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The probability measures on the unit circle are studied in conjunction
with multiplication operators acting in appropriate Hilbert spaces. The
measure with constant reflection coefficients and the corresponding operator
are treated as unperturbed objects. Under certain perturbations of this
measure it is shown that the support of perturbed measure contains the
support of the original one. More generally, we evaluate the size of gaps
inside the support of the perturbed measure. The similar results pertaining
to Jacobi and banded matrices are also under consideration.

1. Introduction

In the present paper we continue initiated in [6] study of probability measures
4 on the unit circle T with infinite support, supp u, in terms of their reflection
coefficients a, = a, () = @, (i, 0) based on the spectral theory of unitary opera-
tors in the Hilbert spaces. Here ®,, are monic orthogonal polynomials with respect
to g and |an| < 1, n > 1. We assume that p does not belong to the Szegé class,
that is, >.0°, |an|? = co. In that case the unitary multiplication operator U(u)
which is defined by

[U(:u’)] f(C) = Cf(C)a CeT, fe L2(/1’a’]r)a

‘Mathematics Subject Classifications (1991): 42C05, 47B15.
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Hessenberg and Jacobi matrices

and its matrix representation

Upo U1
U(N) = Uio Uir .- ’ Ugj = (U(U)(pja(pk)“a (1)

where for j € Zt et {0,1,...}

— j 1/2 .
—ajt10k H;):]H_l (1 - |ap|2) / ’ for k= 0,1,....,7
ws =3 (1 a1 for k= j 41, ®
0, for k>j5+2

(cf. |7, p. 401]) are in effect. The infinite matrices in which all entries below the
subdiagonal vanish are called the Hessenberg matrices.

The cornerstone of operator theoretic approach to the theory of orthogonal
polynomials on the unit circle results from the fact that the spectral measure of
operator U (1)—(2) which acts in ¢2 agrees with the orthogonality measure pu.
In particular, supp p coincides with the spectrum o(U) of U. Thereby we can
relate two measures, p and y' on T (with reflection coefficients sequences {an}
and {al, }, respectively) by using perturbation theory methods applied to the pair
of operators U, U’ (1)-(2) acting on the same Hilbert space £2. More precisely,
the closeness of {a,} to {al,} in a certain sense yields the closeness of U to U’ in
the sense of operator theory which enables one to compare their spectra.

Throughout the paper we take u' = p, having constant reflection coefficients
an(te) =a #0, n=1,2,... (it is called the Geronimus measure). The corre-
sponding operator (1)—(2) takes now the form

2

—a —ap —ap® ...
p —la? —lafp ...

UVa=1 0 p —Jaf ... | P"=1-ld" (3)

For |11| = |r2| = 1 denote by (71, 72) ([11,72]) an open (closed) arc on T swept

out as 71 moves to 7o counterclockwise. As is known (cf. e.g. [3, formulas (XI.26),
(XI.27)]) the spectrum o(U,) (that is, the support of u,) consists of the arc

Ay =[r,7], T=¢°% 0<a def 2arcsinja| < 7 (4)

along with at most one eigenvalue (masspoint) off this arc.
As recently as 1941 Ya.L. Geronimus studied the measures on T which satisfy

lim a, = a, 0<]a| <1 (5)

n—0o0
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and established the following two properties of the support (cf. [4, Theorem 1’]):
(i) Aa Csupp g,

(ii) supp p on A, = T\A, is at most countable set with no limit points inside
Ay
(for the operator theoretic approach see [7, Theorem 3]).
We will show in Section 2 that (5) can be relaxed as far as (i) goes. Moreover,

we will be able to estimate the size of gaps in o(U) on the arc A,. The property
(ii) turns out to be more unstable. The example of a measure v such that

ol
nli)rgo - 221 laj(v) —a| =0
‘7:

and supp ¥ = T can be manufactured. In contrast to Theorem 9 below the
construction here is based on different ideas and will be presented elsewhere.

The similar results pertaining to measures on the real line, Jacobi and finite-
banded matrices are discussed in Section 3.

2. Method of test vectors

The method of test functions is well known in the theory of singular differential
operators (cf. [5, Ch. 2]). We adapt this idea in the context of unitary operators

(1)-(2).

