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The maps of the Grassmannian manifold G} which preserve the class of
irregular subsets are studied. It is shown that in the case n # 2k any map
of this class is induced by a linear automorphism of R"™.

Irregular subsets of the Grassmannian manifolds were introduced in author’s
paper [4] (see also [5]), in which it was considered the connection between irregular
subsets of the Grassmannian manifold G} and projections of k-dimensional subsets
of R" onto k-dimensional planes (we recall the results of paper [4, 5] in Subsection
1.2). Here we study bijective maps of G} into G} preserving the class of irregular
sets. We do not restrict ourself to the case of continuous maps.

1. Some properties of irregular subsets

1.1. Definition of regular and irregular sets. A set R C G} is called
regular (R € R}) if there exists a coordinate system in R” such that any plane
belonging to R is a coordinate plane for this system. Any coordinate system in

R"™ has
n!

kl(n — k)!

distinct k-dimensional coordinate planes. Therefore, if R € R}, then |R| < c}.
A regular set R C G} is called mazimal (R € MMRY) if |R| = c}}. It is easy to see
that for any R € R} there exists Re MNRY such that R C R.
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Let R € MRE. Consider the coordinate system in R such that any plane
belonging to R is a coordinate plane for this system. Denote by 7, (R) the set of
all m-dimensional coordinate planes. Then r,,(R) € MR, and the map

Tm : MRE — MRT,
R — rm(R) VR € MAT

defines an one-to-one correspondence between MR} and MRY,.

A set V C G} is called irregular (V € J7) if there exists no R € IR} such
that R C V. An irregular set V' C G} is said to be mazimal (V' € IM3I}) if for any
W € 3% such that VC W we have V = W.

Proposition 1.1 [5]. For any V € 3} there exists W € IMI} such that
VcCcw.

Let s € G}, and

ney_ ) {IEGE|ICs} m>k,
G’c(s)_{ {leGr|scl} m<k.

Then G} (s) € 3} and we have the following

Proposition 1.2 [4, 5]. Let V € MIE and k = 1,n — 1. Then there ezists
s € GI'_, such that V = GJ(s).

1.2. Irregular subsets of G and projections of k-dimensional subsets
of R"” onto k-dimensional planes. Let X C R", [ and s be k-dimensional and
(n — k)-dimensional planes, respectively. Denote by pj(X) the projection of the
set X into the plane / along the plane s. The projection pf(X) is well-defined if
and only if the planes [ and s are transversal.

It was proved by G. Nobeling [3] that for any k-dimensional F,-subset of R"
there exists a k-dimensional plane [ such that dim p%L(X ) = k , where I+ is the
orthogonal complement to [.

The projection p;(X) is called regular if it is a set of second category in [.
Consider

Vil(X) ={1e G} | Vs e€G,_, the projection p;(X) is not regular } ,

(X)) ={s€eG,_, |Vl € G; the projection pj(X) is not regular } .
We have the following
Theorem 1.1 [4, 5]. Ifdim X > k, then V,*(X) € 3} and W'_,(X) € 3" _,.

Theorem 1.1 shows us that for any coordinate system in R™ there
are k-dimensional and (n — k)-dimensional coordinate planes [ and s such that
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the projection pj(X) is regular. It is not difficult to see that if X is an F,-subset
of R* and the projection pj(X) is regular, then dimp;(X) = k and the Nobeling
Theorem [3] is a consequence of Theorem 1.1.

We want to prove that for any k-dimensional set X the sets V;*(X) and
W[Lk(X ) are nowhere dense in Gy an= d G)_,, respectively. It seems to be
natural to ask how large may be an irregular set. Propositions 1.1 and 1.2 imply
that in the cases k = 1,n — 1 any irregular set is nowhere dense in G}}. For the
case 1 < k < n — 1 this statement is not proved. However, we have the following
result supporting our conjecture

Theorem 1.2 [5]. If V € 37, then Int(V) = 0.
Therefore, for any k-dimensional subset X of R the sets G \ V;*(X) and

Gl _, \ W}_.(X) are everywhere dense in G} and G_, ; moreover, in the case
k=1,n—1 their complements are nowhere dense.

