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Let Ty, T5 be a pair of commuting isometries in a Banach space X.
Generalizing results of M. Laczkovich and Sz. Revesz we prove that in many
cases element z of Ker[(I— T¢)(I—T2)] can be decomposed as a sum z1 + 22
where zj, € Ker(I-Ty), k = 1,2. Moreover, using an averaging technique we
prove the existence of linear operators perfoming such a representation. The
results are applicable for decomposition of functions into a sum of periodic
ones.

1. Introduction

Let a function f: R — R be a sum of finitely many functions {fx}7 where fi
is ag-periodic, {ar}? C R. Let A, denote the difference operator,

(Aag)(t) =gt +a) —g(t) (a€Rg:R—R).

Then Ay, fr = 0 for every k and A, - -+ A,,f = 0 because the difference
operators commute. By definition, a class F of functions has the decomposition
property if for every f € F and for every {ax}7 C R the condition Ag,---A,, f =0
implies that there are functions {f;}? C F such that f = f1 +---+ f, with fg
be aj-periodic.

M. Laczkovich and Sz. Revesz tested some function classes for the decompo-
sition property in [1, 2]. In particular, they proved in [1] that the space BC(R)
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of bounded continuous real functions on R possesses the decomposition property.
Also a generalized problem for some other operators in Banach and topological
vector spaces was treated. The following theorem has been established: if {T}}7
is a collection of w*-continuous commuting power bounded operators in a dual
Banach space then

Ker[(I-T1)---(I -T,)]=Ker(I —T1)+---+ Ker(I —T},).

(Recall that operator T is called power bounded if sup{||T*|| : k € N} is finite).
In our paper we present a different "averaging” technique which gives both
new proofs of the known results and some new results. An advantage of this
technique is that it gives linear operators performing the decomposition.
The tool which we use for this is the notion of Banach limit (see, for example,
[3], Chapter IT). We fix a Banach limit "Lim”, which (by definition) assigns to

every bounded sequence (z,)° of complex numbers a number L%Lm(:zzn)‘l>o and

possesses the usual properties of linearity, positivity and invariance under shifts,
Le.,

oo

L}lm(xnﬂ)fbo:l = L’}lm(wn)nzl .

The idea to apply the Banach limit to the periodic decomposition problem ap-
peared first in [4]. In our paper we will use a bit more general variant of the
notion — not only for numerical sequences, but for sequences in a Banach space.
Let E be a Banach space. For a bounded sequence (z};)$° in the dual space E*
we define a Banach limit My, (z})$° € E* as follows:
(M (27,)1%, @) = Lim((zy, 2))7°-

n

Evidently M, is a well-defined bounded linear and shift-invariant map from
L (E*) to E*. In the sequel we shall use the concept for £ = X*, E* = X**.

Definition 1.1. We say that a family of commuting linear continuous opera-
tors {Ri}T in a topological vector space X has the decomposition property (DePr)

if
KeI‘(RlRQ v Rn) C KerR; + KerRy + - -+ + KerR,,

(the inverse inclusion is evident).

Definition 1.2. The family {Ry}? has the linear decomposition property
(LDePr) if there are linear operators Gy: X — KerRy, k =1,2,...,n such that

Giz+Gox+---+Gur==x (1)

for every x € Ker(R1Ry - - - Ry,).
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Definition 1.3. We say that a Banach space X possesses the DePr (LDePr)
if for every family {Ty}7 of commuting power bounded operators in X, the family
{Rk}?, Ry = I — T}, has the DePr (LDePr).

We prove that every reflexive space has the linear decomposition property.
On the other hand, separable spaces containing subspaces, isomorphic to ¢y, does
not possess even the original decomposition property. The following questions
look interesting but we don’t know the answers:

Problem. What are the characterizations of DePr and LDePr? In
particular, does the quasireflexive James space J have one of the properties? Is it
true that DePr and LDePr of a space are the same property? Do the properties
for pairs of operators imply the properties for finite families of operators?

2. Positive results

Lemma 1 (the key lemma). Let {Ry}7 be a family of commuting linear
operators in a linear topological space X. Denote Y = KerR1Ry - R,. Let
there emwist linear operators P,: X — X commuting with all of R; such that
P(Y) = KerRy, Pyx = z for every © € KerRy (remark that Py may be non-
commuting one with another). Then the family {Ry}} has the LDePr.

