Matematicheskaya fizika, analiz, geometriya 2000, v. 7, No. 2, p. 172–183

Upper estimates for entire functions of $L^1(R)$ on real line

A. Il'inskii

Department of Mathematics and Mechanics, V.N. Karazin Kharkov National University 4 Svobody Sq., Kharkov, 61077, Ukraine

E-mail: iljinskii@ilt.kharkov.ua

Received May 14, 1999 Communicated by I.V. Ostrovskii

Let S_{ρ} be the set of all entire functions of order ρ and normal type such that $f(x) \geq 0$ for $x \in \mathbf{R}$ and $f \in L^1(\mathbf{R})$. We prove that: 1) if $f \in S_{\rho}$, then $f(x) = o(|x|^{\rho-1}), x \to \pm \infty, 2)$ for any sequence $\varepsilon_n \downarrow 0$ there exists a function $f \in S_{\rho}$ and a real sequence $b_n \to +\infty$ such that $f(b_n) > b_n^{\rho-1-\varepsilon_n}$. We give a generalization of this result for more general growth scale.

1. Introduction and statement of results

Let us denote by \mathcal{E}_{ρ} the set of all entire functions of order ρ and normal type which are bounded on the real line. A famous theorem of S.N. Bernstein asserts that the following implication holds

$$F \in \mathcal{E}_1 \Longrightarrow F' \in \mathcal{E}_1$$
,

and, moreover,

$$\sup\{|F'(x)|: x \in \mathbf{R}\} \le \sigma \sup\{|F(x)|: x \in \mathbf{R}\},\$$

where $\sigma = \limsup_{r \to \infty} r^{-1} \log M(r, F)$. If $\rho > 1$, then the implication

$$F \in \mathcal{E}_{\rho} \Longrightarrow F' \in \mathcal{E}_{\rho}$$
,

Mathematics Subject Classififcations (1991): 30D10, 30D15, 60E05. This work is partially supported by INTAS. Grant No. 96-0858.

© A. Il'inskii, 2000

is not true, but there is (see M.M. Dzhrbashyan [3]) the following asymptotic estimate

$$F'(x)| = O(|x|^{\rho-1}), \quad x \to \pm \infty.$$
 (1)

It is easy to check the sharpness of the estimate (1). For example, let $n \ge 2$ be natural number and $F(z) = \exp(iz^n)$. Then, $|F'(x)| = |x|^{n-1}$ for real x.

Let us denote by S_{ρ} the set of all entire functions f of order ρ and normal type such that $f(x) \ge 0$ for $x \in \mathbf{R}$ and $f \in L^1(\mathbf{R})$. Obviously, if $f \in S_{\rho}$ and $F(z) := \int_0^z f(\zeta) d\zeta$, then $F \in \mathcal{E}_{\rho}$ and therefore, $|f(x)| = |F'(x)| = O(|x|^{\rho-1}), \quad x \to \pm \infty.$ (2)

The aim of this note is to investigate the question of sharpness of estimate (2) in class S_{ρ} .

R e m a r k 1. In this connection it should be pointed out the following theorem of S.N. Bernstein [2]:

Let F be a real entire function of exponential type not greater than σ such that F(x) is monotone and $|F(x)| \leq 1$ on the real line. Then $|F'(x)| \leq \sigma/\pi$, $-\infty < x < +\infty$. In addition, the equality in this inequality may be attained only at a single point. If this point is equal 0, then

$$F(z) = \pm rac{2}{\pi} \int\limits_{0}^{\sigma z} rac{1-\cos t}{t^2} \, dt \, .$$

An analogous theorem for the entire functions of order 1/2 was proved by N.I. Akhiezer [1].

Let \mathcal{T} be the set of all positive nondecreasing functions t on the halfline $[0, \infty)$ such that the following two conditions are valid:

$$\frac{t(r)}{r} \uparrow \infty, \quad r \to +\infty, \tag{3}$$

for every k > 1 there exists $K(k) < \infty$ such that

$$\limsup_{r \to +\infty} \frac{t(kr)}{t(r)} = K(k) .$$
(4)

(It is not hard to see that condition (4) is equivalent to the following one: there exists $k_0 > 1$ such that $\limsup_{r \to +\infty} t(k_0 r)/t(r) < \infty$.)

