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A new definition of the integral for functions with values in Banach
spaces is presented. The new integrability is a weaker property than the
Bochner integrability but stronger than the Pettis one. This new definition
leads naturally to the notion of the limit set of integral sums, which may
be considered as a “generalized integral” for non-integrable functions. This
set is shown to be always convex and non-empty when the function has an
integrable majorant and the space is separable or reflexive.

Introduction

Let X be a Banach space, f : [0;1] — X be a bounded function (not neces-
sarily measurable). For every partition of [0;1] into a union of disjoint intervals
{A}}_, and every choice of points ¢, € Ay, one can define Riemann integral sums
S = S(f,{Ar}, {te}) = X p_1 f(tx)|Ak|]. One can consider the set Ir(f) of all
limit points of Riemann integral sums, when the maximal length of Aj tends to
zero. If f is not a Riemann integrable function then Ig(f) in a certain sense plays
the role of f’s “integral”. It is known that in a separable space Ir(f) is non-empty
[1] and it is a star-set [3]; in many spaces this set is convex for every bounded
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function: finite-dimensional [2|, B-convex, in particular, all L, with 1 < p < oo
[6], see also [4]; reflexive “weakly B-convex” [4]. An extensive survey of the con-
temporary situation in this field can be found in Appendix to [5]. Unfortunately,
this convexity theorem does not hold for I ([6]), and characterization of spaces
where Ip(f) is convex for every bounded function is still unknown (for example,
we don’t know the answer for the space ¢ of all vanishing numerical sequences).

Another negative feature of Ir(f) as a “generalized integral” is that it is based
on Riemann sums and thus even for a Lebesgue integrable function Ir(f) may
consist of more than one point. Moreover, all the theory makes sense for bounded
functions only.

The goal of this paper is to introduce a more general concept of Riemann—
Lebesgue (RL) integral sums in such a way that for scalar functions RL integra-
bility coincides with the usual Lebesgue integrability, and the set I(f) of limit
points has much better properties than Ix(f) does:

1. I(f) is convex for every function.

2. If f has an integrable majorant and the space is reflexive or separable then
I(f) is non-empty.

3. I(f) does not change if instead of the strong convergence one considers the
weak convergence.

1. The Riemann—-Lebesgue integral

In this section we introduce the new notion of integral sums for vector-valued
functions and investigate the basic properties of the corresponding integral.

Let X be a Banach space and let f : [0;1] — X be an arbitrary function
from the unit segment [0;1] into the space X. The Lebesgue measure on the
segment will be denoted by u. Let A be a measurable subset of [0;1]. Consider
I1, a partition of A into a countable number of disjoint measurable subsets: II =
{232, U2, Ai = A, AjNA; = @ for i # j. Let T = {t;} be a sequence
of sampling points, i.e., t; € A;. We can construct a formal series S(f,II,T) =
o2 f(ti)u(A;). If this series is absolutely convergent, we call it an (absolute)
Riemann—Lebesgue integral sum of f with respect to IT and T over A. If it is
merely unconditionally convergent, we will call it an wunconditional Riemann—
Lebesgue integral sum. In the sequel we will assume that A = [0;1], unless
otherwise specified.

It also seems natural to order the set of partitions in the following way. We
will say that the partition Il; follows partition Ily, or Iy is inscribed into Ilo
(ITy > IIy), if TI;is a finer partition, that is, if II; consists of subsets {D;}$°;
and ITy consists of {Ej}72,, then the set of indices N can be broken into disjoint
subsets Iy, k € N, Uz Ir = N such that Ey = J,.;, Di.

i€y,
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Now we can introduce a new definition of the integral, which we call, for lack
of a better term, the Riemann—Lebesgue integral.

Definition 1.1. A function f : [0;1] — X is called absolutely Riemann—
Lebesgue integrable over a measurable set A C [0; 1] if there exists a point x € X,
such that for any € > 0 there exists such a partition I of A, that for any finer
partition T' = II and any set of sampling points T, ||S(f,T',T) — z|| < €, and
the sum S(f,T',T) over A converges absolutely. This point x is called then the
absolute Riemann—Lebesque integral of f and denoted as usual, by fAf(t)dt. In
an analogous way, a function f is called unconditionally Riemann—Lebesgque in-
tegrable, if we use unconditional integral sums in the definition above. We will
also call an absolutely RL integrable function simply RL integrable.

Obviously, an RL integrable function is also unconditionally RL integrable,
while the converse need not to be true. It is true, however, if the space X is
finite-dimensional.

It is not hard to see that a Bochner integrable function is also RL integrable,
and the values of both integrals coincide.

Lemma 1.2. Let a countably-valued function f : [0;1] — X be Bochner inte-
grable. Then it is RL integrable, and the values of both integrals coincide.