Proof. We will prove that the operators Gy = Py(I — P;_1)(I — Px_9)---
(I — P,) satisfy the conditions. Evidently Gy are linear and Gx(Y) C P(Y), so
Gr(Y) C KerRy and we need only to check (1). Let z € Y, i.e.,

RiRy--- Ryz =0.

Then (Ry - - - R,)z € KerR; and

(I -—P)(Ry---Rp)z=0.
By commutativity we have

(R2---Rp)(I — P)z =0,
and by the same reasons as before we get

(R3---Rp)(I — P)(I — Py)z = 0.
Proceeding we receive
(I—F)I —Ppq)--- (I —P)z=0,

which after opening the parentheses gives the decomposition (1).
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Theorem 1. Let X be a Banach space complemented in its second dual and
let Px : X** — X be the projector. Let also {Ty}T be a family of commut-
ing power bounded operators such that T;;* commute with Px. Then the family
{Ri}?, Ry = I — Ty, has the LDePr.

Proof. To apply Lemma 1 we construct operators P:
Pz = Px M {(T}* )" 7z}, z € X,

where 7 : X — X** is the canonical embedding, M, is the Banach limit in X™**.
Every Py is clearly linear and bounded, acts in X and leaves elements of the X}
unchanged. Prove that P, maps X into X, i.e., Ty P, = Py:

and

We are to show that expressions under Px are equal:
(T M {(T") "z}, 27) = (Mm{(T") " 7wz}, T ™).
By the definition of M this is equal to
M {((Ty") "7z, Tiz*) } = Ma{ ((T3")" 7, 27)},
by the invariance of M this is equal to
Mm{((Tg") "7z, 2%)} = Mm{(T¢") "7z}, 2%).

Therefore Py is a projector from X on Xj.
Now prove that Py commutes with T}, 1 <k, 7 < n:

PyTjz = Px Mm {(L;;")" T} "z} = Px M {T;™ (T;") "z}
and
T;Pyx = TjPx M {(T3" )"z} = PXT;* M {(T3 )"z}

The same steps as above show the equality between expressions under Pyx.

Remark 1. The theorem above covers, in particular, the case of a dual
space X (X equals some Y*) with w*-continuous operators T}, because operator
Px = 7*, where m: X — X™** is the canonical embedding, gives the projector of
X** onto X we need.

Corollary 1. Every reflerive Banach space X has LDePr.
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Theorem 1 is applicable in other cases (for example, L; is complemented in
its bidual), but the same averaging idea as in the proof of Theorem 1 is applicable
for some operators even when the conditions of Theorem 1 are not satisfied. Of
course, for such applications we need some other restrictions on T}.

Theorem 2. Let {T}}? be a commuting family of operators in a Banach
n

space X, Ry = I — T}, and every element of the Ker [[ Ry has relatively weakly

k=1
compact orbits under each of Ty,. Then the family {Ry}7 has the DePr. If orbits
of all elements of X are relatively weakly compact then the family {Ry}7 has the
LDePr.

P roof. Define operators P, in X** by the formula

By the same reasons as in the proof of Theorem 1 we may apply lemma for X™**,
n

R;* and P, and obtain that for every element x** € Ker || R;* the operators
k=1
Gy = P(I — Py_1)({ — Pig—2) - - - (I — Py) perform the decomposition

= Gz 4+ Gox™ + -+ - + G2 (2)

Consider X as a subspace of X**. Apply Py for an element z € X. Evidently
Pyz belongs to the w*-closure in X** of the set conv{T}"z, m € N}. This orbit
being relatively weakly compact, Pz in fact belongs to X. Thus we have that

n
for z** = = € Ker [] Ry all the summands in (2) belong to X which gives the

k=1
DePr. If the relative weak compactness of orbits is known for every = € X we

get that Gy’s map X into X, which proves the LDePr.
The next results show how one can replace the topological conditions by some
algebraic ones to obtain the LDePr.

Lemma 2. Let X be a topological vector space and let T': X — X be a linear
operator with bounded orbits. Then Ker[(I —T)"] =Ker(I —T), n € N.