We denote by \mathcal{T}' the subset of the set \mathcal{T} which contains those functions $t \in \mathcal{T}$, for which the following condition is satisfied instead of the condition (3):

$$t(r)/r^a \uparrow \quad \text{on} \quad [r_0,\infty) \tag{5}$$

Matematicheskaya fizika, analiz, geometriya, 2000, v. 7, No. 2 173

for some a > 1 and $r_0 > 0$ (a and r_0 are dependent on the function t).

It is obvious that the functions $t(r) = r^{\rho}$, $\rho > 1$, $t(r) = r^{\rho(r)}$, where $\rho(r) \to \rho > 1$ $(r \to \infty)$ is a proximate order, belong to the set \mathcal{T}' .

We shall use the following generally accepted notation:

$$M(r,f) = \max\{|f(z)| : |z| = r\}, \quad h_f(\varphi) = \limsup_{r \to \infty} r^{-\rho} \log |f(re^{i\varphi})|.$$

Suppose $t \in \mathcal{T}$; then by $\mathcal{S}[t]$ we denote the set of all entire functions f such that: 1) $M(r, f) \leq \exp(t(r))$ for sufficiently large r, 2) $f(x) \geq 0$ for all real x, 3) $f \in L^1(\mathbf{R})$. Thus $\mathcal{S}[r^{\rho}] = \mathcal{S}_{\rho}$.

Theorem 1. Let $t \in \mathcal{T}$. If $f \in \mathcal{S}[t]$, then the following estimate

$$f(x) = o\left(\frac{t(x)}{|x|}\right), \quad x \to \pm \infty,$$
(6)

is valid.

We cannot prove the sharpness of the estimate (6) in the following sense: if $t \in \mathcal{T}$ and $\Delta_n \downarrow 0 \ (n \to \infty)$ are given, then there exists a function $f \in \mathcal{S}[t]$ such that

$$f(b_n) \ge \Delta_n \frac{t(b_n)}{b_n}$$

for some sequence $b_n \to +\infty$ $(n \to \infty)$. But we can prove such a result.

Theorem 2. Let $t \in \mathcal{T}'$. Let there be given an arbitrary sequence $\varepsilon_n \downarrow 0$. Then there exists a function $f \in S[t]$ such that

$$f(b_n) \ge \frac{(t(b_n))^{1-\varepsilon_n}}{b_n} \tag{7}$$

for some sequence $b_n \to +\infty$.

In particular, setting $t(r) = r^{\rho}$, $\rho > 1$, we obtain from Theorems 1 and 2

Corollary 1. Let $\rho > 1$. If $f \in S_{\rho}$, then the following estimate holds

$$f(x) = o\left(|x|^{\rho-1}\right), \quad x \to \pm \infty.$$

For any sequence $\varepsilon_n \downarrow 0$, there exists a function $f \in S_{\rho}$ such that

$$f(b_n) > b_n^{\rho - 1 - \varepsilon_n}$$

for some sequence of real numbers $b_n \to +\infty \ (n \to \infty)$.

Matematicheskaya fizika, analiz, geometriya, 2000, v. 7, No. 2

Let us formulate also the following evident corollary from Theorems 1 and 2.

Corollary 2. Let $t \in \mathcal{T}$. If $f \in \mathcal{S}[t]$, then the following inequality holds

$$\limsup_{x \to \pm \infty} \frac{\log f(x)}{\log \left(t(x) / |x| \right)} \le 1$$

Let $t \in \mathcal{T}'$. Then there exists $f \in \mathcal{S}[t]$ such that

$$\limsup_{x \to \pm \infty} \frac{\log f(x)}{\log \left(t(x) / |x| \right)} = 1$$

R e m a r k 2. We shall see from the proof of Theorem 1 that the condition $f(x) \ge 0, -\infty < x < +\infty$, may be omitted in this theorem.

The proof of Theorems 1 and 2 will be given in the next section.

