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Let 1 -+ A - E - G — 1 be a short exact sequence of locally compact
groups, A amenable. Given a recurrent G-valued cocycle w of an ergodic
nonsingular transformation, we consider the subset of those E-valued cocy-
cles whose G-projection is w. It is proved that for a generic cocycle from
this subset the restriction of the associated (Mackey) E-action to A is trivial.
This improves some results of K. Dajani (1991, 1993) and answers a question
from her paper in Trans. Amer. Math. Soc. (1991).

0. Introduction

Consider a short exact sequence of locally compact second countable (l.c.s.c.)
groups
1-A—-ESHG 1. (0.1)

Let T be an ergodic transformation of a Lebesgue space. We endow the subset
of all E-valued cocycles of T" with the (Polish) topology of convergence in mea-
sure. It is well known that for a generic E-valued cocycle of T' the associated
Mackey action of E is trivial [PS, CHP]. We study in this paper a more subtle
problem. Given a G-valued cocycle w of T, we denote by Z! the closed subset
of E-valued cocycles whose G-quotient is w. Our purpose is to show that for a
generic cocycle from Z the associated Mackey E-action restricted to A is trivial,
i.e., A is contained in the stability group of a.e. point, or, equivalently, A is a
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subgroup of the kernel of the unitary representation of E generated by this ac-
tion (provided that w is recurrent and A amenable). This strengthens the main
result of K. Dajani from [D3], where it was proved that a generic cocycle from
ZL is recurrent and the intersection 74 of its essential range (i.e., an analogue
of the Krieger—Araki-Woods asymptotic ratio set) with A contains infinity. (She
additionally assumed that A is Abelian and noncompact and (0.1) splits.) She
also asked in [D1] whether the subset of cocycles from Z! with 74 = {1, 00} is
residual? As it follows from our result stating that generically 74 = G U {oo} the
answer is quite opposite: this subset is of first category.

Notice that the main result of this paper turned out to be useful in studying
the centralizer of ergodic skew products [DL]. We also study the A-cohomology
relation on the space of E-valued cocycles: two cocycles are A-cohomologous
if they are cohomologous in an ordinary sense and, besides, admit a transfer
function with values in A. It suffices to restrict ourselves to studying Z!, since
it is saturated with respect to the A-cohomology relation—see Sections 2, 3 for
details. Remark that the subject of this work is related closely to the theory of
the so-called ‘H-cocycles’ elaborated by several authors [D1-D3, Ul, Be]. In this
paper we demonstrate a different approach to the problems considered there: we
first translate them into the language of usual cocycles and then apply a wealth
of the low dimensional cohomology theory for hyperfinite equivalence relations
[FM, S1, S3, Z2, GS1, GS2, Dal. This permits us to extend and refine many of
the results from [D1-D3, Be| providing them with new short proofs.

The outline of the paper is as follows. Section 1 contains a background on
measured equivalence relations and their cohomology. In Section 2 we find an
“ergodic” criterion for the sequence (0.1) to split (Theorem 2.4). We also find con-
ditions under which an ergodic A-action can be extended up to an E-action on the
same measure space (Proposition 2.5, cf. [Be|). Furthermore, the A-cohomology
relation for cocycles is studied. For example, A-analogues of the essential range
and the normalized essential range of a cocycle from Z) are investigated in Propo-
sition 2.7. (The second one is an invariant for the A-cohomology.) We also con-
sider a natural map from Z], to the set of cocycles of the w-skew product extension
of T' and study its functoral (cohomological) properties in Remark 2.2 and The-
orem 2.3. The interplay between these results and the theory of ‘H-cocycles’ is
explained in details in Section 3. The last Section 4 contains the main result
of the paper — Theorem 4.4 (about the generic property of Z1) and explains its
relation to K. Dajani’s work.

The author would like to thank S. Bezuglyi for a discussion on the subject.
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1. Preliminaries

Let (X, B, 1) be a standard probability space. Denote by Aut(X, ) the group
of its automorphisms, i.e. Borel, one-to-one, onto, gy-nonsingular transformations.
Throughout this paper we do not distinguish between two measurable maps which
agree on a conull subset. Given a Borel discrete y-nonsingular equivalence relation
R C X xX, we endow it with the induced Borel structure and the o-finite measure
YR, dur(z,y) = du(x), (z,y) € R, and write

[R] = {ye€Aut(X,p) | (yz,z) € R for p—a.a. z € X},
N[R] = {6 € Aut(X,u) | (0z,0y) € R iff (z,y) € R for ur—a.a. (z,y) € R}

for the full group of R and the normalizer of [R] respectively. For a countable
subgroup I' of Aut(X, u) we denote by Rr the I-orbital equivalence relation (and
it is known that each R is of the form Rr [FM]). R is called hyperfinite if it
is generated by a single transformation. R is of type I if the R-partition of X
is measurable. R is conservative if p-a.e. ergodic component of this partition is
properly ergodic.

Let G be al.c.s.c. group, 1g the identity in G, and Ag the right Haar measure
on G. A Borel map a: R — G is a (1-)cocycle of R if

a(z, y)aly, z) = a(z, 2)

fora.e. (z,y), (y,2) € R. Two cocycles, o, 8 : R — G, are cohomologous (a = f3),
if
a(:v, y) = ¢($)_1/3($’ y)¢(y)’

for ur-a.e. (z,y) € R, where ¢ : X — G is a Borel function (we call it a transfer
function). A cocycle is a coboundary if it is cohomologous to the trivial one. The
set of cocycles of R with values in G will be denoted by Z!(R, G). It is well known
that Z!(R,G) endowed with the topology of convergence in ux is a Polish space.
By H'(R,G) we denote the quotient space Z}(R,G)/~.