Proof. Tt is sufficient to prove the lemma for the n = 2. Let (I —T)%z =0
but y=(I —-T)x #0. Then y =Ty, Tx = x —y, T™xz = x — my. But this is

a contradiction because the left side is bounded while the right is not.

Definition 2.1. Operators T, §: X — X are called commensurable if there
exist n, m € N such that T" = S™.
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Theorem 3. Let operators Ty, 1 < k < n in a linear topological space X be
commuting, pairwise commensurable and have bounded orbits. Then the family
{Rk}?, Ry = I — T}, has the LDePr.

Proof. It is not difficult to see that there exist T: X — X and {l;}7 C N

such that T = T,ik for all k. Explicitly by the conditions there exists {mi}gjjzl C
J k k=1 . n—1 .
N such that T,;nk = T;nj, 1 <k,j <mn, choose I}, = Hl m;'+1 . Hk m;-H. Denote
j= j=

the least common multiple of {lx}T as L.

n
Let z € Ker [] Rk, then the above means that z € Ker(I —T')" = Ker(I —T)
k=1
L/l . L
(T obviously has bounded orbits). Consider operators P, = Tllk '21 T =1 '21 T}
j= j=

Their restrictions on Ker(I — T') are clearly projectors on Py(Ker(I — T')) which
equals Ker(I — Ty), they commute with {7} }} and by Lemma 1 this is sufficient
for the LDePr.

Although the space BC(R) of all bounded continuous real-valued functions
with sup-norm is not complemented in its second dual and the orbits of shift
operators are not weakly compact in general, the technique introduced above is
applicable to prove a result from [1] in a simpler way.

Theorem 4 (M. Laczkovich, Sz. Revesz). Let {T}}, k = 1,2, be the shift
operators in BC(R): (Tif)(z) = f(z+ag). Then the pair of difference operators
Ry =1 —Ty, has the DePr.

Proof. LetT; bean a;-shift, Ty be an ao-shift. If a; and ag are commen-
surable numbers the previous theorem covers the case.

Consider now incommensurable a; and ap. BC(R) is a subspace of L (R)
which is a dual space to Li (R). The shift operators are defined on Ly, (R) as well
as on BC(R) and are w*-continuous. So by the Remark 1 (or by the theorem
from [2], cited in the introduction) for every function f € BC(R), f € KerR;Ra,
there are functions fi1, fo € Loo(R) such that

f=f1+ fo almost everywhere

and fy is ag-periodic, k = 1, 2.
We have to prove that fi, fo may be chosen to be continuous. Consider
everywhere defined functions

[ (z) = vrailimsup fi(t),
t—x

Iy () = vralhﬁlznffk(t), k=1,2.
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Because f is continuous then for all z € R
ff (@) + fy (z) = f(=),

fr (@) + f (2) = f(2). (3)
Subtracting we get
f=-fh=K-f
The left hand is ai-periodic, the right one is as-periodic so both sides have both

periods. Let prove that fl+ — fi is a constant.
For ¢ € R consider sets

Ac={teR: fi'(t) - fi (t) >c}.

fi" is upper semicontinuous, f; is lower semicontinuous so the difference is upper
semicontinuous and A, is a closed set. But A, is invariant under two incommen-
surable shifts a; and ao so A, can be or the empty set or the whole R. This proves
that fi" — f; is a constant as well as f, — f, .
This gives equations
fi = fi + const,

f5 = f5 + const,

where left hands are upper semicontinuous and right hands are lower semicon-
tinuous. Therefore all the functions are continuous and (3) gives the required
decomposition.

3. Limitations for the decomposition property

It is very easy to show that power boundness condition cannot be omitted
even in finite dimensional spaces.

Example 1. Let X = lin{ef,e ! tel}, T1, To: X — X, Thf = f,
Tof = .

X is finite dimensional, 77 and T commute but for f(¢) = te’
fe Ker(I — Tl)(I — Tg),

f & Ker(I —Ty) + Ker(I —T3).

The next example shows the existence of a shift-invariant Banach space of
functions on R such that all the shifts are isometries but there is a pair of shift
operators without the DePr.