2. Proof of results

Proof of Theorem 1. Let $t \in \mathcal{T}$ and $f \in \mathcal{S}[t]$. We prove that (6) is true. Let us consider the function

$$F(z) := \int_{0}^{z} f(\zeta) \, d\zeta - \int_{0}^{+\infty} f(x) \, dx \,. \tag{8}$$

Evidently, F is an entire function, the estimate

$$M(r, F) \le rM(r, f) + \text{const} < \exp\left((2t(r))\right) \tag{9}$$

holds for sufficiently large r, and $F(x) \to 0$ as $x \to +\infty$. We shall estimate |F(z)| for z close to the real positive ray. Let $D_R := \{z : \text{Im } z > 0, |z - R| < R/2\}$ be the half-disk and let

$$\omega_R(z) = rac{2}{\pi}rgrac{z-3R/2}{z-R/2} - 1, \quad z\in D_R\,,$$

be the harmonic measure of the segment [R/2, 3R/2] with respect to D_R . It is not difficult to show that

$$\omega_R(R+iy) = 1 - \frac{8y}{\pi R} \left(1 + \beta \left(\frac{y}{R} \right) \right) \,, \tag{10}$$

where $\beta(\tau) \to 0$ as $\tau \to 0$. Let $\varepsilon > 0$ be a small number. Then

$$|F(x)| < \varepsilon, \quad x \in [R/2, 3R/2]$$

Matematicheskaya fizika, analiz, geometriya , 2000, v. 7, No. 2 175

for sufficiently large R. With the aid of (9) and (4) we obtain for $z \in \partial D_R \setminus [R/2, 3R/2]$ that

$$|F(z)| \le M(3R/2, F) \le \exp(2t(3R/2)) \le \exp(B_1t(R))$$

where B_1 is a positive constant. Therefore, using the theorem on two constants we have

$$|F(R+iy)| \le \varepsilon^{1-\frac{8y}{\pi R}\left(1+\beta\left(\frac{y}{R}\right)\right)} \exp\left(B_1 t(R)\frac{8y}{\pi R}\left(1+\beta\left(\frac{y}{R}\right)\right)\right)$$
(11)

for $0 \le y \le R$. The same estimate holds for $-R \le y \le 0$. We must only replace y by |y| in the right-hand side of (11). This yields that

$$|F(R+iy)| \le \sqrt{\varepsilon} \exp\left(B_2 \frac{t(R)}{R} |y|\right) \,,$$

if $|y| \leq 1$ and R is sufficiently large. Therefore, if we introduce the domain G as

$$G := \left\{ z = x + iy : x > R_0, |y| < rac{x}{B_2 t(x)}
ight\} \, ,$$

then the inequality

$$|F(z)| \le \sqrt{\varepsilon} e, \quad z \in G, \tag{12}$$

holds. Let us denote by C_x the disk $\left\{\zeta : |\zeta - x| \leq \frac{\gamma}{B_2} \frac{x}{t(x)}\right\}$, where γ is a small positive constant and B_2 is the same constant as that in the definition of G. It is easy to see that if γ is sufficiently small, then, by (3) and (4), $C_x \subset G$ for x large enough. Therefore, by the Cauchy formula and by (12) we obtain

$$|f(x)| = |F'(x)| = \left| \frac{1}{2\pi i} \int\limits_{\partial C_x} \frac{F(\zeta)}{(\zeta - x)^2} d\zeta \right| \le B_3 \sqrt{\varepsilon} \frac{t(x)}{x}.$$

This proves (6) for $x \to +\infty$. The proof for $x \to -\infty$ is analogous.

In the course of the proof of Theorem 2 we shall use some methods of paper [4]. The following three lemmas are needed for the sequel.

Lemma 1. For every number β , $1 < \beta < 2$, there exists an entire even function $\theta_{\beta}(z)$ of order β and normal type such that:

1) the indicator of θ_{β} equals

$$h_{\theta_{\beta}}(\varphi) = A_{\beta} \cos \beta \left(\varphi - \pi/2\right), \quad 0 \le \varphi \le \pi, \tag{13}$$

where A_{β} is positive constant,

2) $\theta_{\beta}(x) \geq 0$ for $x \in \mathbf{R}$,

3)
$$\theta_{\beta}(0) = 1$$
 and $\int_{-\infty}^{\infty} \theta_{\beta}(x) dx = 1.$