Let R = Rr. There is a cocycle p, € Z'(R,R) such that p,(z,yz) =
log dfi‘%(a:) for all v € T at p-a.e. z € X. It is called the Radon—Nikodym
cocycle of R. If p =1 then p is [R]-invariant. R is said to be of type IT; (1)
if there exists a finite (infinite, o-finite) [R]-invariant measure on X equivalent
to p. Otherwise R is of type I11.

Let R and S be two equivalence relations on measure spaces (X, B, u) and
(Y, ®, v) respectively and some cocycles a € Z1(R,G) and 8 € Z!(S, G) be given.
The pairs (R, a) and (S, ) (or, simply, @ and (3) are weakly equivalent if there is
a Borel isomorphism 0 : X — Y, so that y ~v00, (A x0)(R) =S8, and a = 080,
where the cocycle B0 6 € Z1(R, Q) is defined by B0 6(z,2) = B(0x,0z).
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Given a cocycle a € Z'(R,Q), we define an equivalence relation R X, G on
(X x G,p X Ag) by setting (z,g9) ~ (y,h) if (z,y) € R and h = ga(z,y). It is
called the a-skew product extension of R. We define a Borel nonsingular action
Va of G on (X x G,p x Ag) as follows Vi (h)(z,9) = (z,hg). It is clear that
Va(h) € N[R X4 G] for all h € G. Hence V, induces a new G-action on the
measure space of R X, G-ergodic components. It is called the Mackey action of G
associated to a. We denote it by W,. Remark that W, is ergodic if and only if R
is. If two cocycles, a, 8, are weakly equivalent, then W, and Wjy are conjugate.

a is recurrent (resp. transient) if R X, G is conservative (resp. of type I). «
has dense range in G if W, is the trivial action on a one-point set, i.e., the a-skew
product extension of R is ergodic. It is well known that the properties of cocycles
to be recurrent, transient, or to have dense range are invariant under the weak
equivalence.

We need the following results. Associate to every cocycle a € ZY(R,G) a
double cocycle ag = a X p, € Z'(R,G x R), where p, the Radon-Nikodym
cocycle of R.

Uniqueness Theorem for Cocycles [GS2, Theorem 3.1|. Let R and S
be two ergodic hyperfinite equivalence relations on standard probability spaces
(X,B, 1) and (Y,€,v) respectively, and o € Z1(R,Q), B € Z*(S, Q) recurrent
cocycles.

(i) If R and S are both of type 11 or 11 and the Mackey actions W, and
Wpg of G are conjugate then o and B are weakly equivalent.

(i) If R and S are both of type III and the Mackey actions Wy, and Wg, of
the group G X R associated to the double cocycles ag and By respectively
are conjugate then « and B are weakly equivalent.

Existence Theorem for Cocycles [GS1, Corollary|. Let G be a l.c.s.c.
group and let an amenable nonsingular ergodic action V of G X R be given. Then
there are a discrete ergodic hyperfinite equivalence relation R and a recurrent
cocycle @ € ZY(R,G) such that V is conjugate to the Mackey action associated
to ap.

Theorem on Amenability of Group Actions [GS1, p. 523]. Let V =
{V(9)}gec be a nonsingular ergodic action of a lc.s.c. group G on a stan-
dard measure space (X,u). Then V is amenable if and only if the V(QG)-orbital

equivalence relation on X is amenable and for p-a.e. x € X the stability group

G, & {g € G| V(g)xr =z} at = is amenable.

The definitions of an amenable equivalence relation and an amenable group
action can be found in [Z1, Z2]. We remark that a discrete equivalence relation R
is amenable if and only if it is hyperfinite [CFW]. For such a R and an arbitrary

156 Matematicheskaya fizika, analiz, geometriya , 2000, v. 7, No. 2



On cocycles with values in group extensions. Generic results

l.c.s.c. group G the Mackey action associated to every cocycle a € Z'(R,G) is
amenable [Z1, Theorem 3.3].

Denote by G the one point compactification of G. An element g € G is
an essential value of « if for every neighborhood U of g in G and every subset
B C X of positive measure there is a subset C C RN (B x B) with pr(C) > 0
and a(C) C U. By 7(«) we denote the essential range of a, i.e., the set of all its

essential values. Notice that r(a) o 7(a) NG is a closed subgroup of G and « has

dense range in G if and only if r(a) = G. We put also (") () o Nyec g r(a)g

for the normalized essential range of . Notice that (") (q) is the kernel of the
unitary representation of G generated by W,. If a and 8 are weakly equivalent
cocycles then (") (q) = (200 (3).

For a more detailed exposition of these concepts we refer to [FM, S1, S3, Z2].

2. Cocycles with values in group extensions

Turn back to the sequence (0.1). We have a continuous map
T : ZHR,E) 3 a v m(a) € ZL{(R,Q),

where 7, (a)(z,y) = 7(a(z,y)) for all (z,y) € R (throughout this paper Z!(R, G)
is endowed with the topology of convergence in measure). It is clear that
factors through the cohomology relations. Moreover, m,(a 0 0) = (m.(a)) o 8 for
each automorphism 6 € N[R]. Hence if two cocycles o, 8 € Z'(R, E) are weakly

equivalent, the same is also valid for m,(a) and 7. (5).

Now for a cocycle w € Z}(R,G) we put ZL(R, E) 4 1-1(w) and endow this

set with the induced (Polish) topology. It is easy to see that Z.(R,E) # @
whenever R is hyperfinite.