A vector h € £2 is called finite if it has a finite number of nonzero entries.

Lemma 1. For operator U, (3) and for each ( € A, (4) there exists a se-
quence {n(n,()}n>0 of finite vectors with ||n(n)| =1 such that

Jim [|(Ua — CI) n(n, Q)| = 0. (6)

Proof. According to the definition of (continuous) spectrum the normed
sequence which satisfies (6) does exist. In our particular situation we can find the
sequence with some additional properties.

We begin with the characteristic equation

u9—5%1w+<=0 1)

which is closely related to the measure p, and operator U, (see [8, Section 2]),
and its root 1 = 71(¢). We know that |r1| =1, ¢ € A,. It easily follows from
(7) that

oo
I 3 T P S
k=n
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Hessenberg and Jacobi matrices

On the other hand, for an arbitrary vector h = {hy,}n>0 € £2 put g = Ush =
{gn}nzo. Then

[e 0]
g = —a)y ph,
k=0

o
gn = pho_1—al? Zpk_”hk, n=12,.... (9)

k=n
Hence the vector r & {r1 " }n>0 is “almost” eigenvector of U, (the point is that
r ¢ ¢%). So we take the truncated vector

lr(pa C) = {an)a C)}”ZO = {17r;17r;2, cee 7T1_p, 0,0,.. }
and put {(p) = {£&.(p) }n>0 = (Ua — ¢I) r(p). It is clear from (9) that

—a Z’él:o PPt =, ) n =0,
&, Q) =] o™t — a2 0 e E =™, n=1,2,..,p,
pri’ n=p+1.

and &,(p) = 0 for n > p+ 2. By (8) we see that

lal”

T —p

o
&n(p, Q) =lal* > pFrrk = PPt n =12, p.

k=p+1

Next, for ¢ > p consider the difference
r(p,q;¢) = r(q,¢) —r(p,¢) = {O,...,O,rl_p_l,...,rl_q,O,...}.

For &(p,q) = {&n (0, @) }n>0 = (Us — {I) 7(p, q) = £(q) — £(p) we now have

Tllalfp (r9ptl=n — pPpptln) =1 9 p
n(p,q; ) = lal2r % gt1-n
—rl_pp y n=p+2,...,q
and also
! k,—k [ q-p —P
50(p7q; C) = —a Z pPTL, £p+1(pa q; C) = L — rop —pPry,

k=p+1

€gr1(p,q;¢) = pr1? and &,(p,q) = 0, n > g + 2. Hence for ¢ € A,

q 4 q
) |fn(p,q;c)\2§$ S 2 < Oy (a)

n=p+2 n=p+2
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and similarly

p
> ln(p, g O < Cala),
n=1

where Ck(a), kK = 1,2,... stand for positive constants which depend only on a.
The same inequality is obviously true for the rest of indices. Thus we come to
the following relation

[(Ua = CI)7(p,¢; Ol < C3(a), € € Aq. (10)

Since |r1| = 1 on A, we deduce that ||r(p,q)||> = ¢ — p. Define now the
sequence 7)(n) announced in Lemma by

def 7(Pn, qn; €)

n(n,¢) = N

so that each n(n) is a finite vector and ||np(n)|| = 1. It is clear from (10) that

lim {|(Us — ¢I) n(n, )| =0

n—0o0

as long as g, — p, tends to infinity. It is also worth mentioning that the system
n(n) is orthonormal if we take pp1 > gp. [ |

Let u be a probability measure on T with reflection coefficients a,, and unitary
Hessenberg operator U (1)-(2). The difference

VU U, = {on}n50

which acts in #2 provides some information about the closeness of supp p = o(U)
to the arc A,, which constitutes the essential support of .

Theorem 2. Assume that a, are bounded away from the origin
inf |a,| > 0. (11)
n

For ¢ € Ay let an arc Q2 = (¢ — 7, + 7) have an empty intersection with supp .
Then
1 & def
2 ..
T SClénm_:gofa .Zﬂ laj —al, dn = gn—pn, (12)
J=DPn

where C is a positive constant which depends on a and a,,.
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Proof Since Q belongs to the resolvent set of U, the Spectral Theorem
for unitary operators states that

I =D hP = /T A= CP (BN, ) > 4sin® Z 1)

for each vector h € 2, and hence
T
2sin o < ||(U = ¢I) k|| < [[(Ua = CI) hl| + [[VA] - (13)

To evaluate the right-hand side of (13) we need to handle vector h in appropriate
way.