Proof. We set

$$heta_{1,eta}(w) = \prod_{n=1}^\infty \left(1-rac{w}{n^{2/eta}}
ight)\,.$$

Since $\beta < 2$, it follows (see, e.g., [6], 8.6.4) that

$$\log \left| \theta_{1,\beta} \left(R e^{i\psi} \right) \right| \sim \frac{\pi}{\sin \pi \beta/2} \cos \frac{\beta}{2} (\psi - \pi) R^{\beta/2}, \quad R \to +\infty, \tag{14}$$

for all $\psi \neq 0$. Let us set

$$heta_{2,eta}(z):=\left(heta_{1,eta}(z^2)
ight)^2\,.$$

Taking into account (14), we obtain

$$h_{\theta_{2,\beta}}(\varphi) = \frac{2\pi}{\sin \pi \beta/2} \cos \beta (\varphi - \pi/2), \quad 0 \le \varphi \le \pi$$

Clearly, $\theta_{2,\beta}(x) \ge 0$ for $x \in \mathbf{R}$ and $\theta_{2,\beta}(0) = 1$. Since $h_{\theta_{2,\beta}}(0) = h_{\theta_{2,\beta}}(\pi) < 0$ we have $\int_{-\infty}^{\infty} \theta_{2,\beta}(x) dx < \infty$. We put

$$heta_eta(z):= heta_{2eta}(c_eta z), \quad c_eta=\int\limits_{-\infty}^{+\infty} heta_{2eta}(x)\,dx\,.$$

It is obvious that the conditions 2) and 3) of Lemma 1 hold and indicator of θ_{β} is equal to (13) with $A_{\beta} = 2\pi c_{\beta}^{\beta/2} / \sin(\pi\beta/2)$.

We need an estimate from above of $\max\{|\theta_{\beta}(z-b)|: |z| \leq R\}$ for any b > 0and R > 0.

Lemma 2. Let θ_{β} be the function constructed in Lemma 1. Then, for every β , $1 < \beta < 2$, there exists a number $\delta_{\beta} > 0$ such that for all $b \ge 0$ the following inequalities hold

$$\max_{|z| \le R} |\theta_{\beta}(z-b)| \le \begin{cases} C_{\beta} \exp\left(-d_{\beta}b^{\beta}\right), & \text{if } 0 \le R \le \delta_{\beta}b, \\ C_{\beta} \exp\left(D_{\beta}R^{\beta}\right), & \text{if } R > \delta_{\beta}b, \end{cases}$$
(15)

177

where $C_{\beta}, d_{\beta}, D_{\beta}$ are positive constants which are dependent only on β but independent of b and R.

Matematicheskaya fizika, analiz, geometriya , 2000, v. 7, No. 2

P r o o f. We have (see (13)) $h_{\theta_{\beta}}(0) = h_{\theta_{\beta}}(\pi) < 0$ for every $\beta \in (1, 2)$. Therefore, we can choose a number η_{β} so that $0 < \eta_{\beta} < |h_{\theta_{\beta}}(0)|$. By definition, we put for $\varphi \in [0, \pi]$

$$egin{aligned} H_eta(arphi) &:= h_{m heta_eta}(arphi) + \eta_eta &= A_eta\coseta\left(arphi - \pi/2
ight) + \eta_eta\,, \ H_eta(\pi+arphi) &= H_eta(arphi)\,. \end{aligned}$$

From Lemma 1 it follows (see, e.g., [5], p. 71) that for all $r \ge 0$ and $\varphi \in [0, 2\pi]$ the inequality

$$|\theta_{\beta}(re^{i\varphi})| \le C_{\beta} \exp(H_{\beta}(\varphi)r^{\beta}), \qquad (16)$$

holds, where C_{β} is a positive constant. Let us show that for all $z = re^{i\varphi} = x + iy$ the inequality

$$H_{\beta}(\varphi)r^{\beta} \le -l_{\beta}|x|^{\beta} + L_{\beta}|y|^{\beta}, \qquad (17)$$

is satisfied, where l_{β} and L_{β} are some positive constants. Let us denote by ψ_{β} the zero of the function $H_{\beta}(\varphi)$ in interval $(0, \pi/2)$. It is sufficient to prove (17) in two cases: 1) $|\varphi| \leq \psi_{\beta}/2$, 2) $|\varphi - \pi/2| \leq \pi/2 - \psi_{\beta}/2$. In the first case, we have