Definition 2.1. We say that two cocycles o, 8 € Z'(R, E) are A-cohomolo-
gous (a =4 f) if a = [ and there is a transfer function with values in A.

Notice that =4 is an equivalence relation on Z'(R, E) and Z.(R, E) is ~4-
saturated, i.e., if « € ZL(R,E) and 8 € Z'(R,E) then o ~4 [ implies 3 €
ZLX(R,E). We put HL(R,E) = ZL(R,E)/~4. Let s : G — E be a Borel
normalized cross-section of 7 (which means that 7 o s = Id and s(lg) = 1g).
Suppose that w is weakly equivalent to a cocycle wq, ie., w1 =& w o 6 with a
transfer function ¢ : X — G and an automorphism # € N[R] (we assume for
simplicity’s sake that w and w; are defined on the same equivalence relation).
Then the map Z.(R,E) D ar a1 € Zul,1 (R, E) is a homeomorphism, where

ai(z,y) = s(¢(z)) " a0 b(z,y)s(4(y)).
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This map passes through the = 4-cohomology relation and generates the canonical
map HL(R, E) — H}, (R, E).

Let A4, Ag, Ag be right Haar measures on A, E, G (resp.) and /):A, /):G proba-
bility measures equivalent to Ag, Ag (resp.). Then the map

gs: X x G x A3 (z,9,a) = gs(z,9,a) = (z,as(9)) e X x E  (2.1)

is a Borel isomorphism sending the measure u X XG X A A to pux :\\E, where XE is a
Ag-equivalent probability measure on E. We call ¢; the s-map. If two arbitrary
points (z, as(g)), (y,bs(h)) € X x E are R X, E-equivalent, we obtain easily that
b = as(g)a(z,y)s(k)~! and hence h = gw(z,y) (we assume that a,b € A and
g,h € G). Notice that the map

o i R Xy G 3 ((2,9), (v, 1) = ol ((2,9), (v, 1) = s(g)alz,y)s(h) ! G(A )
2.2

is a cocycle from Z'(R x,, G, A). Hence we deduce from (2.1) and (2.2) that
R Xq B = (QS X QS)((R Xw G) X als) A) (23)

In view of this the cocycles a and a®) are transient, recurrent, or have dense
ranges simultaneously.

Next, if we choose another normalized cross-section s1 : G — E then a(51) &~
a(®). Thus the cohomology class of a(®) is well defined by (0.1) and w only. Notice
also that a(®) ~ () for every pair of A-cohomologous cocycles from Z) (R, E).
Hence (0.1) and w well define the canonical map

HYR,E) 5 [a] » [&®] € H'(R x, G, A).

Its image in H'(R x, G, A) will be denoted by Inv(w).

Recall that a transformation 6§ € N[R] is compatible with w if wo 6 ~ w
[DG, Da]. Denote by w(#) the set of all transfer functions for the pair w,wof. The
group of all w-compatible transformations is denoted by D(R,w). Let L(R,w) be
the set of all transformations of (X x G, u X Ag) of the form /0\(:10, g) = (0z, gp(x))
for some transformation § € D(R,G) and function ¢ € w(#). One can easily see
that L(R,w) is a subgroup of N[R %, GI.

Remark 2.2. Suppose that two cocycles, a, 8 € ZL(R, E) are weakly equiv-
alent, i.e., there exists a transformation § € N[R] such that S o 6 ~ a with a
transfer function ¢ : X — E. This implies that # € D(R,w) and the function ¢ :
X oz~ w((z)) € G lies in w(#). We define two measure space transformations
0: (X xE,uxAp) = (XxE,pxAg)and 0 : (X x G, uxAg) = (X x G, 5 x Ag)
by setting 0(z,e) = (0z,ey(r)) and é\(w,g) = (0z,gm(¢p(x))). It is easy to ver-
ify (and well known) that (6 x 0)(R xo E) = R xg E. Since § € L(R,w) and
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qs_lgqs(m,g,a) = (@\(w,g),af(,:p\, g)) for a measured function f : X x G — A, it
follows from (2.3) that 3() 0 @ &~ of®) with f being a transfer function. Thus we
obtain that the cocycles a®) and B(*) are also weakly equivalent and, besides,
admit an intertwining transformation — we mean § — from L(R,w).

In the case of Abelian A this observation may be refined. Notice first of all

that A is a G-module (g - a def s(g)as(g)~! for all g € G and a € A). Denote by
Aut E the group of continuous group automorphisms of E and set

Aut (E;A,G) ={l€ AutE | l(a) =afor alla € Aand [(eA) = eAfor alle € E}.

It is easy to verify (and well known) that an automorphism [ of E belongs to this
subgroup if and only if I(e) = ev(w(e)) for all e € E, where the map v: G — A is
a continuous skew homomorphism, i.e., v(gh) = h=!-v(g) +v(h) for all g, h € G.

Given a cocycle a: R — E and an automorphism [ of E, we denote by I, («)
the [-image of a, i.e., ly(a) : R 2 (z,y) — l(a(z,y)) € E.

Theorem 2.3. Let R be ergodic and hyperfinite, A Abelian, G countable,
and w have dense range in G. Given two cocycles, a,3 € Z.(R,E), we have
a®) ~ ) if and only if l(a) =4 B for an automorphism | €Aut(E; A,G). In
a similar way, a(®) ~ B®) o @ for a transformation 8 € L(R,w) if and only if
li(a) =4 B o0 for an automorphism [ €Aut(E; A, G), where the transformation
0 € D(R,w) is the “first coordinate” of 9, ie., é\(:p, ) =(0z,.) ae.