Put h =n(n,¢). By Lemma 1 the first term goes to zero as n — oo, so let us
focus on the second term

o0 q 2 1 [es} q 2
IVa(n, Ol Z—Z 2 winri"Q) < 2| 2 el | 04)

P = Pn,q = qn- Note that v;, =0 for j > n + 2, so that

q+1

q
(a—p) [Vn(n, Q)| E > (vl

n=p+1

By [6] (see Step 2 in the proof of Theorem 6) we have v;;_1 = p;j — p for
j=1,2,...,

gl < (ansr —al + lay — al)p™ + B m),
n
R(G,n) = Y pjsi--pailp—ple" n2jix1, (15)
el

Here p3 - laj|> > 0 and R(j,7) = 0. The inequality (15) holds for j = 0 as
well if we take a9 = a. It is clear from (11) that sup, p, = 6 < 1 and

n
R(jn)| < Y o701t

I=j+1

To estimate ||[Vn(n)|| we split the sum in (14) in three groups.
1. Let 0 < j <p+ 1. Since |a, — a| < 2, we have

> fml < D (0" +IRG) < ST+ D gt et

n=p+1 n=p+1 n=p+1l=j+1
(16)
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Next
q n _ q p n
)DIDILEREE Sl YR SNl LRV RS
n=p+11=5+1 n=p+1 \I=j+1 I=p+1

where

p q D
S, = Z 5l—j—1 Z pn—l < (1_p)—1 Z 5l—j—1pp+1—l’

l—j+1 =p+1 I=j+1
Sy = Zé” 1anl<K5H (17)
I=p+1

Here and in what follows K stands for (different) positive constants which depend
on a and a,. Note also that S; < K and hence $? < KS;. From (16)—(17) we
derive

q
D ol SK (0P 7+ 677 4 51),
n=p+1

q
Z lwjn| | <K <p2(pfj) + §2(p—4) 4 51)

n=p+1
and finally
p+1 q p+1p+l
(35 | <xe xS P
j=0 \n=p+1 J=0 I=j

2. Let now p+ 2 < j <gq. Then

q q q
D vl =Y el = gl + ) vl
n—j

n=p+1 n=j—1
q ] q
< oy —pl+ > (lant1 —al +a; —al) "7 + ) R(j,n)
n=j n=j
= S3+ 5,

To estimate R(j,n) we proceed in a more delicate way. As |p; — p| < K|a; — al
(cf. |6, formula (38)]) we have

q
Ss = lpj—pl+ Y (lant1 —al +|a; —a]) p"

n=j
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q
K | laj —al + ) lans1 —alp"™7 |,

n=j

IN

q g n
Sy = ZR(j, n) < KZ Zéli]flml —alp™
n=j n=j l=j

q q q
KZ(Sl_j_1|al —al Zp"_l < KZ(Sl_j_lkn —al.
= n=l 1=j

Again, as above, S;, < K, m = 3,4 and S2, < K S,,. Hence

IN

2
q

> vl | < K(Ss+ Si)

n=p+1

a a
<K |l|a; —al+ Z lan+1 —alp™ ™ + Z la; — al6t=771

n=j I=j
and finally
q q 2 q+1
2o 2 il | <K D7 laj—al
j=p+2 \n=p+1 Jj=p+2

3. For j = ¢+ 1 the bound is obvious

[Vg+1.4] = [Pg+1 —pl < 1.

Upon combining (18)—(20) we obtain the following inequality

AR ’ K g
Wi, O < =25 32 fogal | <2 (14 Jaj—dl
17P =5 \nSoha =P j=pt1

Going back to (13) we see that

o _ T 2 2
< 5 (110 = ¢ O + [Van, O -
The statement of theorem is now immediate from (21) and Lemma 1.

The next result is akin to [5, Ch. 2, Theorem 22|.

