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We treat a four-block problem as an abstract interpolation problem with
an appropriately chosen data. This approach enables us to obtain a descrip-
tion of all solutions for the four-block problem.

In this note we suggest a way of the inclusion of the four-block problem |6,
Ch. IX, Sect. 4] into the framework of the abstract interpolation problem [8-10].
We would like to note that one can investigate the four-block problem with the
help of the commutant lifting theorem [6, 13, Ch. II, Sect. 2|. This approach is
presented in the monograph [6] and in the papers [5, 7].

We should mention here that the relation between general commutant lifting
and a coordinate-free version of the abstract interpolation problem is discussed
in [3].

The reasoning we are going to present is quite similar to that of [3, 11].

1. Abstract interpolation problem

1.1. We would like to begin the exposition with a brief recalling of the concept
of the abstract interpolation problem (or the (AI)-problem, in abbreviated form).
The formulation of the problem and its detailed discussion can be found in [8-10].
The second paper contains also the applications of the problem to the generalized
bitangential Schur-Nevanlinna-Pick problem and j-inner-outer factorization as
well as a wide bibliography on the question. We would like to mention the paper
[4] that deals with a very close circle of ideas.

Let us have a complex linear space X and a nonnegative quadratic form D
on the space, D(z,z) > 0,Vz € X. Let us assume that the identity holds

D(TQ.’,C,TQy) — D(T1m,T1y) = (Mll‘,Mly)gl — (ng,ng)gQ,VrE,y €eX. (1.1.1)
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Here T7 and T» are some operators, defined on X, & and &; are separable
Hilbert spaces, My and Ms are linear maps, acting from X to £ and from X to
&2, respectively. For the sake of brevity we call the set {X,&1,&2; D, Ty, T, My,
M>} an interpolation data of the (AI)-problem.

We should give some definitions to introduce the notion a solution of the prob-
lem. Let w(¢) be a [€1, E2]-valued analytic contractive function on the unit disk
D = {¢ € C: (] < 1}. We consider an operator-valued function

e R [

It is almost obvious that the defined map is nonnegative, we denote its square
*

1
root by ¥, %, = [ &g v

1/2
o 1 ] . Next, we define a subspace L2 of L?(&; @ &)
&

by the equality
L*(&
2= gy |

We set
H?(&)

_ 12 0
meno{n[PNon 0TV
now. Here H? (&) stands for L2(&) © H?(E:), H%(&;) is the standard Hardy

space of vector-valued functions on the unit disk D. The space H, is called
de Branges—Rovnyak space, associated with function w.

Let us observe that a vector f = [?} from L2 lies in H,, if and only if
2
2
the vector [f ] = Y,f is in [Hg (81)] . The assertion can be easily deduced
I+ H*(&)

from the equality

o= (2] = [w]) = [2]-[])

where hy € H%(&,),h_ € H%(&).

By a solution of the (AI)-problem we mean a pair (w,F), where w is
a [£1,&]-valued contractive analytic on D function and F is a linear map from
X to H,, possessing the properties

- M1.13 . 0
1) t(FTl:z@ZJw [ 0 D = FThz ® %, [tng] , Vz € X, (1.1.3)

2) ||Fz||3 < D(z,x), Vz € X. (1.1.4)

The map F is called the Fourier representation of the (AI)-problem. We would
like to comment on relation (1.1.3). It can be readily seen that the summands
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in both sides of the equality are really orthogonal one to another. Indeed, FTix

.. . Mz H?(E 0
and FT5x lie in H, while X, [ 01 ] € X, [ (() 1)] and X, [t_Mgm] €
0

o [Hz(sg)
equality (1.1.3) in the form

| F- le, w* | [Mz |\ |F- lg, w* 0
(e )0 ]) = [ e [ ) k]

], the rest is clear from the definition of H,. Further, we rewrite

(1.1.5)
or, equivalently,
F_ L F- |y W Mz
Pl remd[E e [ 9] (%) wex i

Here ?f z stands for ¥,Fz,z € X, and t € T = {¢ € C : |¢| = 1} stands for
+

the independent variable on the unit circle.