Proof. Since the function f is countably-valued, we can write

()
f = Z Tn XA, »
k=1

where A, are disjoint sets, whose union gives the entire segment [0; 1] and z,, € X.
Since f is Bochner integrable, and therefore measurable, A,’s are measurable.
Consider the partition IT = {A4,}°2,. For any partition I' > II and any set of
sampling points 7', we will have

S(f,F,H) = Z-Tn//'(An) .

Since f is Bochner integrable, this series converges absolutely. Therefore the
function f is RL integrable and its RL integral equals the sum of the series, i.e.,
its Bochner integral. ]

Theorem 1.3. Any Bochner integrable function is also RL integrable, and
the values of both integrals coincide.
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Proof ULet f:[0;1] - X be a Bochner integrable function. Take
an arbitrary € > 0. There exists a countably-valued function g, approximat-
ing f:||f(t) —g(t)|| < eforall t € [0;1]. Then || [ fdu— [ gdu|| < €/3 (Bochner
integrals). According to Lemma 1.2, the function g is RL integrable. Therefore,
there exists a partition II, such that for any finer partition I' > II and any set
of sampling points T, ||S(g,T,T) — [ gdu|| < €/3. Since ||f(t) — g(?)|] < €/3,
[|S(g,T,T) — S(f,T,T)|| < ¢/3. Thus, [|S(f,T,T) — [gdu|| < 2¢/3, and there-
fore ||S(f,T,T) — [ fdu|| < e. This proves that Bochner [ fdu is the RL
integral of f. ]

The converse, however, is not true in general, but we can guarantee that
an RL integrable real-valued function is Lebesgue integrable.

Theorem 1.4. A real-valued RL integrable function is Lebesgue integrable.

Proof Let f:[0;1] — R be a RL integrable function. We will construct
a sequence of Lebesgue integrable countably-valued functions that converges to
f is measure.

Fix an index n. Since f is RL integrable, there exists such a partition II, that
for any two finer partitions I’ and IT” and any sets of sampling points 7" and T",
we have |S(f,II',T") — S(f,II",T")| < 1/n. Let’s choose II,;’s for all n such that
II; <1, <TI3 <... .

Let IT,, = {An;}°,. Fix a t,; € Ay, in each A, ; arbitrarily. Define f, as
follows:

fo=>_ fltni)xa,, -
=1

Obviously, f, is Lebesgue integrable, [ fndu = S(f,11,,T,), where T,, = {t, ; }°;.
Let’s denote by ws(A) the oscillation of f on a set A, i.e.,

ws(A) = sup{|f(z1) — f(22)] : 21,29 € A},

It is clear that if wy(A) > a, then there exist zi,z2 € A, such that |f(z) —
f(z2)| > a/2.

Fix an arbitrary n > 0. Let’s show that the total measure of those subsets
I1,,, where the oscillation of f exceeds 7 is bounded by 2/(nn), i.e.,

w( U B <2/0m). (1)

Bws(An,i)>n

Indeed, if this were not so, then by moving sampling points in these A, ;’s, we
could obtain two integral sums that differ by at least (n/2) - 2/(nn) = 1/n,
which is impossible due to the choice of II,,. Condition 1.1 implies that p*({t :
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|f(t)— fn(t)| > n}) <2/(nn) — 0asn — oo, ie., {fr} converge to f in measure.
Therefore there exists a subsequence { f,, } that converges to f almost everywhere.
Note that all f,, have a Lebesgue integrable majorant. Indeed, due to the choice
of Iy, f is bounded on each subset Ay ;, and

> sup - p(Ar) < oo

i=1 Al,i

Therefore the function F = 72, SupA, ; [+ Xxa,,; is a Lebesgue integrable ma-
jorant of fi as well as all f,’s, since II,, > II; for all n. Thus we can apply
the Lebesgue dominated convergence theorem to prove that f is Lebesgue inte-
grable. |

To demonstrate that the class if RL integrable functions is indeed strictly
larger than that of Bochner integrable, we now present an example of non-
measurable RL integrable function.

Example 1.5. Consider the space l5([0;1]). It consists of all such functions
f 2 [051] — R that 3510, |f(#)]? < oo (it follows that these functions take
non-zero values on countable subsets of [0;1]). The norm on I2([0;1]) is given
by [[f]l = reqon |£(#)>)Y/2. Tt is easy to see that I5([0;1]) is a non-separable
Hilbert space. Its orts are given by e; = x4}

Now consider a function f : [0;1] — I2([0;1]): f(t) = e;. This function is
not measurable, since it is not even “almost separable-valued”. However, it is RL
integrable. To see that, note that for any partition II = {A;} and any sample
points T' = {t;},

ISULILT) = (1D FE @)l = 11D ern(Ad)l]
= O u@)HV2 <O d) - u(ay)'?
= VA (Y wA)? = \/d(),
where d(II) denotes sup{z(A;)}. Now take an arbitrary e > 0. Fix a partition IT

with dII < e. Then for any I > TI, any 77, ||S(f, I, T")|| < VdII' < VdII < e.
Thus f is RL integrable and the integral equals 0.