Proof Weprove only the first conclusion of the theorem, since the second
one is similar.

(=) Let a®) =~ (). In view of (2.2) and (2.3) there is a Borel function
f: X xG— A with

a(:v,y) = f(:z:,g)*lﬁ(w,y)f(y,gw(.r,y)) (2'4)

for ur xAg-a.e. (z,y,g) € RxG. Since we are free to replace w by a cohomologous
cocycle, we may assume that the subrelation § = {(z,y) € R | w(z,y) = 1¢}
is ergodic [GS2, Lemma 1.6]. It follows from the exactness of (0.1) that the
restrictions of « and (3 to S take values in A. We deduce from (2.4) that

o(z,y) = —f(z,9) " + Blz,y) + f(y,9)

for a.e. (z,y,9) € SXG. Thus a | S =4 B | S. Moreover, since S is ergodic, the
transfer function is determined up to an additive constant (see [DG, §1.3])Hence
f(z,9) = ¢(x) +v(g) for some Borel maps ¢: X — A and v:G — A. We put
B(z,y) = ¢(z) "1 B(z,y)d(y) for (z,y) € R. Perturb ¢ (and hence v), if necessary,
by a constant function to deduce from (2.4) and the Fubini theorem that

a(z,y) = Bz, y)v(w(z,y)) (2.5)
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for a.e. (z,y) € R. This implies

v(w(z,y) = Bly,z)a(r,y) =

for a.e. (z,9), (y,2) € R (we use the fact that 7, (3) = w). Since w has dense range
in G, it is a routine to deduce from this equality (apply the standard exhaustion
argument) that v(gh) = h=t-v(g)+wv(h) for all (g, h) € GxG. It follows from (2.5)
that [~ (a) ~4 B, where [ is the automorphism from Aut(E; A, G) associated to
v.

(<=) Let l(a) =4 [ with a transfer function ¢ : X — A. Denotebyv: G — A
the skew homomorphism associated to {=! and put f(z,g) = v(g) + ¢(z), z € X,
g € G. It is easy to check that (2.4) is satisfied. But this is equivalent to the
relation o®) = () and we are done. ]

I was informed by S. Bezuglyi that he considered problems which are close to
Remark 2.2 and Theorem 2.3 in the case of Abelian A and topologically trivial
extension (0.1). But his approach is different. Notice that Theorem 2.3 holds also
for continuous G, but the proof is a little complicated and not be given here.

The next statement provides an “ergodic description” of split short exact se-
quences of l.c.s.c. groups (from now on we do not assume that A is Abelian).

Theorem 2.4. Let R be ergodic and w have dense range in G. Then (0.1)
splits if and only if Inv(w) contains the coboundary class.

Proof  Assume that (0.1) splits and s is a (continuous) group homo-
morphism. Then s,(w) € ZL(R,E) and it follows from (2.2) that (s(w))(®)
is trivial, as desired. Conversely, suppose that there are a measurable function
n: XxG — E and a cocycle a € ZL (R, E) with a(z,y) = n(z,g) " n(y, gw(z,y)).
We let F(z,g,h) = n(z,g9)n(z,hg)~! for all (z,h,g) € X x G x G. Then
F(z,9,h) = F(y,gw(z,y),h) a.e. Since w has dense range in G, it follows
that F(z,g,h) = l(h) a.e. for some measurable function | : G — E. Re-
produce the argument of [Da, Theorem 5.3| to obtain that n(z,g) = I(g9)a(z),
where [ : G — FE is a continuous homomorphism and a : X — FE. Hence
a(z,y) = a(z)H(w(z,y))a(y), (z,y) € R. We obtain that w = (7o l)4(w). It
follows that (w X w) & (w x (7 ol),(w)) as cocycles of R with values in the group
G x G. The two cocycles take values and have dense ranges in the subgroups
rwxw) ={(g,9) | g € G} and r(w x (7o l).(w)) = {(g,7(l(g))) | g € G}
respectively. Hence the Mackey actions associated to these cocycles are the tran-
sitive actions of G X G on the homogeneous spaces generated by these subgroups
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respectively. Since the cocycles are cohomologous, the Mackey actions are con-
jugate and hence these subgroups are conjugate in G x G. It is easy to deduce
that wolo7 =1Id for some inner automorphism 7 of G, ie., lo7T is
a cross-section of . n

Let pr : (XXE, pxAg) — (Q1,11) and pa : (XX GxA, pxAgxAa) = (Qg,v0)
be the (R X, E)- and the ((R X, G) X ) A)-ergodic decompositions and W (E)
and W) (A) the associated Mackey actions on ©; and €y respectively. It follows
from (2.1) and (2.3) that there is a measure space isomorphism j : (Q2,2) —
(©41,v1) such that the following diagram is commutative:

(X xE,uxg) 25 (Q,0)

as T Ti
(X X G X A, 1t X Ag X Aa) g (Q2,19).

Moreover, since for each a € A the map ¢ intertwines the left a-shift along
A with the left a-shift along E, we have jW, ) (a) = Wy(a)j. Identifying
with Q9 via j we can view W, (E) as an extension of the A-action W) to an
E-action on the same measure space. It is also useful to notice that W,,(G) can be
viewed naturally as the quotient action of W, (E) on the space of W, (A)-ergodic
components. Thus W, (A) is ergodic if and only if W,(G) is the trivial G-action
on a one-point set, i.e., w (= m,(a)) has dense range in G.

