f. By (22)

f2) = 14+az—(z2+1-pri(2)) = (@—1)z + pry(2)
= (@-1D)ri(2)r—(2) + pri(2) = p4(2) (@ - Dr-(2) + p),

and as r4(z) # 0 in the closed unit disk, then f(w) = 0 is equivalent to
r_(w) = p(1 —a@) "t

Note that

972_1:1_7|a|2_1: 2 1—|a—1\2
|1 —al? |1 —al? |1 —al? \ 4 20 )

For p > |1 — @], that is ‘a — %| < %, the function f is never zero in D. Let now
p=|1—alor |a — %| = 1, that is equivalent to |a|*> = Ra.” Only two points meet
this condition and |a| = sin § , namely a = ay = sin? § +isin $ cos § . For these
points the relation

P _ pl—a) p(l—a) 1-a
l-a 1+ |a]?—2Ra 1 —|al? p
1 ‘o

.9 & ..« « (o4 R s
= = (1—sm —:Fzsm—cos—) =cos — Fisin— =et'2
P 2 2 %79 2 2

“We refer to this case as the special Geronimus polynomials.

22 Matematicheskaya fizika, analiz, geometriya , 2000, v. 7, No. 1



Operator theory and orthogonal polynomials

holds. Hence

p
l—a

exp (z%), for|a—%‘ = %, Sa < 0.
Thus for the special Geronimus polynomials

feT) =0, Sa>0;  f(e"*) =0, Sa<0. (67)

Finally, when p < |1 — @] or |a — %| > %, the only zero of the function f agrees

with the eigenvalue A (25) (cf. (63)), which lies on the arc T',.

Denote 'y (a) %ef T, \{A} for |a — 3| > & and Tq(a) 1, otherwise. It is

clear that the functions Ry, ,, as well as the functions in the right-hand side of (66)
are analytic on I', (a) and therefore the latter formula remains valid for z € T'y(a).

We can estimate from above the matrix entries ﬁn’m of the resolvent R(z,U,) on
this set with the help of (60)—(62) and (22). Indeed,

@En(z) = TN (e (2) (22
p k=0
m—2
2 Y (- (s (2) (2
k=0
m—1 m—2
— zkr_ (Z)meQkfl —2 zkr_ (Z)Qm,Qk,Q’

so that |TT<,3m| < Ki(m+1) for z € Ty, m > 0 with some constant K; = K (a).
Taking into account (66), we end up with the following bound for ﬁn,m:
Ir_(z)|" ™

[1+az—pr_(z)|’

‘ﬁnm(z)‘ < 2Kj(min (n,m) + 1) z€Tq(a), m,n>0.

(68)

Our consideration in Section 5 is based on the asymptotic behavior of the
resolvent R(z,U,) as z approaches the endpoints e**® along Ty, so it seems ad-
visable to remove from I’y a small vicinity of the eigenvalue A, which does not
contain the endpoints (and exerts no influence on the asymptotic behavior of the
resolvent near the endpoints). Denote this set by E,(a). As f is bounded away
from zero on E,(a) for |a— 3| # &, we come to the relation, which holds for
z € Ey(a) with some constant Ko = Ka(a):

1

a—l‘ye—. (69)

Bon(2)] < Ka(min (n,m) + 1) r(2)] "™, mn20, a5 # 5

Note that (69) is valid on the whole arc T, as long as |a — %‘ <i.
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5. Trace class perturbations and finiteness of discrete spectrum

Under the assumption lim,_, an, = a, 0 < |a| < 1, the structure of supp p on
the arc I', was completely discribed by Ya.L. Geronimus [10, Theorem 1, p. 205]:
the set supp N T'g is finite for every 0 < 8 < « (see also [15, Theorem 3| for the
operator theoretic proof). The conclusion holds true under the Lopez condition
(30) as well.

The following question appears to be quite natural: what kind of assumption
imposed on the reflection coefficients a, provides finitness of the set suppu NI',7
Theorem 4 discloses such possibility for the finite perturbations of the constant
sequence {a}. In the present Section we examine certain infinite perturbations,
which preserve this property (the similar problem is studied in [23, Theorem 4.2,
p. 350] in more general setting, but under the stronger assumption).

Theorem 12. The set supp uNTy is finite as long as
¢ [e.e]
A Y Zn|an—a|<oo. (70)

n=0

To prove Theorem 12 we proceed in several steps.

