Matematicheskaya fizika, analiz, geometriya
2000, v. 7, No. 2, p. 172-183

Upper estimates for entire functions of L!(R)
on real line

A. II'inskii

Department of Mathematics and Mechanics, V.N. Karazin Kharkov National University
4 Svobody Sq., Kharkov, 61077, Ukraine

E-mail: iljinskii@ilt.kharkov.ua

Received May 14, 1999
Communicated by 1.V. Ostrovskii

Let S, be the set of all entire functions of order p and normal type such
that f(z) > 0 for z € R and f € L'(R). We prove that: 1) if f € S,,
then f(z) = o(|z|*~1), # — +oo, 2) for any sequence &, | 0 there exists a
function f € S, and a real sequence b, — +oo such that f(b,) > bo~17%n,
We give a generalization of this result for more general growth scale.

1. Introduction and statement of results

Let us denote by &, the set of all entire functions of order p and normal type
which are bounded on the real line. A famous theorem of S.N. Bernstein asserts
that the following implication holds

Fe& =Feé&,
and, moreover,
sup{|F'(z)| : € R} < osup{|F(z)| : = € R},
where o = limsup,_,., 7 'log M(r, F). If p > 1, then the implication

Feé = F €&,
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Upper estimates for entire functions of L'(R) on real line

is not true, but there is (see M.M. Dzhrbashyan [3]) the following asymptotic
estimate

|F'(2)] = O(l=*™"), @ — oo. (1)
It is easy to check the sharpness of the estimate (1). For example, let n > 2 be
natural number and F(z) = exp(iz"). Then, |F'(z)| = |z|* ! for real z.

Let us denote by S, the set of all entire functions f of order p and normal
type such that f(z) > 0 for z € R and f € L'(R). Obviously, if f € S, and
z

F(z):= / f(¢) d¢, then F € £, and therefore,
0

|[f(@)] = |F'(2)] = O(|="7"), = — o0. (2)

The aim of this note is to investigate the question of sharpness of estimate (2) in
class S,,.

Remark 1. In this connection it should be pointed out the following
theorem of S.N. Bernstein [2]:

Let F be a real entire function of exponential type not greater than o such
that F(z) is monotone and |F(x)| < 1 on the real line. Then |F'(z)| < o/m,
—o0 < x < +00. In addition, the equality in this inequality may be attained only
at a single point. If this point is equal 0, then

2 [1-
F(z) :i—/ﬂdt.

An analogous theorem for the entire functions of order 1/2 was proved by
N.I. Akhiezer [1].

Let T be the set of all positive nondecreasing functions ¢ on the halfline [0, o0)
such that the following two conditions are valid:

t(r)

TTOO, T'_>+OO, (3)

for every k > 1 there exists K (k) < oo such that

. t(kr)
lirgigop ) K(k). (4)

(It is not hard to see that condition (4) is equivalent to the following one: there
exists kg > 1 such that limsupt(kor)/t(r) < 00.)

r—+00

We denote by 77 the subset of the set 7 which contains those functions ¢ € T,
for which the following condition is satisfied instead of the condition (3):

t(r)/r® 1 on [rg,o0) (5)
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for some a > 1 and 7y > 0 (a and 7y are dependent on the function ¢).

It is obvious that the functions &(r) =7, p > 1, t(r) = rP"), where
p(r) = p>1 (r — o) is a proximate order, belong to the set 7.

We shall use the following generally accepted notation:

M(r, f) = max{|f(z)| : |z| =7}, hs(p) = liﬁsogpfplog|f(mw)|'

Suppose t € T; then by S[t] we denote the set of all entire functions f such
that: 1) M(r, f) < exp(t(r)) for sufficiently large r, 2) f(z) > 0 for all real z,
3) f € L}Y(R). Thus S[r"] = S,.

Theorem 1. Lett € T. If f € S[t], then the following estimate
t
f@=o("2). oo 2o0, )

1s valid.