Proposition 2.5. Let E be amenable, R ergodic hyperfinite type II, and w
a cocycle of R with dense range in G. Given an ergodic nonsingular action V of
A, the following statements are equivalent:

(1) V can be extended up to a nonsingular E-action on the same measure space;
(ii) V is conjugate to W, | A for some recurrent cocycle o € ZL(R, E);

(iii) V is conjugate to Wg(A) for some recurrent cocycle 8 € Z'(R x,, G, A)
with the cohomology class [f] € Inv(w).

Proof (cf. [Be]). (ii)=(i) is trivial, (iii)=(ii) follows from the remark
before the Proposition. It remains to prove (i)=-(iii). Suppose that V(A) can
be extended up to some E-action which we denote by the same symbol V. It
is amenable because every action of an amenable group is amenable [Z2]. By
the Existence Theorem for Cocycles there is a recurrent o € Z'(R, E) such that
W (E) is conjugate to V(E). Since W, (A) is ergodic, m,(c) has dense range in
G. By the Uniqueness Theorem for Cocycles 7, (a) and w are weakly equivalent
and hence without loss in generality we may assume that 7, (a) = w. Now we set
up B = a(® for a Borel normalized cross-section s : G — E. It is easy to see that
0 is as desired. [
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Corollary 2.6. (i) Let p be a positive integer, T be an ergodic nonsingular
transformation and (0.1) as follows

02237~ 7Z/pZ— 0.

Let R satisfy the hypotheses of Proposition 2.5 and and w : R — Z/pZ a be
cocycle with dense range. Take an arbitrary cocycle 8 € ZY(R x,, (Z/pZ),7Z)
such that the transformation Wpg(1) is conjugate to 7. Then [f] € Inv(w) if and
only if T" admits a p-root.

(ii) For p =2, let R, w, T, B be as above but (0.1) as follows

1-Z—>7Zx(Z)2Z)— Z]27Z — 1.

Then [f] €Inv(w) if and only if there is an involution in Aut(X, x) conjugating T
and T~!. For example, if T has simple spectrum, then [3] € Inv(w) by [GJLR].

Let o € Z(R, E). One can extend the topological embedding A C E up to a
topological embedding A C E and set up T7a(a) = 7(a) N A, ra(a) =T4(a) N A,
and rglor) (@) = Naena ‘ra(e)a. We summarize some properties of these objects
in

Proposition 2.7. (i) r4(«a) and rglor) (a) are closed subgroups of A, the sec-

ond one is normal;
(i) r®(a)NAC rglor) (@) Crala);
(iii) if ra(c) = A then Tglor)(a) =rm) (@) NA=A;
(iv) if ra(a) is noncompact then co € Fa(a);
(v) if a =4 B then rglor)(a) = rglor) (8), and oo € T4(a) whenever co € T4(0);
(vi) if a is transient and A noncompact, then 74(a) = {0, 00}.

Proof. (i), (iv) follow from [FM, Proposition 8.5], (vi) from [S3, § 2], (ii)
and (iii) are obvious.

(v) Let B(z,y) = ¢(z) " ta(z,y)p(y) for some measurable function ¢ : X — A
and suppose that a € rglor)(a). We want to show that a € rgmr) (B). Given
a neighborhood U of a in E and a subset B € B, p(B) > 0, one can find an
element b € A, a neighborhood O of b and a neighborhood V of bab~! such that
O~'WVO c U and pu(B N ¢~1(0)) > 0. Since bab~! € ra(a), there are a subset
C € B, u(C) > 0, and a transformation v € [[] with C U~yC C BN ¢~1(0) and
¢ (z)a(z,yz)p(yx) € O~'VO C U and we are done. The second statement of
(v) is not difficult and we leave its proof to the reader. ]
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Remark 2.8. It is easy to see that the short sequence of groups (in the
algebraic sense, without topologies)

1= ra(a) = (@) 5 n(r(a) =1 (2.6)

is exact. Let us assume that (0.1) splits and the cross-section s : G — FE is a
group homomorphism. Then, clearly, (2.6) splits whenever s(m(r(a))) C r(a) —
for example, if r4(a) = A.

3. On H-cocycles

Let R® = {(z,9,2) € X x X x X | (¢,), (y,2) € R}. We fix a normalized
cross-section s : G — FE and define two Borel functions fo : G x G — A and
fQ(s) : R — A by setting

f2(g1,92) = s(91)s(g2)s(g192) ",
$@y,2) = foluly)wy,2)-

Then we have
f2(g1,92) f2(9192,93) = Adgg)[f2(92,93)]f2(91,9293),
fQ(S)(mayaz)fQ(S)(xazaw) = Ads(w(m,y))[ 2(5)(yazaw)]f28) (zayaw)a

ie., fo and fZ(S) are “noncommutative 2-cocycles” of G and R respectively with
value in A. (As usual, Ady(a) = bab~'.) Moreover, they are normalized, i.e.,

f2(g,9) = 14 and f2(5)(., .y-,) = 14 whenever two of three variables are the same.
Given a cocycle a € ZL(R, E), we set
&(z,y) = a(z,y)s(w(z,y)) (3.1)
for a.e. (z,y) € R. Then & is a Borel map R — A with
(2, 2) = 8w, y)Ad (e @, 25 (2,9,2) (3:2)

for (z,y,2) € R®) . Conversely, as one can easily see, every map & : R — A
satisfying (3.2) determines a cocycle a € ZL(R, &) by (3.1). Such maps are called
‘H-cocycles’. The set of all ‘H-cocycles’ is denoted by Z} (R, A). If Z] (R, A)
is furnished with the topology of convergence in measure then, clearly, the map

ZL(R,E) 3 a &€ 2} (R, A)

is a homeomorphism. Two ‘H-cocycles’, a, 5, are said to be ‘H-cohomologous’ if
a =4 [ or, equivalently,

&(l‘, y) = (]5(:1,‘)_15(11:, y)Ads(w(m,y)) [¢(y)]
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for a.e. (z,y) € R and some measurable function ¢ : X — A.