However, even unconditional RL integrability implies a weaker kind of in-
tegrability, namely Pettis integrability. To show this, let us first consider the
following simple lemma.

Lemma 1.6. Let a function f be (unconditionally) RL integrable over a set
A C [0;1]. Then for any measurable subset B C A, f is (unconditionally) RL
integrable over B.
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Proof. We will prove the lemma for absolute sums. The proof for uncon-
ditional sums is analogous.

Assume that on the contrary, f is not RL integrable over B. Fix an ¢ > 0.
Since f is RL integrable over A, there exists a partition IT4 = {A;} of A, such
that

1) for any finer partition I'y > II4 and any set of sampling points T4, the
series S(f,T'4,T4) is absolutely convergent;

2) for any two finer partitions I, and I'"y and any sets of sampling points 7%
and T, [|S(f, T4, Ty) — S(f, T4, TH) <e.

Consider a partition IIg of B formed by all non-empty intersections of A;’s
with B. Since f is not RL integrable over B, there either exists a partition
I'p > IIp and a set of sampling points T, such that the series S(f,I'p,Tp) is
not absolutely convergent, or there exist two partitions I > IIp and '} > Ilp
of B with their corresponding sets of sampling points T and T, such that
1S(f, T, Ts) — S(f,T%,Th)|| > €. In the former case, complement I'g by all
non-empty intersections of the form A; N (A \ B), and T by arbitrarily selected
sampling points in those intersections, to get a partition I'y = II4 of A with
sampling points T4, such that S(f,I'4,7T4) is not absolutely convergent (since
any subseries of an absolutely convergent series has to be absolutely convergent).
In the latter case, complement both Iz and I'; by the same intersections A; N
(A\ B), and Ty and T by arbitrarily but identically selected sampling points
in those intersections, to get two partitions I, > II4 and I} > II4 of A with
their corresponding sets of sampling points 7% and 1%, such that ||S(f,T",,T%) —
ST TO = 1S(f, T, Ty) — S(f,T'5, Th)|| > €. In both cases we arrive at a
contradiction, which proves the lemma. [

Now, let f : [0;1] — X be an unconditionally RL integrable function and
F € X* a continuous linear functional on X. Since F(S(f,II,T)) = S(Fof,II,T),
it is easy to see that F o f is RL integrable and [, F o fdu = F [, fdu for any
measurable A C [0;1]. But Fof is a real-valued function, therefore its RL integral
coincides with its Lebesgue integral. Thus F [, fdu (RL integral) is the Pettis
integral of f over A.

Now we will present an example of a Pettis integrable function which is not
unconditionally RL integrable, thus showing that the property of RL integrability
lies strictly between the Bochner and Pettis integrabilities.

Example 1.7. Again, consider the non-separable Hilbert space I5(T"), where
I" has the cardinality of continuum. Let us denote by P the set of all countable
collections of non-negligible disjoint F,-subsets of [0;1]. For every partition IT =
{A;}{° we can find a II' € P, II' = {A!}9°, such that A] C A; and p(A;\AL) =0.
Because of this property, we can identify P with the set of all partitions for the
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purposes of creating integral sums . Since the set of all F;; sets has the continuum
cardinality, the set P has the continuum cardinality too. Therefore there exists
a bijective map a : P — I'. We will now construct a function f : [0;1] — Io(T),
with the following properties:

L f([0;1]) € {ey} U {0};
2. for each ey, f~!(ey) is countable;

3. for each IT € P there exists an ort e, (7 = a(II)) such that for any element
A of TI, there is a t € A with f(t) = e,.

Such function f is quickly seen to be Pettis integrable. Indeed, as Io(T")
is a Hilbert space, any linear functional F' on l9(T") is the scalar product with
an element of 5(I"), which, in turn, has a decomposition in terms of e,’s. But
< f(t),ey >= 0 almost everywhere (the scalar product is not equal to zero only in
that countable number of points ¢t where f(t) = e,). Therefore, for any F' € I(I),
Fo f =0 a.e., and thus Pettis integral of f equals 0.

However, f is not unconditionally RL integrable. Indeed, consider an arbitrary
ITeP, II={A;}. If y = a(II), we can choose the sampling point ¢; within each
A;, such that f(¢;) = e, and therefore have S(f,II,T) = e,. Thus, for each
partition we can have finer partitions with their integral sums equal to e,’s,
and, by virtue of (2), among these e,’s there are different ones. This would be
impossible if f were unconditionally RL integrable.

Now we will prove that such a function f exists. In order to construct f,
we will exercise transfinite induction. The set P = {II} has the continuum
cardinality. There exists an ordinal number 2, which is the smallest ordinal of
the continuum cardinality. Therefore, P can be completely ordered and numbered
with ordinal numbers smaller than Q: P = {II;, Iy, ..., II,,...}.