We cannot prove the sharpness of the estimate (6) in the following sense: if
t €T and A, | 0 (n — o0) are given, then there exists a function f € S[t] such

that
t(bn)
bn

for some sequence b, — +00 (n — 00). But we can prove such a result.

f(bn) > Ay

Theorem 2. Let t € T'. Let there be given an arbitrary sequence &, | 0.
Then there exists a function f € S[t] such that

(8(bn)) "

. u

f(bn) >
for some sequence b, — +00.
In particular, setting ¢(r) = r?, p > 1, we obtain from Theorems 1 and 2
Corollary 1. Let p > 1. If f € S,, then the following estimate holds
f@)=o0(zI’™"), z— +oo.
For any sequence €, | 0, there exists a function f € S, such that
f(bn) > o717

for some sequence of real numbers by, — +o0o (n — 00).
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Let us formulate also the following evident corollary from Theorems 1 and 2.
Corollary 2. Lett € T. If f € S[t], then the following inequality holds

lim sup —85@)
oo 10g (t(z)/|z])
Let t € T'. Then there exists f € S[t] such that

log f(x)

limsu —_—— = 1
ot log ((z)/]z])

Remark 2. We shall see from the proof of Theorem 1 that the condition
f(z) >0, —0o < x < +00, may be omitted in this theorem.
The proof of Theorems 1 and 2 will be given in the next section.

2. Proof of results

Proof of Theorem 1. Lette& 7 and f € S[t]. We prove that (6) is
true. Let us consider the function

z +oo
ﬂd:/ﬂOM—/ﬂww- (8)
0 0

Evidently, F' is an entire function, the estimate
M(r,F) <rM(r, f) + const < exp ((2t(r)) (9)

holds for sufficiently large r, and F(z) — 0 as x — +oo. We shall estimate |F'(z)|
for z close to the real positive ray. Let Dg := {z : Imz > 0,|z — R| < R/2} be
the half-disk and let

2 — 2
wn(z) = 2arg 2%

— 1 D
T z—R/2 » #E€ LR,

be the harmonic measure of the segment [R/2,3R/2| with respect to Dg. It is
not difficult to show that

wR(R+iy)=1—%(1+ﬂ(%)) , (10)

where B(7) = 0 as 7 — 0. Let € > 0 be a small number. Then

|F(z)| <e, ze[R/2,3R/2],
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for sufficiently large R. With the aid of (9) and (4) we obtain for
z € 0Dg \ [R/2,3R/2] that

[F(2)| < M(3R/2,F) < exp (2t(3R/2)) < exp (B1t(R)) ,

where Bj is a positive constant. Therefore, using the theorem on two constants
we have

g
PRt <e 7ROTPR) o (Bum (1+6%)) (v

for 0 < y < R. The same estimate holds for —R < y < 0. We must only replace
y by |y| in the right-hand side of (11). This yields that

PR+ i) < Ve (B, D)

if |y| <1 and R is sufficiently large. Therefore, if we introduce the domain G as

. T
G := {z—x+zy.x>R0,|y|<m},

then the inequality
F(z)| < vee, 2€G, (12)

holds. Let us denote by C, the disk {C ¢ —z| < Bl%}’ where 7 is a small
2 L\T

positive constant and By is the same constant as that in the definition of G. It
is easy to see that if v is sufficiently small, then, by (3) and (4), C, C G for z
large enough. Therefore, by the Cauchy formula and by (12) we obtain

1 F(¢) t(z)
= |F' =|— —=d(| < B —.
F@1= @) = |55 [ e | < B’
0Cy,
This proves (6) for £ — +o00. The proof for x — —oo is analogous. |

In the course of the proof of Theorem 2 we shall use some methods of paper [4].
The following three lemmas are needed for the sequel.

Lemma 1. For every number 8, 1 < B < 2, there exists an entire even
function 0g(z) of order B and normal type such that:

1) the indicator of 65 equals

hoy(9) = AgcosB(p—7/2), 0<p<m, (13)

where Ag is positive constant,
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2) O3(x) >0 for z€R,
o0

3) 65(0) =1 and /Hﬁ(x)dx: 1.

—00
Proof Weset .
b1,5(w) = H (1 - %) .
n=1

Since (3 < 2, it follows (see, e.g., [6], 8.6.4) that

Cos é(w—w)Rﬂ/Q, R — +o00, (14)

W\~ T
log‘elﬁ (Re )‘ sinnf/2 2

for all ¢ # 0. Let us set
2

O2,5(2) = (01,5("))

Taking into account (14), we obtain

2

he, 5 () = WCOSﬁ(w— 7/2), 0<@<m.