Suppose from now on that A is Abelian. Then A is a G-module (see Section 2)
and fo and fQ(S) are Borel 2-cocycles of G and R respectively in an ordinary sense
[Mo, FM]. Moreover, Z. (R, A) with the pointwise addition is an Abelian Polish
group.

Remark 3.1. We observe that if R is hyperfinite and ergodic, then f;) can
be represented in the form fQ(S) (z,y,2) = w(z,y) Py, 2) —P(x, 2) + $(z,y) a.e. for
some Borel map ¢ : R — A with ¢(z,z) = 14 [FM, Theorem 6]. Let us perturb
an ‘H-cocycle’ a by adding ¢. Then the resulting map @ : R — A satisfies

(’)Z(x,z) = &(w,y) —l—w(x,y) ' a(y,z)

for a.e. (z,y,2) € R®. If (0.1) is central, i.e., A is the trivial G-module, we
obtain @ € Z1(R, A).

Remark 3.2. In the particular case when (0.1) is topologically trivial —
i.e., s can be chosen to be continuous — our definitions of ‘H-cocycles’ and ‘H-
coboundaries’ are equivalent to those from [Be| (and to those from [D1, D2] if, in
addition, (0.1) splits and s is a group homomorphism; this implies that f, and fQ(S)
are trivial). We also observe that the concepts of the ‘H-superrecurrence’ and the
‘H-supertransitivity’ of ‘H-cocycles’ from ZL},,S(R, A) considered in [D1-D3, Be]
correspond exactly to the recurrence and the transitivity of the related cocycles
from Z.(R, E). Hence most of the results from [Be, D2, D1, §§2, 3|, [D3, §§ 1-3]
follow from our Section 2.

4. Generic results

In this section we prove the main result of the paper — Theorem 4.4. For
this we need several auxiliary statements. We first recall the definition of the
weak topology on Aut(X,u). Every transformation 6 induces a linear bounded
operator Uy on L(X, i) as follows

U f)(z) = f(0z)

By a classical result of Banach the map 6 — Uy is a bijection of Aut(X, u) onto the
group of positive invertible isometries in L' (X, ). The strong operator topology
when restricted to Aut(X, p) is called the weak topology.

Let (X, u) = (Z,k) x (Y, A). Denote by Autz(X,u) the set of p-nonsingular
transformations which factor trivially through the first coordinate mapping
Z xY — Z. More exactly, a transformation 6 belongs to Autz (X, u) if

0(z,y) = (z,0,y) a.e. (4.1)
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for a measurable field Z 5 z — 0, € Aut(Y, ). Clearly, Autz(X,u) is a closed
subgroup of Aut(X,u) endowed with the weak topology. It is well known that
the ergodic transformations form a (dense) Gy in Aut(X, ) [CK, Theorem 3.
We need a generalization of this fact. Let £ stand for the set of all measurable
fields of ergodic transformations on Y. More exactly, a transformation § € &£ if
(4.1) is satisfied with 6, being ergodic for k-a.e. z.

Lemma 4.1. & is a G5 in Aut(X, u) with the weak topology.

Proof  The forthcoming argument is similar to that of [CK, Theo-
rem 1; Iw, Lemma 3|. Denote by Cons (X, 1) the set of nonsingular conservative
transformations on X. It is clear that £ C Cons (X, u). For a transformation
0 € Aut(X,u), we denote by B(6) the o-algebra of all f-invariant measurable
sets. By virtue of the Halmos—Hurevich-Oxtoby Ratio Ergodic Theorem [Ha, Ch]
for every 6 € Cons (X, u) and f € L'(X, ) we have

(2 Uir) [ S0 BUBO)  ae as o,

=1

where F stands for the conditional expectation. Clearly, § € £ if and only if the
limit equals the function [ fdX given by ([ fd))(z,y) = [y f(2,¢") dA(y'). Since
the map f — E(f|%(8)) is continuous on L'(X,u) and since convergence a.e.
implies convergence in measure, we have 6 € £ if and only if

n n
(Z Ugfk) / Z Ugl — /fk d\  in measure as n — 0o
i=1 =1

for every k, where {fx}3, is a fixed norm dense sequence in L'(X,u). By a
standard argument, the set
A(k’ n7 T, p) =

{OeAut(Xu ({ (ZUefk> /zz:;Ugl—/fde‘ z%}) <%}

is open in Aut(X, p). Since Cons(X, u) is a G5 in Aut(X, ) (see [Iw, Lemma |),
we deduce that

DL
DL
[@:

€ = Cons(X, ) N E = Cons(X, p) ﬂﬂ ﬂ

p:

A(k,n,r,p)

—_
<
—_

k

Il
—
<.

Il
—

n

J

is a Gy in Aut(X, ) and hence in Autz (X, u). ]
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Let M(X, ) stand for the set of all measurable functions on X with values
in a l.c.s.c. group G.

Lemma 4.2. [CHP, Theorem 1| The map
Aut(X,p) x M(X,G) 2 (0, f) = 0f € Aut(X x G,u x Ag),

where 0¢(z,9) = (0z,9f(x)) is continuous when Aut(X,p) and Aut(X x G, pu x
Ag) are assumed to have the weak topology and M(X, Q) the topology of conver-
gence in measure.