Matematicheskaya fizika, analiz, geometriya , 2000, v. 7, No. 3
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Theorem 3. Let there exist a sequence of intervals I, = [pp,qn] with g, —
P, — 00 as N — o0 such that

1 qn

Z laj —a| =0.

Jj=pn+1

lim
n—=00 gpn — Pn

Assume further that liminf,,_, |a,| > 0. Then A, C supp p.

Proof. Letu and i be measures on T with the Hessenberg operators U, U
(1)—(2) having the same reflection coefficients from some point on

an=20ap, Nn=N,N+1,....
It is not hard to check (cf. [6, Remark 5]) that
'U'k,j:'a/k,j, kZN,N—Fl,...,

which means that U is the finite rank perturbation of U.

Now, given a,, with liminf,, , |a,| > 0 we can change finite number of a,’s
to end up with the new sequence a,, satisfying (11). By (12) 7 = 0, that is, supp j
contains A, or, in other words, Ay C 0¢s(U). By H. Weyl’s Theorem (cf. [9,
Problem 143, p. 91]) 0¢s(U) = 045(U) contains A, as needed. ]

Corollary 4. In the premises of Theorem 3 let

n

o1
hnn_l)géfﬁ z:l laj —a| = 0.
]:

Then A, C supp p.

3. Jacobi and banded matrices

Our objective here is to establish the result similar to Theorem 3 in the setting
of Jacobi (or, more generally, finite-banded) matrices.
Consider an infinite complex Jacobi matrix

Bo o 0 O
M P a 0O
J= 0 72 ’62 asg ... 3 Clj,ﬁj,’)’je(c (22)

0 0 7 B

with bounded entries: sup,, (|an| + |Bn| + |n]) < oco. It is known to generate a
bounded operator in ¢2 (which we denote by the same letter .J). The spectrum
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o(J) is defined as the set of points ¢ € C for which the operator J — (I is not
invertible.

H. Weyl!’s Theorem, which is by far one of the fundamental results in operator
theory, claims that [—1,1] C o(J) whenever

e = A=y =0 (2)

(cf. e.g. [1] for the application of this theorem to complex Jacobi matrices). It
turns out that (23) can be relaxed as follows.

Theorem 5. Let there exist a sequence of intervals I, = [pp,qn] with ¢, —
Pn — 00 as n — 0o such that

1 qn 1 2 1 2
lim aj — = +ﬁ'2—|— = = = 0. 24
n—00 qp — Ppn jg;o:n ( ) il K 2 (24)

Then [—1,1] C o(J). In particular, the latter is true provided

1 « 112
lim inf — Zl ( %~ g > = 0. (25)
]:

2
Oéj——

Proof Let

0 1/2 0 0...

1/2 0 1/2 0...
L=|0 120 1/2..

0 0 1/2 0...

and put V def 7 Jo. As (23) does not in general hold, J is no longer a compact

perturbation of Jy. We apply the method of test vectors to J — (I with { =
cosf € [—1,1] by taking

r(p,q;¢) ={0,...,0,cos(p+1)0,...,co8¢0,0,...}, p<gq. (26)

Now the vector (Jo —(I)r(p,q) has at most four nonzero entries, each of which of
the form £3 cos k@, so that ||(Jo — ¢I)r(p,q)|| < 1. On the other hand, for fixed
¢l <1

q q
— 1
Ire.a: QI = > cosk9=TF 4= 3 cos2kd
_ 1{(_)+M (p+q+1)0} > CC)(g—p)
2 a—p sin @ cos\p g = =P
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with some positive constant C(¢) (C(£1) = 1). Hence for the vectors

n(p,¢;¢) = % (27)

we have [|[n(p,q)|| > C(¢) > 0 and limg—pc0 [|(Jo — CI)n(p, q)|| = 0.
Next, it is clear that