Trace class operators. Recall the basic definitions and properties of the
trace class operators (cf., e.g., [24, Chapter VI.6]). A bounded linear operator
acting on a Hilbert space H is said to belong to the trace class S if for every
orthonormal basis {hy}

° 1
171 Y (1T oy ha) <00, [T = (I7T)3 (71)
n=0
(the value in the right-hand side does not actually depend on the choice of basis).
The trace class S; forms a self adjoint norm—ideal in the algebra of all bounded
linear operators, that is, &1 1is a linear space; T € & if and only if T* € Sy;
T € 81 implies AT B € §; with

AT B, < AT, 1Bl (72)

for every bounded operators A and B. Furthermore, the trace class endowed with
norm || -|[; (71) is a Banach space.
Of particular interest and paramount importance is the following functional
on &1, which is known as the trace:
o0

0T E S (Tha, hn)

n=0

*For the continuous analogue of the condition (70) in the spectral theory of the Schrodinger
operator see, for instance, [1, Chapter II, formula (2.1.2), p. 37].
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(the latter does not depend on the choice of basis). As a matter of fact, tr7" is
a bounded linear functional on the space &7 which satisfies

[tr T| < ||Tl,, tr T =tr T, trTA=tr AT (73)

for every bounded linear operator A (cf. [24, Theorem VI.25, p. 212]).
The following sufficient condition for an operator T to belong to & proves
useful thereafter.

Lemma 13. Let T be a bounded linear operator on H. If for some orthonor-
mal basis {hy}

o
> [(Thoy )| < 0 (74)
n,m=0
holds, then T € &1 and
o
T < D (Thay )| (75)

n,m=0

P roof. The argument below is based on the series expansion similar to
that in (34). Let T = {tx;}7°_¢ be the matrix representation of T in the basis
{hn}. The (formal) operator series

T = io:(s*)’c B+ i B, S™ (76)

1 m=0

arises naturally. Here B,, are diagonal operators

dla‘g By = (tk,Oatk-l-l,la"')a k=1,2,...,
dlag Bm = (tO,m;tl,m—Ha---); m :O,l,... .
Since
00 00
||Bm||1 :Z|tn,m+n‘a m=0,1,..., ||B*k||1 :Z|tk+n,n|a k:1,27---,
n=0 n=0

series (76) is easily seen to converge in the trace class norm under assumption
(74), and (75) holds, as claimed. ]

Let us now go back to the Hessenberg operators U (9)-(10) and U, (16).
Perturbation V' (29) is known to be compact whenever lim,_, a, = a. We show
that V' € &1 under certain restriction on the rate of convergence.
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Lemma 14. Let -,
A Y Z lan, —a| < oo. (77)
n=0

Then V belongs to the trace class.

P roof. Much as in the proof of Theorem 6 we consider series expansion
(34) and show that (77) ensures convergence of this series in the trace class norm.

Assume first that r & supp, < 1, p2 = 1 — |ay|? (in other words, a, # 0).
Asin (37), (38) we have for k = —1,0,1,...

k k+1
05 k4] < (laksjor —al +la; —al) ™ + 757 o — pl < C1r* Y lary; —al
=1 =0
(78)
and hence
o0
1Dkl =D [vj ksl < Codokr*,
=0
where Cp,, m = 1,2,... stand for positive constants which depend only on the

sequence {a,}. Therefore (34) converges in the trace class norm, as needed.
To remove the assumption r < 1 pick N € N such that a, # 0 for n > N,
and form a new sequence {b,} defined by

1
bn:an, nzN, b1:b2:---:bN71:§-
Let U(B) be the corresponding Hessenberg operator. Then sup(l — |b,|?) < 1
and hence U(B) — U, € &;. Next, the operator U — U(B) is of finite rank. Thus
V=U-U(B)+U(B)—U, €S that completes the proof. [ |

Note that much the same method enables one to prove the general statement:
V belongs to the normed ideal S, whenever a, —a € 7, 1 < p < oo (the space cgy
is to be taken instead of £*° for p = 00).

As a straightforward consequence of the trace class theorems of scattering
theory (cf. [4]) we have the following

Theorem 15. Under the premises of Lemma 14 the absolutely continuous
spectrum of the operator U fills the arc A,.

Finiteness of discrete spectrum. In order to evaluate the number of the
points in suppp N Ty (or, in other words, the number of eigenvalues of the
operator U on the arc T'y) let us go over to the much better explored situation of
the trace class perturbations of a bounded self-adjoint operator.
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Consider the Zhukovsky transform

Jar U+ U U+U!

def Uv(14‘|‘lj(;k Ua‘l‘Ugl
Jo = = .

2 2 ’ 2 2 (79)

The essential spectrum of J is exactly the interval [—1, cosa]. According to the
Spectral Mapping Theorem, a number cos 3, f < « is the eigenvalue of J if
and only if one of the numbers exp{+i3} is the eigenvalue of U. Hence the set
supp u N 'y is finite if and only if the number of the eigenvalues of J above the
essential spectrum is finite.