1.2. We need more details about the inner machinery of the (AI)-problem.
Firstly, it is possible to build a new Hilbert space that preserves, in essential,
the structure of the space X. We define an antilinear functional z with the help
of an arbitrary vector x from X by formula

z(y) = D(z,y),Vy € X.

Denote the linear space of the functionals by X. The space X can be equipped
with a scalar product in the following way:

(Z,9)p = D(z,y), Vi,j€X.

The scalar product is well-defined because of the nonnegativity of D. Now we
should only take a closure of X in the metric to get a Hilbert space, H =
clos(,y,X.

"y D
We are going to define a certain isometry, acting on the Hilbert space H.

The solutions of the (AI)-problem will be characterized in terms of unitary ex-
tensions of this isometry. Let us put

dy ={Tiz®@Mz:zc X} C H®E,

Ay ={Thoa®Mz:z€ X} CHDE,.
Identity (1.1.1) states that the map, defined by the formula

Vid,— Ay, V(Tiz® Mz)=Tx® Mz, z€ X, (1.2.1)
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is an isometry. We refer to this operator as to the (AI)-isometry, also it is
convenient to denote its defect subspaces by

Ndv = (H D 81) O dy and NAV = (H @52) O Ay. (122)

1.3. In this subsection we demonstrate how a unitary extension of the (AI)-
isometry generates a solution of (AI)-problem .

Let K be a Hilbert space that contains H as its subspace. By a unitary
extension of an isometry V,V : H® & — H & &, we mean a unitary operator U
acting from K @ &; to K @ & in such a way that Ulg, = V.

We prefer to treat the unitary operator as a unitary colligation with coefficient
spaces £1,&9 and the state space K. In other words, we decompose the operator

U into the blocks
U A B| |K o K
T |C D||& E |7

Following [1|, we define the characteristic function of the colligation by the for-
mula

w(¢)=D+C¢C(I-CA)'B. (1.3.1)

Evidently, the function is analytic on the unit disk D. Moreover, one can prove
that the function is contractive [1, 2, 10]. Further, we define a map F with the
help of the relations

F(() = {igg] = F%*((II__C%II] K [2] . (1.3.2)

The map is called a Fourier representation of the state space K. The following
proposition describes the main properties of the representation.

Proposition 1.1. ([2, 8-10]) A Fourier representation, defined by (1.3.2),
has the properties:

1) for every k from K the vector ¥k lies in X,H,,, so the map E&_I)F, acting
from K to H,, is well-defined.

2)

(ereo] #][e]m)=rrwe s ][0 ]rr
& w & &

3)

ISCVFE|3 < ||E|[%, VE € K.

It seems to be relevant to compare 2) with (1.1.5) and (1.2.1).

Assign Fx = E&_I)FE, z € X. Since properties 2) and 3) of the previous propo-
sition turn into (1.1.3) and (1.1.4), we deduce that the pair (w, F') is a solution
of the (AI)-problem.
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The cornerstone of the approach is that, conversely, every solution (w, F') of
the (AI)-problem arises in this way (see [8, 10]).

1.4. Let N7 and N> be copies of the defect subspaces of the (AI)-isometry.
This time we obtain a unitary extension of the isometry by enlarging the coeffi-
cient spaces instead of the state space. Namely, we consider a unitary operator Uy
mapping H & (£ ® N2) onto H & (€2 & N1). Note that

Ho & oN)=Ha&E)DN, =dy @ Ny, & Na,

H@(EON)=(HBE)ON, = Ay & Na, ®N:.
This remark permits to introduce the universal extension of the (AI)-isometry
(see [1, 8, 9]) as
UO|dV = V, U0|Ndv =1d : NdV —)Nl, U()|./\[2 =1d: Nz — NAV-

Let us consider the characteristic function and the Fourier representation of
the unitary colligation

S(¢) = Do + ¢Co(I — ¢Ao) ' Bo,

G—(C)]

~R* _ FAxL

= |: Coll — CAp) ! :| :H — YgHg,

where -
o _[4 B[ H H
T C Do| &N EaONL|"

It is convenient to introduce the block decompositions of the just defined maps:

_ | G2 . [ & |G &
G+_[G+1].H—>_NI],G__[G2].H—>[N2],

o[ )] (5]

Before stating the theorem, let us denote by B[N7, N3] the set of all [N, Na]-
valued analytic contractive functions on the unit disk D.