Clearly, 0, g(x) > 0 for z € R and 65 5(0) = 1. Since hg, ,(0) = hg, 4(7) < 0 we
o

have / 62 5(x) dz < co. We put
—0oQ0

+oo
0p(2) := O2p(cp2), cs= / O25(z) dx .

It is obvious that the conditions 2) and 3) of Lemma 1 hold and indicator of g
is equal to (13) with Ag = 27rcg/2/sin(7rﬁ/2). ]

We need an estimate from above of max{|03(z —b)| : |2| < R} for any b > 0
and R > 0.

Lemma 2. Let 03 be the function constructed in Lemma 1. Then, for every (3,
1 < B < 2, there exists a number dg > 0 such that for all b > 0 the following
inequalities hold

max |0g(z — b)| <

Cgexp (—dﬁbﬂ) , if 0 < R < dgb,
(15)
|z|<R

Cgexp (DgRP), if R> dsb,

where Cg,dg, Dg are positive constants which are dependent only on B but inde-
pendent of b and R.
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Proof.  We have (see (13)) hg,(0) = hg,(m) < 0 for every 8 € (1,2).
Therefore, we can choose a number 75 so that 0 < 75 < |hg,(0)|. By definition,
we put for ¢ € [0, 7]

Hg(p) := hg, (@) +mp = Agcos B (o —7/2) +ng,
Hg(m + @) = Hg(p) -

From Lemma 1 it follows (see, e.g., [5], p. 71) that for all » > 0 and ¢ € [0, 27|
the inequality .
|65(re’)| < Cgexp(Hp(p)r”), (16)

holds, where Cj is a positive constant. Let us show that for all z = re'? =z +iy
the inequality

Hy(p)r’ < —lglal” + Lglyl”, (17)
is satisfied, where lg and Lg are some positive constants. Let us denote by 13
the zero of the function Hg(yp) in interval (0,7/2). It is sufficient to prove (17)
in two cases: 1) |p| < 93/2, 2) |[¢ — /2| < /2 —1pg/2. In the first case, we

have
Hg(p)r’ < Hg(1pp/2)r < —1g3" (18)

where g = |[Hg(1p3/2)|. In the second case, the inequality r < y/sin(z)g/2) holds,
so we have
Hy(p)r? < Hp(n/2)r” < Ligy”,

where Ly g = Hg(m/2) (sin(zpﬁ/Q))_ﬁ . Since |z| < y/tan(tpg/2) in the case under
consideration, we can write

Hg(p)r? < Ly gy’ + lglz|® — lg|z)P < Lgy® — 152", (19)

where Lg = L1 g+ lg (tan(ng/Q))_ﬂ and Ig is the constant from (18). According
to (18) the estimate (19) is true also in the case || < 1pg/2. Thus (17) is proved.

We proceed to the proof of (15). Let g and Lg be constants from (17). Let
us take a small number dg, 0 < g < 1, such that

Lg(tan(arcsin dg))? <15/2, (1 —4d5)° >1/2. (20)

Let b> 0 and 0 < R < dgb. For any z = z + iy such that |z| < R, we have

05z =) < Cpexp (Llyl® —15(6—2)°)
< Cgexp ((Lﬂ(tan(arcsinég))ﬁ — lg) (b— a:)ﬂ)
<

l I
Cpexp (—Eﬂ(b - 5ﬁb)ﬂ) < Cgexp (—Zﬁbﬁ) :
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Here we have used (17) in the first inequality, estimate |y| < (b—x) tan(arcsinég)
— in the second inequality, the first condition from (20) and estimate |z| < R <
dgb — in the third inequality, the second condition from (20) — in the fourth
inequality. This proves the first inequality in (15) with dg = lg/4.

Now, let R > gb. For any z = = + iy, |2| < R, it follows from (16) and (17)
that

105(2 — b)| < Cgexp {Lﬁ|y|ﬂ —lglz — b|ﬁ} < Cpexp (LgRﬂ) ,
This proves the second inequality in (15) with Dg = Lg. ]

Let {8n}52 be a sequence of numbers from the interval (1,2), 6g,(2) be
the function constructed in Lemma 1, {an}, {bn}, {gn} be sequences of positive
numbers. Let us consider the function

f(z) = Za,ﬂgn (gn(z —by)) - (21)
n=1

According to (15) the series in the right-hand side of (21) converges uniformly on
every disk of the complex plane if {b,}, {¢g,} tend to infinity sufficiently rapidly.
The following easy lemma gives a condition of integrability on the real line for
the function of the form (21).