2. Regular maps of the Grassmannian manifolds

2.1. Definition and elementary properties. A bijective map f of Gy
into G} is called regular (f € R®(G})) if it preserves the class R}; i.e., for any
R C G} we have f(R) € R} if and only if R € 98}. An immediate verification
shows us that the following lemma holds true.

Lemma 2.1. The following statements are equivalent:
(i) feR(G);
(il

) f preserves the class MR ;
(iii) f preserves the class J7;
)

(iv) f preserves the class I} .

Let ©} : GI — G , be the canonical homeomorphism; i.e., p%(l) = I+ for
any | € G}}. Then
Gi(s) = ¢k (Gr_k (s7)) (2.1)
and the following lemma holds.

Lemma 2.2 [4, 5]. The canonical homeomorphism ¢} maps the classes R},
IMNRY, Ii, M3} into the classes R _,, MR _ ., It _,, IMIT_ ., respectively.

All regular maps of G} constitute the group :8(G}). Lemma 2.2 shows us that
v € R(GYH).

Let s € G. If m > k, then there exists the natural homeomorphism ¢,
between G} (s) and G}*. In the case m < k consider the map

0s = 0s10p : G (s) = Gy .
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This is a homeomorphism of G} (s) onto G,~]". Moreover, we have R € R} if
and only if p,(R) € R|* or p,(R) € R for any subset R C G} (s).

2.2. Linear automorphisms. Any linear automorphism of R" induces
a regular map of G;. A map of G} induced by a linear automorphism of R" is
called linear. All linear maps of G} form a group. Denote it by £(G}). Let &£(n)
be the group of all linear automorphisms of R”. Then we have the following

Proposition 2.1.

oE0) A {ledL(n)| detl =11}, n # 21,
(’“)N{{ZE(’ﬁﬂ(n)HdetH:l}, n=2i.

P roof. Consider the homomorphism
T : 8L(n) = £(Gg)
where 7}(1) is the automorphism induced by [ € 8£(n). Then
Kernp ={ald|aeR,a#0}

and
L(G}) = 8L(n)/Kerny, .

Two last equations imply our statement (it must be pointed out that in the case
n = 2i we have det! > 0 for any [ € Kernk).
Let f € £(G}) and f' € (7)7!(f). For any i = 1,...,n — 1 define

ki) =77 (f) -
If f" € (7)"1(f) and f’ # f", then
f'(f"M ' e Kern} = Kernl.

This implies that 7' (f') = 77 (f") and L} ;(f) is well-defined for any f € £(G})
and ¢ =1,...,n — 1. The similar arguments shows us that

ki £(Gg) = £(G)

is an isomorphism between £(G}}) and £(G}) for any i = 1,...,n — 1. Moreover,
for any f € £(G}) we have

f(GE(s)) = Gg (fis)), Vs eG}, (2.2)

where f; = L (f).

2.3. In the next section we prove the following
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Theorem 2.1. If n > 3 and n # 2k, then R(G}) = £(G}). Moreover, the
group R(G) (k > 2) is generated by £(G2F) and piF.

For any I; € G? (i = 1,2) such that I; # I we have {l1,l2} € 9MNR2. Therefore,
any bijective map of G? into G? is regular.
The group £(Gi*) is normal subgroup of R(G¥) and

R(GH)/L(CF) ~ Zo

(this statement is a simple consequence of Theorem 2.1, and we do not prove
it here). The subgroup {Id, ¢?F} is not normal and the group R(GZ*) is not
isomorphic to the group £(Gi¥) x Zo.

3. The Chow Theorem. Proof of Theorem 2.1 in the cases
k=1n-1

3.1. Proof of Theorem 2.1 in the cases k=1,n—1. In the case
k = 1 our statement is a trivial consequence of the Main Theorem of Projection
Geometry (see [2]). Consider the case k =n — 1.