Theorem 1.1. ([8-10]) All solutions of the (AI)-problem are parametrized by
functions € from B[N1, N3] . The correspondence is given by formulas:

w = 59 + s2(1p;, — €5) tesy, (1.4.1)

[F_(C)x] _ [G_l + 8T(1p, —€*s*) 7 Le*G o

cH—> XY ,H,. 1.4.2
Gio+sa(ln, —es)"teG i wrw ( )
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2. Formulation of the four-block problem

2.1. Let Ey, EY, E9, EY), F be separable Hilbert spaces. Let

shz[é g] (2.1.1)

be a fixed function from L*(E; & E,, E} & E)}). The operator-valued function
maps [LQ(El)] into [LQ(ED

L*(E») L*(Ej)
function be given, # € H*(F, E}). By the four-block problem [6, Ch. IX, Sect. 4]
one understands the problem of finding §,

. A+0H>®(E\,F) B

. [A+6T B g
U e [N TSN}

] via multiplication. Let a [F, E}]-valued inner

and characterizing all optimal ¥, from H*®(E;, F).

A detailed discussion of the problem from the commutant lifting theorem point
of view can be found in the already mentioned monograph [6, Ch. IX, Sect. 4].
The same source contains applications of the problem to the robust control theory
as well as the history of the question.

In particular, the construction permits to calculate the value § as a norm of
a certain Hankel type operator. We need some definitions to formulate the result.

We define an inner function by the formula

® = [g] :L*(F) — [ﬁigg] , 0 = 1p.

Then we consider spaces

1= [1215((521))] and H' = [ﬁzgg] © OH*(F). (2.1.2)

We denote the operator of the orthogonal projection from L?(E}) @ L*(E}) to H'
by Pg. Further we set operators T' and T” to be

Th =th,h € H, and T'h = Pyith' 0 € H'.
Let us define an operator I', mapping H to H' by the formula
Th = PypQoh,h € H. (2.1.3)
Clearly, the operator is in the commutant of 7" and T”. Indeed,

['Th = T'th = Py Qoth = PyitQoh = Pyt Py Qoh = T'Th,Vh € H.
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Theorem 2.2. (/6, Ch. IX, Sect. }]) Let Qg be an operator-valued function
defined by (2.1.1). Then

OH>®(E,, F)

. 0
inf |9+ 7T oo = T

2.2. We would like to study a question that slightly differs from the problem
discussed in the previous subsection. Assuming that ||T'|| < 1, we are interested
in describing all operator-valued functions € from L®(E; & E», E| & E}) which
define the same operator I' via (2.1.3) while their norms satisfy the inequality
190 < 1.

More precisely, let an operator T, acting from H to H', be given. We suppose
that

I'T =TT on H. (2.2.1)

The problem is to parametrize the set of operator-valued functions Q € L*(E; &
Es, E| @ E)) such that
1) Th= Pg/Qh,Vh € H, (2.2.2)
2) [I9le0 < 1. (2.23)

Hereafter we will refer to the problem as to the four-block problem (or, to be brief,
to the (4B)-problem). The function € possessing properties (2.2.2) and (2.2.3),
will be called a solution of the (4B)-problem .

2.3. The purpose of this subsection is to put the (4B)-problem into the
framework of the scheme of the abstract interpolation.
It can be easily done by exploiting commutativity relation (2.2.1). We have

I'Th =T'Th = PgitTh = tTh — ®Myh (2.3.1)
by definition of Py (see Subsect. 2.1). Here Mj is an operator from H to H?(F).