Lemma 3. Let f be a function of the form (21). Then f € L'(R) if and
only if

o0

Y <. (22)

L)

Proof. Since all terms of the series in right-hand side of (21) are nonnegative

o
and according to the equality / 0s(z) dz = 1, we have
— 0o
+00 0o +o0 00
a
/ f(a:)dx:Zan / 05, (gn(z — by)) dz = .
00 n=1 " n=1 In
This gives the desired assertion. ]

Proof of Theorem2. Lette& 7' and a > 1 be a number such that
t(r)/r* 1 on [rg,00), 7o > 0. We fix a sequence {8,}52; so that two following
conditions are valid for all n: 1) 1 < £, < min(2,a), 2) 1/8, > 1 — €,/2,
where {e,} is the same sequence of positive numbers as in (7). Let 63, be the
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function constructed in Lemma 1. The desired function f we shall construct in
the form (21), where the sequences of positive numbers {a,}, {b,}, {¢n} are to
be determined. The sequences {b,} and {g,} will tend to infinity very rapidly.
The sequence {a,} must possess the property

Qp, S b'/[z/, n Z no, (23)

for some L > 0. Indeed, because 63(z) and a,, are nonnegative and according to
the condition 6g(0) = 1, we have a, < f(b,). Since t € 7' C T it follows from
(4) that t(r) < rP, r > rg, for some p > 0. Thus we obtain (23) from Theorem 1.

For brevity we introduce the following notation (see the right-hand side of

(15)): ,
. —dgb for 0<R< (55(),
mp(R,b) = { DsR® for R > dsb. (24)
Lemma 2 asserts that
max |03(z —b)| < Cgexp (mg(R,b)) . (25)

|2|<R

Using (25), we get

o (e o]
M(R, f) < Z an |13|13}1(2 105, (gn (2 — by))| < Z anCpg, exp(mg, (qn R, gnbn))
n=1 -

n=1

for every R > 0. We shall show that the sequences {a,}, {bn}, {gn} can be chosen
so that the inequality

anCg, exp(mg, (qn R, gnbn)) < 27" exp(t(R)) (26)

is valid for any n =1,2,... and R > 0. From (26) we shall get the convergence
of the series in the right-hand side of (21) and the estimate M (R, f) < exp(¢t(R)).

We shall denote later by C;(n) the constants which are uniquely determined
by the choice of §, and independent of b, and ¢,. We shall denote by B; the
constants which are independent of n. From now on we shall write also d(n),
d(n), D(n) instead of dg,, dg,, Dg,, respectively (see (15)).

Taking into account (23), we see that (26) is a consequence of the following
inequality:

Bilogb, + C1 (n) + mg, (ana ann) < t(R), R>0, (27)

where Ci(n) = log Cg, + nlog2. We consider two cases: 1) 0 < R < §(n)by,
2) R > §(n)b,. In the first case, we see by (24) that (27) is equivalent to the
inequality:

By logby + C1(n) — d(n)by" g < #(R). (28)
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Since t(R) > 0 and ¢, > 1, (28) follows from the inequality
Bilogb, + Ci(n) < d(n)bi"

which is true if b, is sufficiently large.
In the second case, (27) is equivalent to the inequality

B logb, + Ci(n) + D(n)RP ¢’ < t(R), R>é(n)by. (29)
Using the evident inequality
2 +yT+ 2" <3z +y+2), z,y,27>0,

we shall estimate from above the left-hand side of (29). Since 3 < 3 and
(log b,)Y/P» < logby,, it follows that the left-hand side of (29) does not exceed

3{(B1 logbn)'/Pr + (C1(n))"/Pr + (D(n))"/#~ Rgy}Pr
< {02 (n) log by, + 03('”) + Dy (n)RQn}ﬁn ;

where Cy(n) = 3Bll/ﬁ”, C3(n) = 3(C1(n))/P~, Dy(n) = 3(D(n))"/#~. This yields
that (29) follows from the inequality