Introduce first the following system of subsets in N:

A ryyy = {k € Nemax|e™ —1] <e},
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where n €N, € > 0, and r; € R. It is not hard to see that all A, (,.1» are infinite.
They form a base of a filter F. Consider now the following space of functions:

X={z= Z 27k (zlet® 4 22eR) . sup \xi\ < oo, limz;, = limz?},
beN keN,j=1,2 F F

where z}, and 22 are sequences of reals ("coordinates” of z). Define

Izl = sup |a}| < oo
kEN,j=1,2

By the standard argument X is a Banach space (isomorphic to some C(K) space).
X is shift-invariant because F has been constructed to satisfy

lim et =1, reRr
cF

All the shift operators are commuting invertible isometries of X but
Ker(I — TQ)(I - TQﬂ—) = X,
Ker(I — T) + Ker(I — Ty;) = {z € X : lijrr__nwllc = li}__na;% =0}.

The example above shows in particular the significance of complementation
in X** condition in Theorem 1. The next two examples show that the spaces ¢y
and #1 do not have the DePr.

Example 2. ¢y does not have the DePr.
Counsider the following compact subset K of [—1,1]:

K ={0,1,-1,1/2,-1/2,1/4,—1/4, ...}.

The space C(K) of continuous functions on K is evidently isomorphic to cg.
Consider two functions on K:

no={% 150

Gty >0,
fa(t) = fi(—t). Let Ty, T5 be the corresponding multiplication operators:
Thg=fe-9, k=12
Both of T}, are invertible isometries of C(K) but
Ker(I —Ty) + Ker(I — Tp) = {f € C(K) : f(0) =0},

Ker(I — T1)(I — T) = C(K).
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So the pair (71, T%) does not have the DePr.
Example 2. /¢; has no the DePr.

Denote the standard basis of £; by {ex}° and introduce the following opera-
tors: Ty, Ty: £1 — 44,

ex+2 — €2, keven, k > 2,

Tieg = eg +e2, Tiep = {ek Eodd

erio — e, kodd, k> 1,

Toeg = eg +e1, Trep = {ek & even
) :

They are commuting power bounded operators (it is easy to check because in
/1 the formula
1Tl = Sup [ Tex|

for the operator norm is true). Further,
Ker(I —T1) = span{ei, e3, €5, ...},

Ker(I — T») = span{es, e4, s, ... }.
So Ker(I —T1) + Ker(I — T3) does not contain ey but

(I — Tl)(I - T2)60 = 0.

Remark 2. On the space 4.

It is well known that if K is a countable compact then the dual to C(K)
is isometric to 1. So £; is isomorphic to duals of a variety of spaces and there
are many w*-topologies on ¢;. For w*-continuous operators the DePr is true so
the example above shows that there exists a pair of commuting power bounded
operators such that for every w*-topology on ¢; at least one of them is
not w*-continuous. Moreover, if P is a projector from ¢;* onto ¢; then at least
one of T;* above does not commute with P. May be both of them have to be
discontinuous in every w*-topology but we don’t know whether it is true. But
the symmetry shows easily that the operator T: ¢; — 1, Tex, = ex+1 — €1 has
the property: for every projector P from ¢7* onto ¢; T**P # PT**.

One more problem appears if one is interested in constructing of an "optimal”
decomposition in some sense. The theorem below shows that even for shifts in Z
it is impossible in general to obtain the decomposition (1) with ||Gg|| = 1.

For m € N denote the space of all n-periodic sequences as Per(n), the
n-shift operator as T;,. Notice that Per(n) is invariant under T, for every n,m.
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Also denote the standard averaging projector from Per(mn) on Per(n) as P;"™",

Pmn: ZTnk—ﬁZTnk
k 1
Let nq, ng € N. Denote the greatest common divisor of ni and no as n and

the least common multiple as N. Let ni/n > 3, ng/n > 3, X = lin{Per(ny),
Per(ng)} C Per(N). Equip X with the sup-norm.

Theorem 5. There are no linear operators Q1 and Q2, @Q1: X — Per(ny),
Q2: X — Per(na) satisfying Q1+ Q2 =1, |Q1]| <1, [|Q2f < 1.