We rewrite (2.3.1) in the equivalent form

tCh =T'th + ®Msh
and we note that TTh L ®Msh, because I'Th € H' and ® Myh | H'. This remark

immediately implies that
(tTh, ®g) = (BMyh, ®g) = (Myh,g) Vh € H,Vg € H*(F). (2.3.2)

In particular, the equality shows that (®*tTh — Msh,g) = 0 Vg € H?(F), or,
consequently, Mah = P, t®*I'h € F. Furthermore, this enables us to calculate
the expression in the following way:
(I =T*T)h1,ha) — ((I —T"T)thy,the) = (T'thy,Tthy) — (Thy,Tho)
= (tI‘hl,tI‘hQ) — (chl, @Mghg) — (@Mzhl,ﬂ_‘hg)
+ (®Mshy, ®Msohy) — (Thi,The) = —(Mah1, Mahs) .
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We have applied relation (2.3.2) with g = Mshs and its conjugate with g = Mah;
to get the latter equality.
Let us assign

D =1-T"T >0 (because |[T|| <1),

Myh = Pot®Th : H — F, Mih =0, (2.3.3)
T1 :T:t-__, TQZ‘idODH,

X=H &={0}, &=F

Hence, the new setting transforms the previous equality to identity (1.1.1). It
means that we have reduced the given (4B)-problem to an (AI)-problem with ap-
propriate data. We will call the problem the (AI’)-problem to stress the particular
choice of interpolation data (2.3.3).

We want to finish this subsection with an explicit formula for the operator of
the orthogonal projection Pp. Arguing as during the computation of Msh, one
can get that

Pyig =g— ®P,d*g,g € L*(E}) ® L*(E}), (2.3.4)

where P, is the Riesz projection acting from L%(F) to H?(F) (see also [12, Ch. 2]
or [14]). The relation will be useful in the next section.

3. Correspondence between the solutions of the (4B)-problem
and the (AI’)-problem

3.1. We begin this subsection with the following observation. Let (w, F) be
an arbitrary solution of the (AI’)-problem. Since & = {0} and w is a [&1,&]-
valued function, we automatically obtain that w = 0 on the unit disk D. Then,
by definition (1.1.2)

P R P R

Consequently, the first component F_ of the Fourier representation is identically
equal to zero, while the second one maps H into H?(F) and satisfies the relations

1) Fith=tF h+ Mh, Vh € H, (3.1.1)
2) (Fih,Fih) < ((I—T*T)h,h), Vh € H. (3.1.2)

To derive them, we substitute the explicit expressions from (2.3.3) into formulas
(1.1.4) and (1.1.6).

3.2. The connection between solutions of the (AI’)-problem and the
(4B)-problem is given by the following proposition.

Proposition 3.2. The following assertions hold true:
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1) every solution of the (AI’)-problem determines a solution of the
(4B)-problem by the formula

Qph = (T + ®F,)h, h € H; (3.2.1)

2) conversely, an arbitrary solution of the (4B)-problem generates a solution
of the (AI’)-problem
Fiqh=2*(Q2—T)h, h € H; (3.2.2)

3) the mappings are bijective and mutually inverse.

Let us prove the first assertion of the proposition. In other words, we should
demonstrate that Qp, defined by (3.2.1), possesses properties (2.2.2) and (2.2.3).

We have
Py Qph = Py (T'+ ®F)h = Py T'h = Th,

since ®F h 1 H'. We proceed with the estimation of the norm of the operator Q.
We get
(Qph,Qph) = (T + @Fy)h, (I'+ ©F,)h)
= (Th,Th)+ (Fyh,Fyih).

Here we have used the orthogonality of I'h to ®F h, for every h from H, and the
equality ®*® = 1r. The latter sum can be estimated with the help of (3.1.2):

(Pharh) + (F-i—haF-i—h’) < (h7 h’)a

hence ||Q2r|| < 1. To show that the operator Qp is actually the multiplication by
a certain operator-valued function, it suffices to verify that

Qprth = tQrh,Vh € H.
Using commutativity relations (2.3.1) and (3.1.1), we obtain

(T + ®F,)th = tTh— ®Myh + ®(tF,h + Myh)
= T+ ®F,)h = tQph.