$$H_{\beta}(\varphi)r^{\beta} \le H_{\beta}(\psi_{\beta}/2)r^{\beta} \le -l_{\beta}x^{\beta}, \qquad (18)$$

where $l_{\beta} = |H_{\beta}(\psi_{\beta}/2)|$. In the second case, the inequality $r \leq y/\sin(\psi_{\beta}/2)$ holds, so we have

$$H_{\beta}(\varphi)r^{\beta} \le H_{\beta}(\pi/2)r^{\beta} \le L_{1,\beta}y^{\beta}$$

where $L_{1,\beta} = H_{\beta}(\pi/2) (\sin(\psi_{\beta}/2))^{-\beta}$. Since $|x| \leq y/\tan(\psi_{\beta}/2)$ in the case under consideration, we can write

$$H_{\beta}(\varphi)r^{\beta} \le L_{1,\beta}y^{\beta} + l_{\beta}|x|^{\beta} - l_{\beta}|x|^{\beta} \le L_{\beta}y^{\beta} - l_{\beta}|x|^{\beta},$$
(19)

where $L_{\beta} = L_{1,\beta} + l_{\beta} (\tan(\psi_{\beta}/2))^{-\beta}$ and l_{β} is the constant from (18). According to (18) the estimate (19) is true also in the case $|\varphi| \leq \psi_{\beta}/2$. Thus (17) is proved.

We proceed to the proof of (15). Let l_{β} and L_{β} be constants from (17). Let us take a small number δ_{β} , $0 < \delta_{\beta} < 1$, such that

$$L_{\beta}(\tan(\arcsin\delta_{\beta}))^{\beta} \le l_{\beta}/2, \qquad (1-\delta_{\beta})^{\beta} \ge 1/2.$$
(20)

Let b > 0 and $0 \le R \le \delta_{\beta} b$. For any z = x + iy such that $|z| \le R$, we have

$$\begin{aligned} |\theta_{\beta}(z-b)| &\leq C_{\beta} \exp\left(L_{\beta}|y|^{\beta} - l_{\beta}(b-x)^{\beta}\right) \\ &\leq C_{\beta} \exp\left(\left(L_{\beta}(\tan(\arcsin\delta_{\beta}))^{\beta} - l_{\beta}\right)(b-x)^{\beta}\right) \\ &\leq C_{\beta} \exp\left(-\frac{l_{\beta}}{2}(b-\delta_{\beta}b)^{\beta}\right) \leq C_{\beta} \exp\left(-\frac{l_{\beta}}{4}b^{\beta}\right). \end{aligned}$$

Matematicheskaya fizika, analiz, geometriya, 2000, v. 7, No. 2

Here we have used (17) in the first inequality, estimate $|y| \leq (b-x) \tan(\arcsin \delta_{\beta})$ — in the second inequality, the first condition from (20) and estimate $|x| \leq R \leq \delta_{\beta}b$ — in the third inequality, the second condition from (20) — in the fourth inequality. This proves the first inequality in (15) with $d_{\beta} = l_{\beta}/4$.

Now, let $R > \delta_{\beta} b$. For any z = x + iy, $|z| \leq R$, it follows from (16) and (17) that

$$| heta_eta(z-b)| \leq C_eta \exp\left\{L_eta|y|^eta-l_eta|x-b|^eta
ight\} \leq C_eta \exp\left(L_eta R^eta
ight)\,,$$

This proves the second inequality in (15) with $D_{\beta} = L_{\beta}$.

Let $\{\beta_n\}_{n=1}^{\infty}$ be a sequence of numbers from the interval (1,2), $\theta_{\beta_n}(z)$ be the function constructed in Lemma 1, $\{a_n\}$, $\{b_n\}$, $\{q_n\}$ be sequences of positive numbers. Let us consider the function

$$f(z) := \sum_{n=1}^{\infty} a_n \theta_{\beta_n} \left(q_n (z - b_n) \right) \,. \tag{21}$$

According to (15) the series in the right-hand side of (21) converges uniformly on every disk of the complex plane if $\{b_n\}$, $\{q_n\}$ tend to infinity sufficiently rapidly. The following easy lemma gives a condition of integrability on the real line for the function of the form (21).