Proof We argue by contradlctlon let such @1 and Q2 exist. Averaging
Q1 and QQ by ShlftS obtain Q1 Z TleT_k and Q2 = Z TkQQT_k Now

Q1 and Q9 are linear, Q1 + Qo = I ||Q1|| <1, @ <1, Q1 X — Per(nq),
Qs: X — Per(ng). Also Q1 and Q, are commuting with shlfts and projectors.
Denote PY as Py, P as P, P as P,.
Applying P; and Py to the equality Q1 + Q2 = I, we have

PiQi + PiQy = Py,

PQ1 + P2Qo = Py,

or 3 3
Q1 — P = —PRQq,
Q2 — Py = —PyQn,
i.e., Q1 and Pi, Q and P, coincide on the KerP,. Reveal how they can differ on
the ImPO
~ First consider th~e case n = 1, then ni, ng > 3. Then ImPy = lin{1} and
Q11 = Q1 Pyl = PyQ11 € Per(n), ie., @11 = cl, Q21 = (1 — ¢)1. This implies
0 < ¢ < 1. Consequently

Qi=QiP+Qi(I-P)=cPy+Pi(I-PR)=P +(c—1)P

and
Q2= QoPy+ Q2(I — Py) = (1 — ¢)Py + Po(I — Py) = P, — cP.

Construct functions g; € Per(n;), j = 1,2. g;(m) will be equal 1 for 1 <m <
nj —1 and —1 for m = n;, j = 1,2. It is obvious that ||g;|| = 1, Pjg; = g; and

Pygj = e —2 . 1. Hence

n1—2_1

Q=g+ (1—¢
n1
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and
7’1,2—2 1.

Q292 =92 — ¢

Since g; changes sign while 1 does not, these equalities mean

~ 1 —2
Qi >1+(1—¢)
n
and
TL2—2

1Qa2l > 1+¢ :
ny

Therefore ¢ = 1 and ¢ = 0 but this condition is contradictory.
The case n > 1 can be reduced to the treated one by dividing Z into parts
m+nZ,l1<m<n-—1.
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TexHUKa ycpegJHEHUS B 33jia¥e MePUOIUIECKOTO
Pa3JIoKeHust

B.M. Kagen, B.M. Hlymankuit

IIycrs 11, T — napa KOMMYTHUPYIOIIUX JUHEAHBIX u30Merpuii B OaHa-
xoBoM npocrpancree X. O6o06mast pesyabrar M. Jlankosuya u C. Peseca,
JIOKa3bIBaEM, 4TO BO MHOrMX ciydasx snement ¢ u3 Ker[(I — T1)(I — Ty)]
MOXKET OBbITh PA3JIOKEH B CyMMy Z1 + X2, rae xp € Ker(I — Ty), k = 1,2.
Bosnee TOro, uCmonb3yst TEXHUKY YCPEIHEHMUsI, JOKA3BIBAEM CYIECTBOBAHUE
JINHEHHBIX OMEPATOPOB, OCYIIECTBIISIONINX TAKOE PA3JIOKEHNE. ITH PE3YiIb-
TATHI IPUMEHUMBI K 33J1a4€ PA3JIOXKEHUsT (DYHKIWI B CyMMY TMEPUOANIECKUX
byHKUWMIA.
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Texuika ycepeaHeHHd Yy 3aa4i ME€PIOAUIHOTO
PO3KJIa/IaHHSA

B.M. Kagemns, B.M. Ilymsamnskuit

Hexait 77, To — mapa KOMyTyOUMX JiHIHHUX i3oMerpiit y HanaxoBoMy
mpoctopi X. ¥Y3arambuiooun pesyabtar M. Jlankosuua i C. Peseca, qoBo-
JuMo, mo y Gararbox Bumaskax smement ¢ 3 Ker[(I — Tq)(I — Ts)] moxe
OyTu PO3KJIaAEHUil B CyMy 1 + T2, ae xx € Ker(I—Ty), k = 1,2. Binb To-
0, BUKOPUCTOBYIOUH TEXHIKY yCEPETHEHHS, JOBOIUMO iCHYBAHHS JIHIWHIX
OIepaTopiB, MO 3AiUCHIOITh Take po3kiIaganus. Lli pe3yabraTu 3aCTOCOBY-
0TBhCs 110 331341 PO3KJIaJAaHHA QYHKUIN B cCyMmy nepiogudanx QyHKIi.
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