Let y' be a probability measure on R equivalent to ug.

Corollary 4.3. Let T be an ergodic transformation on (X,B,u) and R the
T-orbital equivalence relation. Then the map

ZYR,G) 3 am— Ty € Aut(X x G, i X Ag),

where Ty(z,9) = (Tz,ga(x,Tx)), is continuous. (Recall that the topology of
convergence in u' on Z'(R,Q) is implicit.)

Proof. Itisenough to notice that the map Z'(R,G) 3 a — f, € M(X, Q)
is a homeomorphism, where f,(z) = a(z,Tz), and then to apply Lemma 4.2. =

Let R be a type I1I equivalence relation on (X, %, 1) and p, : R — R stand
for the corresponding Radon—-Nikodym cocycle. Consider an “extension” of (0.1)
as follows
15 A ExRTE GxR -1,
where A is embedded into E x R via the map a + a x {0}. Notice that s sx1d
is a cross-section of 7 x Id.

Theorem 4.4. Let R be ergodic and hyperfinite, G arbitrary l.c.s.c., A ame-
nable and w recurrent. Then the subset Z} = {a € ZL(R,E) | ra(ao) = A} is a
dense Gy in ZL(R, E), where ap = a X py,.

Proof. We proceed in several steps.

Step 1. Consider the wy-skew product extension R X, (G x R) of R on the
space (X x G X R pp X Ag X Ar). Since w is recurrent, so is wp. (This fact was
proved in [S2| in a particular case where G = R". However only a slight and
obvious modification of this proof is needed to adopt it in the general situation.)
Therefore R X, (G x R) is a conservative type II equivalence relation. Denote
by (Z, k) the measure space of its ergodic components. As it was shown in [GS2,
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the proof of Proposition 3.2| only two possibilities may be realized: either x-a.e.
ergodic component is of type Il or k-a.e. ergodic component is of type I1;. Let
T be an ergodic hyperfinite type 11 equivalence relation of the corresponding type
(we mean II; or I1y) on a standard measure space (Y, v). Since R is hyperfinite,
there is a Borel nonsingular isomorphism

i:(ZxY,kxv) = (X xGXRpxAg X Ar)

such that (i x 4)(D x T) = R Xy, (G x R), where D is the diagonal equivalence
relation on Z [HO, S1]. Then every cocycle 8 € Z(R X, (G x R), A) splits into
a measurable field of cocycles Z 3 z +— ,3 € Z(T, A) as follows

zﬁ(ylayQ) = ,3((2, yl)’ (Z’yQ))

for all (y1,y2) € T. Conversely, every measurable field Z 3 z — ,3 € Z(T, A)
determines a cocycle 8 € ZH(R Xy, (G X R),A). Let g5 : X x (G xR) x A —
X X (E x R) be the s-map (see (2.1)). Recall that

R x5 (B xR) = (g5 X g5)((R X4, (G X R)) X5 A)

for every cocycle § € Z} (R, E x R) (see (2.3)). We define a weakly continuous
group isomorphism

U:Aut(X X EXRpu X Agp X AR) = Aut(Z XY X A,k X v X A4)

by setting ¥(0) = (i x Id)_lqg_lqu(z’ x Id).

Let T be an ergodic transformation on (X, 1) generating R, a : R — E a cocy-
cle, and Ty, the ap-skew product extension of T', i.e., To, (2, €,t) = (Tz, ea(x, Tx),
t+ pu(z,Tz)). We consider the following chain of maps

ZLR,E)Dar ay € Zy (R,EXR) 3 ag — T, €

Aut(X x EXR g X Ag X Ag) 20— U(0) € Aut(Z XY X A,k XV X Aa).

The first map is, clearly, a homeomorphism, the second one is continuous by
Corollary 4.3. We observe also that U(Ty,) belongs to the subgroup Autz(Z x
Y x A, kXvx\4) consisting of k X v X A g-nonsingular transformations which factor
trivially through the first coordinate mapping Z x Y x A — Z. One can check
easily that r4(ag) = A if and only if the cocycle (ag)®) € Z'(R xu, (G x R), A)
splits into a measurable field of cocycles on 7 with dense ranges in A. This, in
turn, is equivalent to the fact that U(T,,) € £, where £ C Autz(Z xY x A,k X
v X A4) is the set of measurable fields of ergodics on Y x A. We obtain that Z}
is a preimage of £ with respect to a continuous map. It follows from Lemma 4.1
that Z7 is a G5 in Z}(R, E).
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Step 2. Let o and 3 be two arbitrary cocycles from Z} (R, E). Given € > 0
and N € N, we find a Borel subset B C X such that T"BNT™B = & for all
0<nmn<m< N and M(UT]:];OI T"B) > 1 — € (Rokhlin’s lemma for nonsingular
ergodic transformations [S3, § 3]). Then there is a Borel function b: X — A with
b(z) ' B(z, Tx)b(Tz) = oz, Tz) for all x € Uf:];(? T™B. Actually, put

b(x); = 14 forall z € B,
b(z), = 5(T_1-’E,:E)_1a(T_1w,w) for z € TB,
b(z)s = B(T 'z,z) 'b(T 'z)a(T 'z,z) for z € T?B,etc.

Notice that b takes values in A because 7, () = m(3). As N — oo and € — 0
we obtain a sequence of Borel maps by : X — A such that

by (z) " B(x, Tx)by (Tz) = oz, Tz)

in measure. Since R is generated by T, it follows that the A-cohomology class of
3 is dense in Z1(R, E).

Thus to complete the proof we need to establish that Z} # 0.