Lemma 3. Let f be a function of the form (21). Then $f \in L^1(\mathbf{R})$ if and only if

$$\sum_{n=1}^{\infty} \frac{a_n}{q_n} < \infty \,. \tag{22}$$

Proof. Since all terms of the series in right-hand side of (21) are nonnegative and according to the equality $\int_{-\infty}^{\infty} \theta_{\beta}(x) dx = 1$, we have

$$\int_{-\infty}^{+\infty} f(x) dx = \sum_{n=1}^{\infty} a_n \int_{-\infty}^{+\infty} \theta_{\beta_n} (q_n(x-b_n)) dx = \sum_{n=1}^{\infty} \frac{a_n}{q_n} \,.$$

This gives the desired assertion.

Proof of Theorem 2. Let $t \in \mathcal{T}'$ and a > 1 be a number such that $t(r)/r^a \uparrow$ on $[r_0, \infty)$, $r_0 > 0$. We fix a sequence $\{\beta_n\}_{n=1}^{\infty}$ so that two following conditions are valid for all n: 1) $1 < \beta_n < \min(2, a), 2$) $1/\beta_n > 1 - \varepsilon_n/2$, where $\{\varepsilon_n\}$ is the same sequence of positive numbers as in (7). Let θ_{β_n} be the

Matematicheskaya fizika, analiz, geometriya, 2000, v. 7, No. 2 179

function constructed in Lemma 1. The desired function f we shall construct in the form (21), where the sequences of positive numbers $\{a_n\}$, $\{b_n\}$, $\{q_n\}$ are to be determined. The sequences $\{b_n\}$ and $\{q_n\}$ will tend to infinity very rapidly. The sequence $\{a_n\}$ must possess the property

$$a_n \le b_n^L, \quad n \ge n_0 \,, \tag{23}$$

for some L > 0. Indeed, because $\theta_{\beta}(x)$ and a_n are nonnegative and according to the condition $\theta_{\beta}(0) = 1$, we have $a_n \leq f(b_n)$. Since $t \in \mathcal{T}' \subset \mathcal{T}$ it follows from (4) that $t(r) \leq r^p$, $r \geq r_0$, for some p > 0. Thus we obtain (23) from Theorem 1.

For brevity we introduce the following notation (see the right-hand side of (15)):

$$m_{\beta}(R,b) := \begin{cases} -d_{\beta}b^{\beta} & \text{for} \quad 0 \le R \le \delta_{\beta}b, \\ D_{\beta}R^{\beta} & \text{for} \quad R > \delta_{\beta}b. \end{cases}$$
(24)

Lemma 2 asserts that

$$\max_{|z| \le R} |\theta_{\beta}(z-b)| \le C_{\beta} \exp\left(m_{\beta}(R,b)\right) \,. \tag{25}$$

Using (25), we get

$$M(R,f) \le \sum_{n=1}^{\infty} a_n \max_{|z| \le R} |\theta_{\beta_n}(q_n(z-b_n))| \le \sum_{n=1}^{\infty} a_n C_{\beta_n} \exp(m_{\beta_n}(q_n R, q_n b_n))$$

for every $R \ge 0$. We shall show that the sequences $\{a_n\}, \{b_n\}, \{q_n\}$ can be chosen so that the inequality

$$a_n C_{\beta_n} \exp(m_{\beta_n}(q_n R, q_n b_n)) \le 2^{-n} \exp(t(R))$$
(26)

is valid for any n = 1, 2, ... and $R \ge 0$. From (26) we shall get the convergence of the series in the right-hand side of (21) and the estimate $M(R, f) \le \exp(t(R))$.

We shall denote later by $C_j(n)$ the constants which are uniquely determined by the choice of β_n and independent of b_n and q_n . We shall denote by B_j the constants which are independent of n. From now on we shall write also $\delta(n)$, d(n), D(n) instead of δ_{β_n} , d_{β_n} , D_{β_n} , respectively (see (15)).

Taking into account (23), we see that (26) is a consequence of the following inequality:

$$B_1 \log b_n + C_1(n) + m_{\beta_n}(q_n R, q_n b_n) \le t(R), \quad R > 0,$$
(27)

where $C_1(n) = \log C_{\beta_n} + n \log 2$. We consider two cases: 1) $0 \leq R \leq \delta(n)b_n$, 2) $R > \delta(n)b_n$. In the first case, we see by (24) that (27) is equivalent to the inequality:

$$B_1 \log b_n + C_1(n) - d(n) b_n^{\beta_n} q_n^{\beta_n} \le t(R) \,. \tag{28}$$

Since $t(R) \ge 0$ and $q_n \ge 1$, (28) follows from the inequality

$$B_1 \log b_n + C_1(n) \le d(n) b_n^{\beta_n}$$

which is true if b_n is sufficiently large.