Denote N () the number of eigenvalues of J, which are greater than cosS.
Our further consideration is based on the following result due to J. Geronimo |7,
Theorem IV.3, p. 262]:

N.(B) < tr [(J = Ja) R(cos 3, Ja)]”. (80)
The key idea is to argue that
tr [(J — Ju) R(cos 8, J,)2 = 0(1), B — a+0. (81)
Under condition (77) the perturbation

_U-U U U _V+V

T = Ja 2 2 2

belongs to the trace class, so that the value in the right-hand side of (80) is finite.
Next, it is actually not hard to relate the resolvents of the operators J, and U,.
Indeed,

-1 -1
R(cos B, J,) = (% — cosﬁI) = 2U, (U‘f — 2cos BU, + I)f1 .

Since t? —2cos ft+1 = (t — B ) (t —e 8 ), we have by partial fraction expansion

R(cos f, Ja) = (1 —icot B)R (.U, ) + (1 +icot )R (e79,0,) . (82)

Finally
{(J = Jo)R(cos 3, J,)}?

_ 1 w\ (i i8 —iB —iB 2
= 4sin2ﬂ{(v+v)(e R(e ,Ua) e R(e ,Ua))}. (83)

We will establish (81) first under two additional restrictions on the sequence
ap:

and T =supp, < 1. (84)
n
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The first one makes it possible to apply (69) and the second one simplifies the
calculations (cf. the proof of Lemma 14). The restrictions will be removed at the
end of the section.

Put

W () “ VR((,Us) = {wnm(O)}Emess Wil0) = R(C UV = {wh (O} Cmmos

so that

wnm(Q) = Y vniRim(Q), W)= Y Rnj(C)Tmy.
j=n—1 j=m—1

As |r_(¢)| < 1 on E,(a), then by (69)
Rj,m(C)‘ < K3 (min(j,m) + 1)

uniformly on E,(a). For m < n we have

00
| wnm ()] < Ka(m+1) D Jonl-
j=n—1
Similarily, for m > n
m—1 00 00
wn,m(Q) < Ko D Glvngl+ Ka(m+1) Y |onil < Ka(m+1) Y |onl-
j=n—1 j=m j=n—1

It follows from (78) that

o o
> gl <G Y
=n—

j—n+1 00
j— l
=" E |al+n—a|§ngr |ai+n —al .

j=n—1 J 1

Hence

fwnm(C)] < Calm+ Dw(n),  wk) € S rtlay, —a (85)
=0

uniformly on E,(a).
In exactly the same way we can make sure that

()] < Caln + 1) wo(em). (86)

We are able now to estimate uniformly for (12 € E,(a) the trace of “typical”
operators

VR(Cla Ua)VR(C27 Ua)’ V*R(Cla Ua)V*R(C27 Ua)’ (87)
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which occur in the right-hand side of (83)

. Indeed, VR((1,Uy)VR((2,U,) =
W (¢1)W (C2) and by (85)
3wk (G Wk (G2)] < Cs(n+ D w(n) > (k+1)w
k=0 k=0

so that uniformly for (1, (o € E,(a)

n=0 k=0

2
tr VR(C1, Ua)VR((2, U, \<22|wnk C1)wrn(G2)| < Cs (an ) .

Note that the latter series converges whenever (70) holds. In fact, the inequality

Zan "<quq "< (-1

yields

0 0 q 0
> alag—al> (1= Y alag—al Y nrt " =3 nuwln)
q=0 q=0 n=0 n=0

as claimed. Thus, under assumption (70) |tr VR(C1,Uy)V R((2,Us)| < 00 uni-
formly on E,(a). The same goes for the second operator in (87), since due to
(73)

tr VI R(C1, Ua) V' R(C2,Ua) = tr R(C1, Ua)V* R(C2, Ua) V™ = tr W (1) Wi (Ga)-

There are two more “typical” operators of the form

Vi(¢,G) X VR(@, )V R(G, Uy) =

VW, (C)R(G2) = {vp m (€1, ¢2) } om0
Va(¢1,62) Y V*R(C1,Ua)VR(Go, Ua),

for which the computation is somewhat more intricate. Put

Wi(Q) © VWL(C, Ua) = {wh 1 (O} mmos

so that

Matematicheskaya fizika, analiz, geometriya , 2000, v. 7, No. 1 29



Leonid Golinskii

By (86) and (78)

[es) ' j—n+1
wnm(Q)] < Crwlm) Y PG +1) Y e —dl
j=n—1 1=0
w(m) ¢ -
= 2y ri(g 4 m) Y larn —al
=0 1=0
= 01— > larin—al Y (g +n)
=0 g=l

IN

Csw(m) S (1 +n)r' a4 — a] = Oy w(m)B(n)
=0

where

w .
O(n) €N jri " a; —al.
j=n

Hence under assumption (70)

o

nalCo @I < 3 wh 1 () R (G2)|
< Cy Zé(k + 1) [wn (G| + Co(n +1) g: | i (C1)]
< Ciod(n) n_l(k + 1) w(k) + Cro(n+ 1) &B(n) i w(k)
k=0 k=n
< Cpo(n) g(k + 1) w(k) < C11@(n)
) )
|tr Vi (G, Go)| < 2:; |om,(C1s G2)| < Cl2nz_0$(n)-

It remains only to notice that

0o oo oo . o J . A
D8 =3 > g ey —al =3 dlaj—aly rT" < g < oo
3=0 n=0

Since by (73) tr Va((1,(2) = trVi((e,(1), we also have [tr Vo((1,(2)| < oo uni-
formly on E,(a).
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Thus, the limit relation (81) is verified under conditions (84).