1(J = ¢Dn(p, q; Ol < 1(Jo — CD)n(p, g; Ol + IV (p, ; Ol -

It remains to show that the second term on the right-hand side goes to zero for a

i

suitable choice of p, ¢. Indeed, put 7% def ar —1/2, wg def vk — 1/2. Then

(a=2) IV(p, ¢; O = I7p11[ cos® (p+1)8+|Bp1 cos(p + 1)8 + T2 cos(p + 2)6]”

qg—1
+ Z |w; cos(j — 1)8 + B; cos jO + 741 cos(j + 1)8)?
J=p+2

+ |wq cos(g — 1)8 + B, cos gO)* + |wgs1]” cos? ¢b

so that
\ g ot 2 , 112
Vo, OI? < —— Y {|lai—5| +1812+|n—5] |-
7P ;500 2 2

We see that for 5, = n(p, — 1,9, — 1) in hypothesis (24)
Tim [[(/ = ¢Dn(m, O =0, [In(n,Oll = () >0,

which implies ¢ € o(J) giving the desired result. [ ]

Remark 6. Letaj =17 >0, 8 = B;-Then J is closely related to a
certain measure g on the real line. Specifically, the three-term recurrence relation

xpn(x) = an—f—lpn—{—l(x) + ﬂnpn(x) + anpn—1(~7")a p-1=0, po =1,

gives rise to the system of polynomials orthogonal with respect to this measure p
and, what is more to the point, supp u = o(J). The restriction on ay, 3, to be
bounded is now not essential. We may assume that J is merely self-adjoint (not
necessarily bounded) operator. The latter holds if, for instance, 3, is an arbitrary
sequence and Y > ; 1/ay = oo (cf. [2, Ch. 7, Theorem 1.3]).

The same line of reasoning leads to the counterpart of Theorem 5 for finite-
banded matrices. An infinite matrix B = {by, ; }« j>0 is called m-banded if by, ; = 0
for |k —j| > m. We assume that the entries by ; are bounded so that B generates
a bounded operator B in £2.
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Theorem 7. Let there exist a sequence of intervals I, = [pp,qn] with ¢, —
P — 00 as n — o0 such that

1 qn 1 2 m—1 1 2
lim bij-m—5| + bijikl” + [bjjem —=| | =0. (28
n—0o ¢, — Pp ];L ( By—m 9 k:;n—'—l | J,J+ | J,J+m 2 ( )

Then [—-1,1] C o(J). In particular, the latter is true provided

NI IR
h;g;%faZ(

Jj=1

2 m—1

2
+ Y bkl
k=—m+1

1

bjj—m = 5 bjj+m — 5

where b;; =0 for 1 <O0.

Proof. We only sketch out the proof. Take By = {bg,j}k,jzo with
bg,j = O j+m, where §, 4 is the standard Kronecker symbol (By plays the same
role as Jy above). It is clear again that for ( = cosm# and 7(p,q) (26)—(27) we

have [|n(p, ¢)|| > C(¢) > 0 and limy_p 00 [|(Bo — ¢1)n(p, )| = 0.
Next, for V.= B — By

(B — ¢<Dn(p, ¢; Ol < |(Bo — ¢nlp, ¢: Ol + [[Vnlp, g; ¢)|l

and the second term on the right-hand side goes to zero for a suitable choice of
p,q by (28). u

Going back to Jacobi matrices (22) put oy, = v, = 1/2.° Theorem 5 states
now that [—1,1] C o(J) as long as

n—oomn + 1 4

. R
lim —— Y[ =0 (29)
7=0

holds. The latter is known to be equivalent to lim,ecp B, = 0 along some sub-
sequence A C Z™T of density 1 (cf. e.g. [10, Theorem 13.7.2]). Recall that a
sequence A C Z% is said to have density d(A) if

def 1 IAN{0,1,...,n}|

n—00 n4+1

d(A)

exists, where | X| stands for the number of points in X C Z*.
It is worth pointing out that Theorem 5 is sharp with regard to the density.
More precisely, given 0 < d < 1 there is a discrete Schrédinger operator J such

“Such matrices are usually called the discrete Schrédinger operators.
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that 8, — 0 along a sequence A with d < d(A) < 1 and [—1,1]\a(J) # 0. To
make up such example pick a positive integer m with d < m/(m — 1) and put

ﬁn:()a n#km; ,B'n:,B>O, n:km

with an appropriate choice of 3.
Let us go over to the portion of o(J) off [—1,1].
We start out with the following

Lemma 8. Let J be a discrete Schridinger operator and let there exist a
sequence of intervals [pg,qx] with gz — pr — o0 as k — oo such that §; = w,
J € [pk,qx)- Then w € o(J).