In the second case, (27) is equivalent to the inequality

$$B_1 \log b_n + C_1(n) + D(n) R^{\beta_n} q_n^{\beta_n} \le t(R), \quad R \ge \delta(n) b_n.$$
⁽²⁹⁾

Using the evident inequality

$$x^{\gamma} + y^{\gamma} + z^{\gamma} < 3(x + y + z)^{\gamma}, \quad x, y, z, \gamma > 0$$

we shall estimate from above the left-hand side of (29). Since $3 < 3^{\beta_n}$ and $(\log b_n)^{1/\beta_n} < \log b_n$, it follows that the left-hand side of (29) does not exceed

$$\begin{aligned} &3\{(B_1\log b_n)^{1/\beta_n} + (C_1(n))^{1/\beta_n} + (D(n))^{1/\beta_n} Rq_n\}^{\beta_n} \\ &\leq \{C_2(n)\log b_n + C_3(n) + D_1(n) Rq_n\}^{\beta_n} \,, \end{aligned}$$

where $C_2(n) = 3B_1^{1/\beta_n}$, $C_3(n) = 3(C_1(n))^{1/\beta_n}$, $D_1(n) = 3(D(n))^{1/\beta_n}$. This yields that (29) follows from the inequality

$$C_2(n)\log b_n + C_3(n) + D_1(n)Rq_n \le (t(R))^{1/\beta_n}, \quad R > \delta(n)b_n.$$
(30)

Obviously, (30) is a consequence of the following two inequalities:

$$C_2(n)\log b_n + C_3(n) < \frac{1}{2}t(R)^{1/\beta_n} \quad \text{for} \quad R > \delta(n)b_n$$
 (31)

and

$$C_3(n)Rq_n \le \frac{1}{2}(t(R))^{1/\beta_n} \text{ for } R > \delta(n)b_n.$$
 (32)

Let us estimate from below the right-hand side of (31). Since $t \in \mathcal{T}'$, then (see (5)) $t(R) > R^a$ for $R \ge r_0$. Since the sequence $\delta(n)$ is already fixed, the inequality $\delta(n)b_n > r_0$ will be valid, if we take b_n sufficiently large. Therefore, for any $R \ge \delta(n)b_n$ the right-hand side of (31) is greater than $1/2(\delta(n))^{a/\beta_n}b_n^{a/\beta_n}$. Thus (31) is a consequence of the inequality

$$C_2(n) \log b_n + C_3(n) < C_4(n) b_n^{a/\beta_n}$$

where $C_4(n) = 1/2(\delta(n))^{1/\beta_n}$. This inequality is true if b_n is large enough.

Now, we consider (32). By (5) we have for $\beta_n < a$ that $r^{-1}(t(r))^{1/\beta_n} \uparrow$ on $[r_0, \infty)$. If b_n is large enough, then $\delta(n)b_n > r_0$. Therefore, (32) is equivalent to the following inequality:

$$q_n \le \frac{1}{2C_3(n)} \frac{(t(\delta(n)b_n))^{1/\beta_n}}{\delta(n)b_n} \,. \tag{33}$$

Matematicheskaya fizika, analiz, geometriya , 2000, v. 7, No. 2 181

We set with agreement with (33)

$$q_n := C_4(n) \frac{(t(\delta(n)b_n))^{1/\beta_n}}{b_n}, \qquad (34)$$

where $C_4(n) = (2C_3(n)\delta(n))^{-1}$. Then (32) is valid. Therefore, if the sequence $\{a_n\}$ is such that (23) is true for some L, then the function f will be entire and the estimate $M(r, f) \leq \exp(t(r))$ will be valid.