This computation completes the proof of the first part of the proposition.
Let us pass to the second part now. The formula for orthogonal projection
Py (see (2.3.4)) implies that

TCh = Qh — ®PLD*Qh, (3.2.3)
and, hence, by virtue of (3.2.2)

Foh = P,®*Qh € H*(F). (3.2.4)
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We obtain inequality (3.1.2) for Fy o by estimating the norm of the functional ,
1(9) = (g9, Fy,oh), g € L*(F).
The Schwarz—Bunyakovskii inequality immediately yields that
l(g)” = |(®g, (2 = T)h> < ((2 — )k, (2 —T)h)(g, 9)-
It is not difficult to see that
(2 =T)h, (2 —T)h) = (Qn,Qh) — (Th,Th),

since (Qh,Th) = (PgQh,Th) = (Th,Th), in accordance with (2.2.2). Hence, we
have
(Qh, Qh) — (Th,Th) < (h,h) — (Th,Th) = (I — T*T)h, h),

because of ||2]| < 1. Thus we conclude that
1P =[IFy.0bll* < (I =T*T)h, h), Vh € H,

and the second statement is also proved.

Let € be an arbitrary solution of the (4B)-problem. We set F; o by  with the
help of (3.2.2), or, which is the same, with the help of (3.2.4). Then, combining
(3.2.1) and (3.2.3), we obtain

Op, oh =Th+ ®F, oh = QOh — ®P,&*Qh + P, 3" QOh = Qh, h € H.

Conversely, let a solution of the (AI’)-problem, say, F., be given. We con-
struct the corresponding solution of the (4B)-problem according to (3.2.1). Then
we pass one more time to a solution Fo . of the (AI’)-problem by (3.2.2). Summing
up, we have

Fo, =0 (Qp —)=0*(T+®F, —T)=F,.

F

We are done.

3.3. First, being in the setting of the (AI’)-problem, we are able to rewrite
formula (1.2.2) in the terms of the (4B’)-problem. Indeed, taking into account
equalities (2.1.1), (1.2.2) and formula (2.3.2), we see that

dy = {tH*(E:) & L*(E,)} @ {0},
and
Ny, = {H?(E,\)® L*(Ey)}© {tH*(E)) ® L*(Ey)} = E1 6 (Ey N Ker(I —T*T)Y/?).

Unfortunately, we cannot say anything about the structure of the second defect
subspace.
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Since all solutions of the (4B)-problem are, in fact, operator-valued functions
from L?(E; @© Fs, E} @ E}), it is sufficient to point out the values of the operators
on vectors from F; @ FE,. Comparing the second row of (1.4.2) with (3.2.1), we
conclude that the following parametrization takes place

Qp el - (r4+ 0 G+ 0 so(ln, —es)1eGyy €l ,e1 € By, eg € Ey,
€9 0 0 €2

where ¢ is an arbitrary function from B[N7, N3].
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AbOcTpakTHasg MHTEPIOJIAIMOHHAS 33a4a49a U 33/4a4a
0 uerbIipex OJI0Kax

C.A. Kynun

N3yuaercs: 4-6/10k 331398 KaK aOCTPAKTHAS WHTEPIIOISIMOHHAS 3312494,
C TIOAXOAAIIUM 00pPa30M TOI0OPAHHBIMY JAHHBIMUA. DTOT MOAXOT TO3BOJISIET
[IOJIyYUTh OMKCAHNE BCEX PEIIEHUi MTPOU3BOIbHOMN 4-0/10K 33,1a490.

AbcTpakTHa iHTEpHmoOJIAIiiiHA 3a4a4Ya Ta 3a4a4a
npo YoTupU OJIOKU

C.0O. Kymin

Busuaerncs 4-6/10K 3a1a4a sIK aOCTPAKTHA IHTEPIIOSINHHA, 33,1994 3 BiJI-
noBinHO miniOpanuvu manuvu. Lleit migxin 703BOJISIE OHEPKATH OMUC yCiX
PO3B’si3aHb J0BLIBLHOI 4-0J10K 3a1a4i.
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