Proof. The line of reasoning here is quite similar to that in Theorem 5.
The operator J — wl has now an increasing sequence of zero blocks along the
main diagonal. Hence the test vectors

Tk ™ ™
Nk = N TR = {0,...,O,cos(pk—|—1)§,...,cosqk§,0,...}

do the job. [

It is well known that (23) yields quite regular behavior of o(J) off [-1,1].
In contrast to this under condition (25) the spectrum turns out to be “nearly
arbitrary” on the complex plane. More precisely,

Theorem 9. Given a compact K C C there exists the discrete Schridinger
operator J such that (29) holds and K C o(J).

P roof. Pick any countable dense set {w;,ws,...} in K. To define g, we
proceed as follows. Consider a partition of the set ZT

[ee] n
7zt =J U Ink

n=0 k=0
wherein I, ;11 follows I, and I,, 1, precedes I, for all p,q. Let

[ Ino| = 2", Ikl =n k=1,2,...,n. (30)
Now put

def

o0 o
: : def
Bi=0, €= JLo;  Bi=wr, j€LZ | L
n=0 n=~k

The sequence Iy has density 1 thanks to (30) and hence (29) holds. By Lemma 8
each wy € o(J) and thus K C o(J), as claimed. [ |

Acknowledgement. The author thanks Prof. F.S. Rofe-Beketov for dis-
cussing some issues related to Theorem 9.
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O cnekTpax 0eckoHedHBIX MaTpuill Xeccenbepra u SIkodbu

JI.B. Tonmunackni

W3y4arorcst BEPOATHOCTHBIE MEPBI HA, € JUHUYIHOU OKPY?KHOCTH B CBSI3H C
OIepaTOpPaMy yMHOXKEHUS HA, HE3ABUCHMYIO [IEPEMEHHYIO NeACTBYIOIMIUMY B
COOTBETCTBYOIUX npocTpancTBax ['unpbepra. Mepa ¢ mocTosiHEBIMEU KO3(d-
duLmeHTaMu OTPAXKEHUsI U COOTBETCTBYIOIIUM ONEPATOP YMHOMXKEHUsI PAC-
CManI/IBaIOTCH KaK HeBO3My]J_[eHHbIe O6beKTbI. HpI/I OHpe,[[e.HeHH])IX BO3My—
MIEeHUsAX I'IOKHBH,HO7 9TO0 HOCUTEJIb BO3MyIHeHHOI>‘I Mepr CO,[Lep)KI/IT HOCUTEJIb
HUCXOMHON Mephl. Bosiee 00110, MBI OLIEHUBAEM DPA3MEPHI JAKYH B HOCUTE]IE
BO3BMYIIIEHHOM Mepbl. AHAJIOTMYHBIE PE3YJIbTATHI TPUBEIEHBI JJIsi SKOOUEBBIX
¥ TIOJIOCKOBBIX MATPHII.
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IIpo criekTpu HECKIHUYEHHUX MaTpuilb XeceHbepra ta
Axobi

JI.B. Toniucekuit

BusuaroTbcst IMOBIPHOCHI Mipy HA, ONMHUYHOMY KOJIi B 3B’SI3Ky 3 Omepa-
TOpaMy MHOXKEHHSI Ha, He3aJIeXKHy 3MiHHY y Bignosinuux mpocropax ['insbep-
ta. Mipa 3 mocTiitHuMu KoedilieHTaMu BiZOUTTS Ta BiANOBigHMIT omepaTop
MHOXKEHHsI BBAXKAIOTbCsl He30ypeHnuMu 00’ekTaMu. 3a MeBHUMU 30yPEeHHSIMU
MMOKA3aHO, IO HOCiH 30ypeHoi Mipu MicTATH HOCIH mOYaTKOBOI Mipu. BijbIm
3arajibHO, MU OL{HIOEMO PO3Mipu JakyH y HOCil 30ypenoi mipu. Binmosigai
pe3yJIbTaTy HABEAEHI Jjis IKOOIE€BUX TA CMyracTHUX MaTPHUIb.
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