We will construct a collection of disjoint countable subsets A, C [0;1], indexed
with ordinals o < €2, with the following property: for every partition II, = {A;}
with o < Q, the set A, contains exactly one point of each A;. Such construction
could be easily accomplished by transfinite induction, since for every o the set
Up<o Ao is of less than continuum cardinality.

Now we set f(t) = ey, for t € Ay and f(t) = 0 for ¢ € [0;1] \ U, 4o-
The properties (1)—(3) are evident for this function. ]

We have shown that Bochner integrable, RL integrable, unconditionally RL
integrable and Pettis integrable functions, in this order, form a strictly increasing
sequence of function classes. However, if we restrict ourselves to separable Ba-
nach spaces only, the first two members of the sequence, as well as the last two,
coincide.
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Theorem 1.8. Let X be a separable Banach space. Then for X -valued func-
tions RL integrability coincides with Bochner integrability.

Proof. Inview of theorem 1.3 we only need to show that an RL integrable
function is Bochner integrable. Let f : [0;1] — X be such a function. It is easy to
see that for any functional F' € X*, F o f is a real-valued function, which is RL
integrable, and therefore simply Lebesgue integrable. This means that F o f is
measurable, and therefore f is weakly measurable. Due to X’s separability, this
is equivalent to strong measurability of f.

Now to prove that f is Bochner integrable, it is sufficient to show that || f|| is
a Lebesgue integrable function. Let’s find an integrable majorant for || f||. Since
f is RL integrable, there exists a partition IT = {A;}%,, such that for any finer
partition II' - IT and any set of sampling points T' = {¢;}$°,, the series S(f,II',T)
is absolutely convergent. In particular, it means that for any choice of sampling
points for the partition II, the series S(f,II,T") is absolutely convergent. But this
implies that the series

1

Z sup || f ()| (As)
i—1 D

is convergent. This, in turn, means that the countably-valued scalar function

o
g= ngpllf(ti)llxm
=1

i

is Lebesgue integrable. But g clearly majorates ||f||. Therefore ||f|| is Lebesgue
integrable, and thus f is Bochner integrable. ]

Theorem 1.9. Let X be a separable Banach space. Then for X -valued func-
tions unconditional RL integrability coincides with Pettis integrability.

Proof. Wehave already shown that RL integrability implies Pettis integra-
bility in the general case. Let’s show the converse implication. Let f : [0;1] = X
be a Pettis integrable function and Pettis — fol fdp=z € X.

Fix an € > 0. Our first goal is to cover the image of f by a countable
number of disjoint Borel sets B;, such that diamB; < e. Indeed, since the space
X is separable, we can cover f([0;1]) by a countable number of balls B with
diamB] < e. Now let By = B, By = (By \ B1), B3 = (B} \ (B U By)), etc.
Since B; C Bj, diamB; < e. Obviously, B;’s are Borel and they form a disjoint
covering of f[0;1].

Let A; = f~1(B;). Clearly A;’s are disjoint and their union gives the entire
segment [0;1]. Since f is Pettis integrable, it is weakly measurable, which is
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equivalent to being measurable, in view of X’s separability. Therefore, the sets
A; are measurable.

Consider the partition IT = {A4;}. Take an arbitrary I' = {A;} > II with
arbitrary sampling points T = {¢;}. Let’s show that ||S(f,I',T) — z|| < € and
S(f,T,T) converges unconditionally. Let z; = Pettis — [ A fdu. Since the Pettis
integral is a countably-additive function of the set, the series > °° | x; converges
unconditionally and its sum equals z. Pick a A;. There exists an A,, such
that A; C An. Since f(A;) C f(An) C By, we have z; € u(A;) - convf(A;) C
p(4;) - convB,. Now the condition diamconvB; = diamB; < e allows us to
conclude that ||f(¢;)p(A;) — zi|| < eu(A;) for any 7. But this implies that the
series S(f,T,T) = f(t;)u(A;) converges unconditinally and

IS(F,T,T) ==l = (D Flt)m(Ai) = =il
1D (F ) m(Ad) — )|
SN — zil| <€ p(Ay) =e.

This proves that f is inconditionally RL integrable. ]

IN

Theorems 1.8. and 1.9. provide an interesting justification to the widely known
informal statement that “the difference between Bochner and Pettis integrabilities
is the same as that between absolute and unconditional convergences”.

2. The limit set of integral sums

The notion of RL integral introduced above naturally leads to a related notion
of the limit set of integral sums.

Definition 2.1. Let f : [0;1] — X be an arbitrary function with values in
a Banach space X. We say that a point x € X belongs to the limit set I(f) if
for every € > 0 and any partition 11 there exists a partition I > II, and a set of
sampling points T', such that ||S(f,T',T) — z|| < € and S(f,T',T) is an absolute
integral sum. In other words, I(f) is the set of all partial limits of f’s absolute
integral sums.

One can also consider an analogous notion of unconditinal limit set, where
unconditional RL integral sums are used.