Let us choose $\{a_n\}$. We set

$$a_n := \frac{(t(b_n))^{1/\beta_n - \varepsilon_n/2}}{b_n}.$$
 (35)

Since $t \in \mathcal{T}'$, we see that condition (23) is satisfied. Let us check that the condition (22) is also satisfied. It follows from (34) and (35) that

$$\sum_{n=1}^{\infty} \frac{a_n}{q_n} = \sum_{n=1}^{\infty} \frac{1}{C_4(n)} \left(\frac{t(b_n)}{t(\delta(n)b_n)} \right)^{1/\beta_n} \frac{1}{(t(b_n))^{\varepsilon_n/2}}.$$
 (36)

Using (4), we get $t(b_n)/t(\delta(n)b_n) \leq K(1/\delta(n)) + 1$, if b_n is sufficiently large. Therefore, we see from (36) that

$$\sum_{n=1}^{\infty} \frac{a_n}{q_n} \le \sum_{n=1}^{\infty} C_5(n) \frac{1}{(t(b_n))^{\varepsilon_n/2}} < \infty \,,$$

if the sequence $\{b_n\}$ tends to infinity sufficiently rapidly (we can take here $C_5(n) = C_4^{-1}(n) \left(K(\delta^{-1}(n)) + 1\right)^{1/\beta_n}$). From (35) and condition $\beta_n^{-1} > 1 - \varepsilon_n/2$ we obtain

$$f(b_n) \ge a_n \ge \frac{(t(b_n))^{1-\varepsilon_n}}{b_n}$$

which completes the proof of Theorem 2.

Acknowledgement. I am deeply grateful to Prof. I.V. Ostrovskii for suggesting this problem and for pointing out simplifications in the proofs of Lemmas 1 and 2.

References

- N.I. Akhiezer, On maximum on a ray for derivative of monotone entire function of order 1/2 and normal type. — Teor. Funktsii, Funktsion. Anal. i ikh Prilozhen. (1965), No. 1, p. 136–140. (Russian)
- [2] S.N. Bernstein, On supremum of maximum modulus for derivative of monotone function of finite degree. — Dokl. Akad. Nauk SSSR (1946), v. 51, p. 567–568. (Russian)

- [3] M.M. Dzhrbashyan, Estimates for derivatives of entire functions of finite order and normal type. — Izv. Akad. Nauk Arm. SSR (1955), v. 8, No. 2, p. 1–16. (Russian)
- [4] A. Il'inskii, On convolution of entire probability densities. Complex Variables (1998), v. 36, p. 165–181.
- [5] B.Ya. Levin, Distribution of zeros of entire functions. Amer. Math. Soc., Providence, RI (1964), p. 493.
- [6] E.C. Titchmarsh, The theory of function. Second edition, Oxford University Press, Oxford (1939).

Оценки сверху на вещественной оси целых функций из $L^1(R)$

А.И. Ильинский

Пусть S_{ρ} — множество целых функций порядка ρ и нормального типа таких, что $f(x) \geq 0$ для $x \in \mathbf{R}$ и $f \in L^{1}(\mathbf{R})$. В статье доказано: 1) если $f \in S_{\rho}$, то $f(x) = o(|x|^{\rho-1}), x \to \pm \infty, 2)$ для любой последовательности $\varepsilon_{n} \downarrow 0$ существуют функция $f \in S_{\rho}$ и вещественная последовательность $b_{n} \to +\infty$ такие, что $f(b_{n}) > b_{n}^{\rho-1-\varepsilon_{n}}$. Приведено обобщение этого результата для более общих шкал роста.

Оцінки зверху на дійсній осі цілих функцій з $L^1(R)$

О.І. Ільїнський

Нехай S_{ρ} — множина цілих функцій порядку ρ та нормального типу таких, що $f(x) \geq 0$, $x \in \mathbf{R}$, та $f \in L^{1}(\mathbf{R})$. В статті доведено: 1) якщо $f \in S_{\rho}$, тоді $f(x) = o(|x|^{\rho-1})$, $x \to \pm \infty$, 2) для усякої послідовності $\varepsilon_{n} \downarrow 0$ існують функція $f \in S_{\rho}$ та дійсна послідовність $b_{n} \to +\infty$ такі, що $f(b_{n}) > b_{n}^{\rho-1-\varepsilon_{n}}$. Наведено узагальнення цього результату у випадку більш загальних шкал зростання.

Matematicheskaya fizika, analiz, geometriya, 2000, v. 7, No. 2