Step 3. Let Wy = {Wuo(9,7) }g,r)caxr be the Mackey action of the group
G X R associated to the double cocycle wg and (Z,v) the space of this action.
We define a nonsingular action V' = {V(e,r)}(ererxr of the group E x R on
(Z,v) by setting V(e,r) = W,,(7(e),r). Denote by (G x R), and (E x R), the
stability subgroups at z € Z for W, and V respectively. Since R is hyperfinite,
W, is amenable. By the Theorem on Amenability of Group Actions (G x R), is
amenable for v-a.e. z € Z and the W, (G x R)-orbital equivalence relation and
hence V(E x R)-orbital equivalence relation on Z is amenable. Since (E x R),
is an extension of (G x R), via A and A is amenable, (E X R), is amenable for
v-a.e. z € Z. Hence again by the Theorem on Amenability of Group Actions V'
is amenable. It follows from the Existence Theorem for Cocycles that there exists
an ergodic discrete hyperfinite equivalence relation S on (X, u) and a recurrent
cocycle B € Z1(S, E) such that V is conjugate to the Mackey action Wpg, of ExR
associated to the double cocycle Gy = B X p;“ where pL is the Radon—Nikodym
cocycle of S. Since Wpg, [ A is trivial, r()(35) D A and the Mackey action of
G x R associated to the projection cocycle (1 x1d).(60) = m«(8) x p}, is conjugate
to Wy, (see the remark before Proposition 2.5). m,(f) is recurrent because (
is. We deduce from the Uniqueness Theorem for Cocycles that w and m,(3) are
weakly equivalent. Then every cocycle from Z;* ) (S, E) is weakly equivalent to a

cocycle from ZL(R, E). Thus there exists a cocycle a € ZL(R, E) which is weakly
equivalent to 8. Since the double cocycles ag and Gy are weakly equivalent as well,
(9 (ag) = r(®90)(4,). By Proposition 2.7 A D rglor) (ap) D ()N A = A
and hence o € Z}. n
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Remark 4.5. Notice that if & € Z* then r4(a) = A. However, the converse
is not true: there exist cocycles a with r4(ag) = {14} but r4(a) = A (see, for
example [BG, Example 7.4]).

Remark 4.6. The main result of [D3] — Theorem 4.10 — states that for an
arbitrary l.c.s.c. group G and a noncompact Abelian group A the subset

Z¥ ={a € ZL(R,E) | a is recurrent and oo € 74(c)}

is residual in Z! (R, E) provided that the double cocycle wy is recurrent. We see
that our Theorem 4.4 improves this assertion, since Z* D Z7.

Remark 4.7. Let A=G=R, E=AXG, R be type III,,0 < A <1, and

w the Radon—Nikodym cocycle of R. K. Dajani asks in [D1, p. 131] whether the

subset Z° ¥ {a € ZL(R,E) | Fa(e) = {0,00} is residual in ZL(R,A)? As it

follows from the same theorem, the answer is negative — Z0 is of first category.
Recall that the Radon—Nikodym cocycle of every ergodic equivalence relation is
recurrent [S2].
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O kOoIUKJIaX CO 3HAYEHUAMU B IPYIIIOBBIX PACHINPEHUAX.
Tunuuyxabie cBoiicTBa

A . Naaunerko

IIyetb 1 > A -5 E - G — 1 — KOpOTKasi TOYHAS TIOCIEIOBATEIHHOCTh
JIOKAJIbHO KOMIIAKTHBIX rpyni, npudeM A — amenabenbHas rpymna. s
3a/IaHHOIO PEKYPPEHTHOro (G-3HAYHOrO KOIWMKJIA W IPrOANIECKOrO HECHHIY-
JISIPHOTO NPeoOpPa30BaHUsl PACCMOTPUM IOAMHOXKECTBO TexX F-3HauHbIX KO-
UWKJIOB, 9bsi G-TIPOEKIHUS CyTh w. JIOKA3aHO, 9TO [JIsl TUHIUIHOTO (B CMBICIIE
kareropuu Bapa) KOU@KIA 13 TOr0 MOIMHOKECTBA, Cy?KEHUE ACCONUUPOBAH-
Horo (Makku) E-neiictBusi Ha A TPUBHATIBHO. DTO yJIydIIAET PE3YJIBTATHL
K. Dajani (1991, 1993) u orBedaer Ha BOnpoC u3 ee crarbu B Trans. Amer.
Math. Soc. (1991).

IIpo xomuk/IM 31 3HAYEHHAMHA B I'PYNOBUX PO3MINPEHHIX.
Tunosi BJacTuBoOCTI

0.1. Janunenko

Hexaii 1 - A - E - G — 1 — KOpOTKa, TOYHA, TOCJIiIOBHICTH JIOKAJIHHO
KOMIIAKTHUX TPy, npudomy A — amenabenbHa rpyma. s 3amaHoro pe-
KypeHTHOTO (G-3HAYHOTO KOIUKJIY W SPTOJAMYHOIO HECIHTYJISIPHOTO ITEPETBO-
PEHHST PO3IJISTHEMO TiIMHOXKUHY TUX F-3HaYHUX KOUMKJIB, unsi G-IIPOEKIIis
€ w. Joseneno, mo ms Tunosoro (B cenci kareropii Bepa) kouukiy 3 i€l
NiIMHOXKUHU 3BYy>KeHHs aconifioBanol (Makki) E-zii Ha A € TpuBiagbHAM.
ITe noninmye pesysasrarn K. Dajani (1991, 1993) Ta Bianosinae na nuranus
3 1f crarri B Trans. Amer. Math. Soc. (1991).
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