If f is RL integrable, then I(f) obviously consists of just one point — the
f’s integral. However, even if f is not integrable, the limit set I(f) can be
non-empty and play the role of f’s “generalized integral”. We will show that
I(f) is non-empty if the space X is separable or reflexive and f has a scalar
Lebesgue integrable majorant. We will also show that I(f) is always convex.
This is surprisingly different from the case of Riemann Ir(f), where non-convex
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examples for [;-valued functions have been constructed (see [6]). Note also that
I(f) is obviously a closed set.
To approach the convexity theorem we will need some lemmas.

Lemma 2.2. For any function f : [0;1] = X and any partition II of [0;1],
the set {S(f,T,T) : T > I1} is convex (both for absolute and unconditional sums).

P r o o f. Throughout this proof the word “convergence” will mean either
absolute or unconditional convergence. The proof is identical for both cases.

Let S(f,II',T') and S(f, 11", T") be two convergent RL integral sums, where
II' = II, 1" » II. Let’s show that for any A € [0;1] there exists a partition
[ > II and a set of sampling points T, such that S(f,T,T) = AS(f,II",T") + (1 —
NS(f, T, 7).

Let IT = {A}32,. Consider a particular Ay. Let {Al} and {A]'} be the ele-
mens of IT" and II”, which are subsets of Ay, i.e., |J; Al = J; A = A, and let
{t;} and {t/'} be their corresponding sampling points. Denote S’ = Y. f(¢;)u(A))
and " =3, f(t7)u(AY), segments of sums S(f,II',T") and S(f,II",T") respec-
tively, located on Ap. Let’s construct such a partition of Ay that the integral
sum over it equals AS" + (1 — X)S”.

Let’s enumerate the elements of the denumerable set {t] }U{t!} as {a1,a2,...}.
The expression AS"+(1—X)S” can be written as >, Bk f(ax), where f§j are certain
real coefficients, namely:

o B = Au(A}), if ap =t} and ay, ¢ {t]'};

o G = (1= Ap(AY), if a = ¢ and ay & {};

o Br = Au(A)) + (1 = ANu(A)), if ap =t; =1
Therefore

D B =) A+ (1= Nu(A]) = u(An) + (1= Nu(Ay) = p(Ay).
k 7 l

In view of this fact, we can partition the set Ay into certain disjoint mea-
surable sets ¢}, (their number being equal to that of aj’s), such that p(cy) = By.
Now if we denote ¢ = ¢, U {ax} \ {ai}izk, then still p(cy) = B, cx’s are disjoint,
but ar € cg. Therefore we can consider {cy} as a partition of Ay with sam-
pling points aj. The integral sum over it equals >, f(ag)p(cr) = Dk Brf(ar) =
AS 4+ (1 —X)S".

We can construct such partitions for each Ay in II. Their union will give us a
partition of the entire segment [0; 1], which is finer than II, and its integral sum
equals AS(f,II',T") + (1 — X\)S(f, 11", T"). This proves the lemma. [
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Lemma 2.3. The limit set I(f) equals the intersection of the closures of the
sets {S(f,T,T) : T' = II} ower all partitions I (both for absolute and uncondi-
tional sums).

P roof. Indeed, by the definition, a point = belongs to (;c{S(f,T,T) :
I > II} if and only if

VIIVedl = IL,3T : ||S(f,T,T) — || < e

which is exactly the definition of z € I(f). ]

Theorem 2.4. The limit set I(f) is always convez.

Proof. Itisan immediate consequence of Lemmas 2.2 and 2.3, and the
following obvious facts: the closure of a convex set is convex; the intersection of
a family of convex sets is convex. [

Now we proceed to investigate when the limit set I(f) is non-empty. In order
to do that we will introduce the set of weak limits of RL integral sums.

Definition 2.5. Let f : [0;1] — X be an arbitrary function. We will say
that a point © € X belongs to the weak limit set WI(f) of f if for any weak
neighborhood U of x© and any partition I1 of [0;1] there exists a finer partition
I' > II and a set of sampling points T, such that S(f,T',T) € U. Depending on
whether S(f,T',T) denotes an absolute or unconditional RL integral sum, we can
distinguish the absolute and the unconditional WI(f).

It is obvious that I(f) € WI(f). We will show now that in fact I(f) =
WI(f).

Lemma 2.6. The weak limit set WI(f) equals the intersection of the weak
closures of the sets {S(f,T,T) : T' = I} over all partitions II.

Proof. Justasin Lemma 2.3, note that by the definition, a point x belongs
to Ny wel{S(f,T,T) : T' > II} if and only if

VIIVU — weak neighborhood of z 3I" > II, 3T : S(f,I',T) € U

which is exactly the definition of z € WI(f). [

Theorem 2.7. The weak limit set WI(f) coincides with the strong limit set
I(f) for all functions f : [0;1] — X.