Let f € R(G!'_;). Then Lemma 2.1 and Proposition 1.2 imply the existence of
bijective map fi of G} into G} such that equation (2.2) holds fori = 1,k =n—1.
Moreover, for any R € MMRT we have

fi(R) = r1(f (rn—1(R))) ; (3.1)
ie., f1 € R(G}). Consider the homeomorphism
F:R(Gp) = RGY) = £(GY) ,

F(f)=f1.

If F(f) = Id, then equation (3.1) shows that f = Id and F is a monomorphism.
It is easy to see that

F|£:(<Gg_1) = L2—1,1
and F(R(G!_,)) = £(G}). Therefore, R(G}_,) = £(G!_,).

n—1

3.2. The Chow Theorem. We say that /| € G} and s € G} (1 <k <n—1)
despoce in the neighbourhood if there exists p € G, such that I € G} (p) and
s € G (p). This is equivalent the existence of ¢ € G}_; such that [ € G} () and
s € Gp(2).

We also say that a bijective map f of G} into G} preserves the neighbourhood
if for any I € G}, s € G} the planes f(I), f(s) despoce in the neighbourhood if
and only if [ and s are neighbouring. Denote by €(G}) the class of all bijective
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maps of G} into G} preserving the neighbourhood. It is easy to see that €(G})
is a group. To prove Theorem 2.1 we exploit the following

Theorem 3.1 [1] (see also [2]). If1 < k < n—1 and n # 2k, then
C(GY) = £(G}). The group €(G*) (k # 1) is generated by p3* and £(GF)

Theorem 3.1 implies that Theorem 2.1 will be proved if we show that R(G}) =
CG)forl<k<n—1.

4. Proof of Theorem 2.1 inthecase l <k<n-—1

4.1. Index of exactness of regular sets. In this subsection we introduce
the index of exactness of regular sets and study its properties. We use it to prove
Theorem 2.1.

A regular set R € R} is said to be eract (R € ERY) if there exists a unique
set R e MR} = such that R C R. For any R € Ry consider

Ind(R)=  min {

i AR - [R=1}.
Reemy, RCR

It is easy to see that Ind(R) = 0 if and only if R € €R}. The number Ind(R) is
called the indezr of exactness of the regular set R.
We have the following simple

Proposition 4.1. The canonical homeomorphism ¢y and a map f € R(G})
preserve the indez of ezactness; i.e., for any R € R} we have

Ind(f(R)) = Ind(R) ,
Ind(p}(R)) = Ind(R) .

If ¥ = 1,n — 1, then Ind(R) = n — |R| and R} = MRY. In the case
1 < k < n —1 the situation is more complicated.

Let R’ € MAR}. Consider the coordinate system in R™ such that any plane
belonging to R’ is a coordinate plane. Let s be an m-dimensional coordinate plane
for that system, and

R(s) = R'NGL(s) -
Then

cr, m >k,
[B(s)| = { g <k (4.1)

m?

Proposition 4.2. Let R € R} and R C R'. Then the following statements
holds true:

(i) fn—k <k <n-—1and |R| =c}_{, then Ind(R) < 2 and Ind(R) = 2 if
and only if there exists s € G such that R = R(s);
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(ii) if n =2k and |R| = c,C = 1, then Ind(R) < 2 and Ind(R) = 2 if and
only if there exists s € GI'= (where i = 1,n — 1) such that R = R(s);

(ili) if 1 <k <n—Fk and |R| = ¢, then Ind(R) < 2 and Ind(R) = 2 if and
only if there exists s € GI'_, such that R = R(s).

Statement (iii) of Proposition 4.2 is a consequence of statement (i), (2.1) and
Proposition 4.1. In the next subsection we prove statements (i) and (ii).

4.2. Proof. Let
R; = RN R(;) , =N
IER;

and
o dimSi, R; 7& ma
10, Ri=10.