To remove the second assumption in (84) we proceed as in the proof of
Lemma 14: pick N € N such that a, # 0 for n > N, and form a new sequence
{b,} defined by

bn:an, nZN, b1:b2:...:bN_1=%.
The support of the corresponding measure p(B) is finite on T'y. As the initial
sequence {a,} is a finite perturbation of the sequence {by,}, the set supppu N Ty,
is also finite according to [22, Theorem 4.1].

It remains to handle the special sequences {a, } with |a —1/2| = 1/2. The key
idea here has nothing to do with the spectral theory of unitary operators. We shall
appeal to the second kind sequence {—a,}, which corresponds to the second kind
polynomials 1, and the second kind measure 7. It is clear that this sequence is no
longer special and it satisfies the condition analogous to (70). Hence supp 7 N Ty,
is finite.

Denote by G(z) the second kind C—function (see (47)). We see that G(z) is
analytic on I',\supp 7 and has a finite number of simple poles at supp7 N T,.
Furthermore, RG(t) =0, t € 'y\supp.

It was proved first in [14, p. 130-131] that G(z) = F~!(z), so we can examine
the first kind C—function F' on the arc I'y. It is well known that the zeros of G
interlace its poles on Ty,” so that F = G~! has a finite number of poles on this
arc. Next, RF(t) = 0 for all ¢t € 'y, but a finite number of points. Therefore
supp u N [y is a finite set, as claimed.
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TeopeTuKo-onmepaToOpPHbIi MOAX0A K MCCJIEI0OBAaHUIO
OPTOTOHAJIBHBIX TOJIMHOMOB HA AYyTre € IUHUYHOMN
OKPY>KHOCTU

JI.B. Toymucknit

W3y4atorcst BEpOSTHOCTHBIE MEPHI HA €AUHUYHON OKPY2KHOCTH U OLepa-
TOPBI YMHOKEHUSI Ha HE3ABUCUMYIO IIEPEMEHHYI0 B COOTBETCTBYIOIIUX IPOCT-
pancrsax L?. Eciu Takas Mepa He yjosiersopser yciosuto Cere, T0 opTo-
HOPMUPOBAHHBIE MMOJIMHOMBI 00Pa3yI0T OPTOHOPMUPOBAHHBIM 0a3UC B 3TOM
rup0epTOBOM MIPOCTPAHCTBE. B 3TOM ciaydae omepaTop yMHOXKEHUS MPe-
craBuM Marpureit Xeccenbepra. OCHOBHOI pe3yabTaT pabOThI KACAETCs He-
KOTOPBIX OECKOHETHOMEPHBIX BO3MYIIeHui ""mocTosinHOi" MaTpunb! XecceH-
Gepra, KOTOpbIe UMEIOT KOHEYTHOE YNCII0 COOCTBEHHBIX 3HAUYEHUI BHE CYIIECT-
BEHHOTO CIIEKTPA.
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34

TeopeTuko-orepaToOpHUii ImiaAXia 10 BUBYAHHSA
OPTOrOHAJIbHUX IIOJIIHOMIB Ha AYy31 OJMHUYHOIO KOJIa

JI.B. Tonmiucekuit

BuBuaroTbcst iMOBIpHOCHI Mipu Ha OZMHUYHOMY KOJI Ta OIIEPATOPH MHO-
JKeHHsl Ha, He3aJle)kHy 3MiHHy y Bimmosimmmx mpocrtopax L2?. ¢dkmo Taxa
Mmipa He 3310BOJIbHsIE yMOBi Cere, TO OPTOHOPMOBAHI MOJIHOMU YTBOPIOIOTH
OPTOHOPMOBAHUI 0a3UC y BOMY Tip0epTOBOMY pocTopi. B manomy Bumaz-
Ky OIepaTop MHOXKEHHsI 300paxKyeThcsi Marpuleio Xecceubepra. OcHOBHUIA
pe3yJibTaT pobOTH CTOCYETHCH AEAKMX HECKIHYeHHOBUMIpHUX 30ypeHb "mo-
criitnoi" marpuni XeccenOepra, sIKi MAlOTb CKiHYEHHY KiJIbKICTb BJIACHUX
3HAYEHD 11033 ICTOTHUM CIIEKTPOM.
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