Matematicheskaya fizika, analiz, geometriya , 2000, v. 7, No. 1 59



V.M. Kadets and L.M. Tseytlin

P roof According to Mazur theorem, the weak and the strong closures
of the convex (Lemma 2.2) set {S(f,I',T) : T' > II} coincide. The claim of the
theorem now follows from the Lemmas 2.3 and 2.6. ]

Theorem 2.8. Let the space X be reflexive and let a function f :[0;1] — X
have an integrable scalar magjorant. Then the set WI(f) is non-empty.

Proof. Letg:[0;1] = R be the majorant of f, i.e., ||f(¢)|| < g(t) for all
t € [0;1]. Since g is integrable (for scalar functions we don’t have to distringuish
between Lebesgue and RL integrabilities), i.e., its integral sums have a limit, there
exists a partition II, such that the set {S(g,I',T) : ' > II} is bounded. Since
1S(f, T, )| <S(|f|,T,T) < S(g,T,T), the sets {S(f,T,T): I' = II'} C X are
also bounded for any II" = II. Since X is reflexive, these sets are relatively weakly
compact. Therefore the intersection of their weak closures [\ wel{S(f,T,T) :
' = II'} is non-empty. According to the Lemma 2.6, this intersection equals
WI(f). This proves the theorem. ]

Theorems 2.7 and 2.8 give us the following important corollary.

Corollary 2.9. Let the space X be reflexive and let a function f :[0;1] — X
have an integrable scalar majorant. Then the limit set I(f) is non-empty.

Our next goal is to prove a much more complicated fact: if the space X is
separable and f has an integrable scalar majorant then I(f) is non-empty.

Theorem 2.10. Let X be a separable Banach space. Let f : [0;1] = X be a
function that has a Lebesgue integrable scalar majorant. Then I(f) # @.

To prove this theorem we will need several lemmas. In the sequel, g will
denote f’s integrable majorant, i.e., ||f(¢)|| < g(t) for all ¢ € [0;1]. Note that
since ¢ is scalar, it’s Lebesgue integrability is equivalent to RL integrability.
Therefore there exists a partition IIy, such that for any II > IIy and any set
of sampling points 7', the series S(g,II,T) are convergent. Since g majorates
f, then S(f,II,T) is also absolutely convergent. Without loss of generality, we
can consider only partitions that are finer than IIy and thus guarantee that f’s
intergal sums over these partitions are absolutely convergent.

Now we introduce the notion of e-approximable and e-spread partitions and
consider their properties.

Definition 2.11. We will call a partition T' with sampling points T e-appro-
zimable (for the given function f), if for any finer partition T' > T there ezists a
set of sampling points T', such that ||S(f,T,T) — S(f,I",T")|| < e.

We will call a partition T with sampling points T e-spread if

60 Matematicheskaya fizika, analiz, geometriya , 2000, v. 7, No. 1



On “integration” of non-integrable vector-valued functions

1. each A; contains a (not necessarily measurable) subset P;, such that p.(A;\
P;) =0 and diamf(P;) < e

2. the sampling point t; of A; lies in P;.

Lemma 2.12. An e-spread partition that is finer than Iy is e-approximable.

Proof. LetT = {A;}2, be an e-spread partition with sampling points
T = {tr}32, (T > 1p). Let I = {¢;}:2, be an arbitrary partition, inscribed into
I'. For any 7 we will denote by k(i) the index k for which ¢; C Ag. Note that
¢i () Py(iy # @, since otherwise Ay ;)\ ¢; would be a measurable set containing Py,
whose measure is strictly less than that of Ay(;) — which contradicts the property 1
of e-spread partitions. Choose the set of sampling points 7" = {¢.} for I by
picking ; € ¢; [ Pys)- Since IV =T » Ty, S(f,T,T) < oo and S(f,T',T") < o0.

We have S(f,,7) = S22, f(tu(A) = 22, f(tyg)iled). Therefore

I E Ft)ples) — Z f () u(ei)
< ZHf tk(z Nplei) <

||S(f7F’7T’) —S(f,P,T)H

since t, k(i) € Pr(i), and diamPy ;) < e. This proves the lemma. ]

Now we will describe how to construct an e-spread partition inscribed into a
given one. In order to do this, consider an arbitrary measurable set Q C [0;1]
and its not necessarily measurable subset P C €2, such that u.(Q\ P) = 0. We
will construct an e-spread partition of €2, such that the P;’s, mentioned in the
definition of the e-spread partition, are subsets of P.

Let’s partition the set f(P) into a countable number of disjoint subsets {B; }°,,
such that diamB; < e. This is possible because the space X is separable.

Take P, = f~}(Bj). There exists a measurable set By D Pj, such that
w(E1) = p*(P1). Then, denote P, = f~1(B) \ E1. There exists a measurable
set B9 D Py, such that Ex(E1 = @ and p(El) =K *(Py). Continue this pro-
cess. At the kth step we take P, = f 1(Bg) \ U ' E; and Ej, D P, such that
Ey ﬂ(U'c 1E) = @ and u(Eg) = p (Pk). In this manner we construct P and
Ej for all k € N.