Cy(n)log by, + Cs(n) + D1(n)Rg, < (((R))/?*, R > 8(n)by, . (30)

Obviously, (30) is a consequence of the following two inequalities:
1
Cy(n)logb, + Cs(n) < it(R)l/ﬁn for R > 6(n)by (31)

and
C5(n) Ry < %(t(R))l/ﬂn for B> d(n)by. (32)

Let us estimate from below the right-hand side of (31). Since t € 77, then (see (5))
t(R) > R® for R > ry. Since the sequence d(n) is already fixed, the inequality
d(n)b, > ro will be valid, if we take b, sufficiently large. Therefore, for any

R > §(n)b, the right-hand side of (31) is greater than 1/2(6(n))%/#n b%/P"  Thus
(31) is a consequence of the inequality

Cy(n) log by + Cs(n) < Cy(n)b2/Pn

where Cy(n) = 1/2(6(n))'/#». This inequality is true if by, is large enough.

Now, we consider (32). By (5) we have for 8, < a that r~(¢(r))"/#» 1 on
[ro,00). If by, is large enough, then §(n)b, > ro. Therefore, (32) is equivalent to
the following inequality:

L ()
"2 s

(33)
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We set with agreement with (33)

t(3(n)by))"/Pn
an 1= Oy) T (59
n
where Cy(n) = (2C3(n)d(n))*. Then (32) is valid. Therefore, if the sequence
{an} is such that (23) is true for some L, then the function f will be entire and
the estimate M(r, f) < exp(t(r)) will be valid.

Let us choose {a,}. We set

ap, 1= (t(bn))z/ﬂn_&z/2 . (35)

Since t € T, we see that condition (23) is satisfied. Let us check that the
condition (22) is also satisfied. It follows from (34) and (35) that

[e'9) an oo 1 t(bn) 1/Bn 1
Z an Z Cy(n) <t((5(n)bn)) (t(bp))=n/2 (36)

- 1
< Cs5(n) ——75 < 0,
- Z 5(77’) (t(bn))gn/Z o0
if the sequence {by, } tends to infinity sufficiently rapidly (we can take here C5(n) =
Cyt(n) (K071 (n)) + 1) l/ﬂ”). From (35) and condition 8,1 > 1—g,/2 we obtain

(t(bn)) "=
f(bn) Z Qp Z T )

which completes the proof of Theorem 2. [

Acknowledgement. I am deeply grateful to Prof. 1.V. Ostrovskii for sug-
gesting this problem and for pointing out simplifications in the proofs of Lemmas 1
and 2.
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Ouenku cBEpXy HA BEIIECTBEHHOW OCU IeJIbIX PYHKI[UiA
uz L'(R)

A . Nnsuncknit

ITycrs S, — MHO2KECTBO LE/bIX GYHKIUH IOPAAKA 0 X HOPMAJIBHOI'O TUIIA
takux, 4to f(z) > 0 sz € R u f € L'(R). B crarbe nokazano: 1) eciu
f€S8,, 10 f(z) = 0(|2|P~1), = +o00, 2) mus1 MO6OI MOCTEIOBATETLHOCTH
€n 4 0 cymecTBytoT dyrKnua f € S, n BeleCTBeHHAS TOCJIEIOBATETHLHOCTD
b, — +oo Takme, uro f(b,) > bL~17¢». Ilpusemeno oGobGuieHME ITOTO pe-
3yNbTATa It OOJIee OOIIUX KA POCTA.

Ouinkm 3Bepxy Ha jiiicHiii oci mismx dbynkniit 3 L' (R)
O.l. LibiuchKu7ii

Hexait S, — MHOXKUHA I[yIHX (DYHKIIN TOPSIIKY p T4 HOPMAJIBHOIO THUILY
takux, mo f(z) > 0, 2 € R, Ta f € L*(R). B crarri gosemeno: 1) akmo
f €8, roni f(z) = o(|z|P~1),  — oo, 2) mna yeskoi nocmigoBHOCTI
€n | 0 icuytors dynkuis f € S, Ta aiiicaa nociinosnicrs b, — 400 Taki,
wo f(by) > b2~17%". HaBeneno ysarajbHEHHS [bOTO PE3YJIbTATY Yy BUIAKY
Oi/IbII 3araJIbHUX IITKAJI 3POCTAHHSI.
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