Note that Up_; Ex D Up_ f~1(By) for any n and J;2; f~(By) = P, there-
fore Jpe; Ex O P. But (Jp—, Ex is a measurable set, therefore |Jio, Ey = Q.
Thus {Ej}32, is a partition of Q. It is obvious from the construction that this
partition is e-spread.
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Lemma 2.13. Let the partition I' with the sampling points T be e-spread,
' = IIy. Then for any € < € there exists a €' -spread partition T with sampling
points T, such that ||S(f,T,T) — S(f,T,T")|| < e.

Proof LetT ={A;}2, and let P, C Ay, be the subsets mentioned in the
definition of an e-spread partition. Apply the partitioning procedure described
above to each Ay, taking P = P,. We will obtain an €'-spread partition of each
Aj. Their union will give us an €'-spread partition of the entire segment [0;1],
inscribed into I'. Denote it by I'' = {A’} and its sampling points by 7" = {¢.}.
Let’s estimate ||S(f,T,T) — S(f,I',T")||. Just like in Lemma 2.12, denote by
k(i) the index k, for which A} C Aj. By applying the same argument as in
Lemma 2.12, we'll get that ||S(f,T,T) — S(f,T',T")|| < € due to diamP;) < e.

[ |

Lemma 2.14. Assume that for each k € N there exists an ex-approximable
partition 1l = Iy with sampling points Ty. Assume that ¢ — 0 and dz =
limy_, o S(f, HkaTk) € X. Then x € I(f)

Proof. LetII be an arbitrary partition of the segment [0;1], and ¢ > 0.
Since €, — 0 and S(f,IIx,Tx) — z, there exists an index n, such that €, < €/2
and ||S(f,I,,T,) —z|| < €¢/2. Take an arbitrary partition II', which is finer than
any of II, Iy and II,. Since the partition II,, with the sampling points 7}, is €,-
approximable, there exists a set of sampling points 7", such that ||S(f,TI',T") —
S(f, ., Ty)|| < €n < €/2. But ||S(f,II,,T,,) — z|| < €/2. Thus we obtain
that ||S(f,II',T') — z|| < €/2+ €/2 = €. So, for an arbitrary partition IT and
€ > 0 we have found a finer partition I’ > II and sampling points 7', such that
[|S(f,II',T') — z|| = €. This means that = € I(f). [

Now we can complete the proof of the Theorem 2.10. We will construct a se-
quence of eg-approximable partitions Il with sampling points T}, such that
I, > Ip, ¢4 — 0 and there exists a limit of S(f,II; T}). By Lemma 2.14 this
limit will belong to I(f).

Take ¢, = 27%. By Lemma 2.13 we can construct an e;-spread partition
IT; with sampling points 77, inscribed into IIy. By Lemma 2.12 it will be €;-
approximable. Then by Lemma 2.13 there exists an eg-spread (and therefore
eg-approximable) partition ITy with sampling points T, inscribed into II;, such
that ||S(f,2,T2) — S(f,II1,71)|| < €1. By the same lemma, there exists an
es-approximable partition II3 with sampling points 73, inscribed into Ils, such
that ||S(f,II3,T73) — S(f,II2,T%)|| < e2. Continuing this process, we will con-
struct the sequence {IIj }, such that ||S(f, Mxt1, Tk+1) — S(f, g, Tk)|| < €x. Since
Y ope €k < o0, the sequence {S(f,II,T))} is convergent. This proves the theo-
rem. ]
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If the space X is neither separable nor relfexive, one cannot guarantee that
the limit set I(f) isn’t empty even for a bounded function. The following example
demonstrates this.

Example 2.15. Consider the space [;[0;1]. Consider the function
f :[0;1] — 11([0;1]) identical to that of Example 1.5, that is, f(t) = e;. It is
easy to see that the /;-norm of any integral sum S(f,T',T) of f is 1. Suppose
that there exists an z € I(f). Then ||z||;, = 1. Consider coordinate functionals
0t € (11[0;1])*: d¢(g) = g(¢). For every t € [0;1] we have &;(f(7)) = 0 for almost
all 7 € [0;1] (in fact, for all 7 # t). But because z # 0, there exists such ¢y € [0; 1],
that &, (z) # 0. But

5t0($) € 5to(I(f)) C I((Sto of) = {0}

This contradiction shows that I(f) = @.

The characterization of those Banach spaces X where I(f) # @ for all func-
tions f is yet unknown to the authors.

We have established that I(f) is always a convex closed set. It is also easy to
see that I(f)’s cardinality is not greater than continuum. Indeed, it was already
noted that we may restrict ourselves to consider only partitions into Fj,-sets, and
the number of such sets is continuum. Now it is natural to ask, if an arbitrary
convex closed set of no more than continuum cardinality is the I(f) set for a
certain function f. We can answer this question in positive.

Theorem 2.16. For an arbitrary convex closed set S of no more than con-
tinuum cardinality in a Banach space X there exists a function f : [0;1] — X,
such that I(f) = S.

P roof. Our construction will be very close to that of Example 1.7. We
introduce the same set P and consider its elements instead of partitions. We will
construct a function f with the following properties:

1) £(16;1]) C S5

2) for any IT € P, any A € II and any = € S there exists a ¢ € A, such that
ft) = .

It is clear that all points z € S belong to I(f). On the other hand, since f
does not take values outside the set S and any integral sum is a limit of convex
combinations of f’s values, I(f) C S. Thus I(f) = S.

Just like in Example 1.7, we introduce the smallest ordinal number Q of
continuum cardinality and index P with ordinals ¢ < Q. Now we consider the set
of all pairs (II, z), where II € P and = € S. This set has continuum cardinality,
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and therefore there exists a bijective map a : P — P x S§. We denote by § and
~ the superpositions of this map with the natural projections from P x S onto P
and onto S respectively. Thus 8 maps P onto P, v maps P onto S.

Then we construct a family of mutually disjoint sets A, , indexed with ordinal
numbers ¢ < 2 with the following property: for any o < 2, A,, meets each subset
of the partition IT = (II,) at exactly one point. The construction is accomplished
in the way, analogous to Example 1.7. Once the sets A, are constructed, we put
f(t) =~(11,) if t € A, and let f(¢) be an arbitrary element of S'if ¢ € [0; 1]\ 4s-.
The function f satisfies the properties we need. Indeed, for each Il, € P and each
z € S consider the ordinal v, which is the index of IT, = o~ (I, z). Then the
set A, meets each subset of B(Il,) = II, and f equals y(II,) = z at each point
of A,. This completes the proof.

Note that in the process of the proof we have found a continuum-cardinality
collection of disjoint non-measurable sets f~'(z), r € S, each having its outer
measure equal the measure of the entire segment [0; 1]. |

For the purposes of clarity we considered functions f defined on the unit
segment [0; 1] with the regular Lebesgue measure. However, all our constructions
make sense on an arbitrary measure space (2,%, ). All the main facts remain
valid, as long as the measure p is atomless.
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06 "unrerpupoBaHun" HEMHTErPUPYEMbBIX
BEKTOPHO3HAYHBIX (DYyHKITUH

B.M. Kager, JI.M. Hetirima

IIpeacraBneno HOBOe OmpenesieHre HHTErpata st PyHKIUHA CO 3HAYEHN-
My B 6GaHAXOBOM TpocTpaHcTBe. HOBOE CBOMCTBO MHTErPUPYEMOCTH SIBJISI-
ercsi bosee cyiabbiM CBOMCTBOM, Ye€M MHTErpupyeMocTs no Boxuepy, Ho 6Gosee
CUJIbHBIM, YeM WHTErpupyeMocTh no IlerTucy. 9To ompeeieHne HHTerpaa,
€CTE€CTBECHHBIM 06p330M BeIEeT K IIOHATUIO MHOXKECTBa IIPEACJIOB HHTEr'PaJIb-
HBIX CyMM, KOTOPOE MOXKET PACCMAaTPUBATHCHA KAaK ~0O0OLIEHHbIM HHTErPaJr’
JUisl HemHTerpupyeMbix ¢dpyHkuuii. ITokazaHo, 4T0 JaHHOE MHOXKECTBO BCEr-
/13, BBIILYKJIO M HEILyCTO, €Ciau (DYHKIMS UMEET MHTEIPUPYEMYIO MAXKOPAHTY,
a MMPOCTPAHCTBO CenapabeIbHO WM PedIeKCUBHO.

IIpo "inTerpyBanus" HeiHTErpoOBHUX
BEKTOPHO3HAYHUX (DYyHKITii

B.M. Kagens, JI.M. IeitTain

IIpencraBieno HOBe BU3HAYEHHs iHTErpasia, juisi (bYHKINH 31 3HAYEHHSI-
Mu B banaxoBomy npocropi. HoBa BiacTuBiCTh iHTEIPOBHOCTI € CIAOKIIIO0
BJIACTUBICTIO 3a iHTerpoBHicTh 33 BoxHepoMm, aje cunpHINIO0, HiXK IHTErpOB-
micts 3a Ilerricom. Ile Bu3HaueHHST iHTErpasia MPUPOAHUM YMHOM BEIE 0
MMOHSITTSI MHOXKWHY T'PAHULD iHTErPAJIBHUX CYM, sIKE MOXKE DPO3TJISIATHUCS SIK
“y3arajapHeHuil inTerpas’ mist HeinterpoBuux (yukuiii. Ilokazano, mo ga-
HA, MHOXKWHQ, 3aBXK/IU € OMYKJIOK, & TAKOXK HEMYCTOH, SKINO (DYHKIs Ma€
iHTEerpOBHY MaXkOpaHTy, & HPOCTIP € cenapabesibHuM ab0 pedIeKCUBHUM.

Matematicheskaya fizika, analiz, geometriya , 2000, v. 7, No. 1

65