Then we have R € ¢R} if and only if n; = 1 for any i = 1,...,n. A set R; is
said to be mazimal if for any j such that R; C R; we have R; = R;.

Lemma 4.1. If R; is maximal, then n; = 1.

Proof. Letl € R. Then we have the following two cases:

(i) 1€ Ry

(i) I ¢ R;.
In the first case [ € R(s;). Consider the case (ii). Let s be the (n—n;)-dimensional
coordinate plane transverse to s;. We prove that [ € R(s). Assume that [ ¢ R;
and [ ¢ R(s). Then dim/Ns; > 1. This implies the existence of j such that i # j
and z; C I N s;. It is easy to see that

RiU{l}CRj andRHéRj;

i.e., R; is not maximal.
We have
R C R(s;) UR(s) .

Then equation (4.1) implies that
G < |R| < |R(si)| + |R(s)| = cppi + g™

This inequality holds if and only if n; = 1.
Consider the collection

RZZ{Rj|RjCRiande7éRi}.

A set R; € R; is said to be mazimal in R—; if for any R, € R; such that R; C R,
we have R; = R,,.
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Lemma 4.2. If R; is mazimal and R; is mazimal in R;, then nj = 2.

Proof Letl! € G}. Lemma 4.1 implies that n; = 1, and we have the
following three cases:

(i) 1 e Ry;
(i) I ¢ Rj and Il € Ry;
(iii) I ¢ R;.

In the first case I € R(s;). Consider the cases (ii) and (iii). Let s be the (n—mn;+1)-
dimensional plane generated by z; and the (n —n;)-dimensional coordinate plane
transverse to s;. Let s’ be the (n — 2)-dimensional coordinate plane transverse
to the plane generated by z; and x;. We show that [ € R(s) N R(s;) in the case
(ii) and I € R(s') in the case (iii). Let I € R; (i.e., | € R(s;)) and [ ¢ R;. Recall
that R; is maximal in R;. Therefore, I € R(s) (see the case (ii) in the proof of
Lemma 4.1). Let | ¢ R; (the case (iii)). Then R; C R;. This implies that z; ¢ {
and z; ¢ I; i.e., I € R(s).
We have
R C R(sj) U(R(s) N R(s;)) UR(s") .

Then equation (4.1) implies that

n

&=L < |R| < |R(sj)| + |R(s) N R(s;)| + |R(s")| = ¢~ A

i
C C
;T T

This inequality holds if and only if n; < 2. Recall that R; C R; and R; # R;.
Therefore, n; = 2.

Lemma 4.3. In the case n — k < k we have n; > 0 for any i = 1,...,n.
If n = 2k and there exists i such that n; = 0, then R = R(s), where s is the
(n — 1)-dimensional coordinate plane transverse to x;.

Proof. Ifn; =0 (ie, R; =0), then R C R(s). Equation (2.2) shows
that |R| < cf~'. It is easy to see that ¢f ™' < ™| (n—k <k) and ¢! =}~
(n = 2k).

Lemma 4.4. For anyi=1,...,n we have n; < 2.

Proof Letn,>1 Then Lemmas 4.1 and 4.2 imply the existence of i
and j such that n; = 1,n; =2 and R, C R; C R;. Let [ € R. Then we have the
following four cases:
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(i) 1 € Ry;
(ii) I ¢ Rs;
(ili) I € R; and | ¢ Rj;
(iv) [ € R; and [ ¢ R,.

In the case (i) | € R(sp). Let s be the (n — np)-dimensional coordinate plane
transverse to s,. Then in the case (ii) I € R(s) (see the case (iii) in the proof of
Lemma 4.2). Let s’ be the (n —n, + 1)-dimensional plane generated by s and z;,
and s” be the (n —np + 2)-dimensional plane generated by s’ and z;. In the cases
(iii) and (iv) I € R(s") N R(z;) and R(s") N R(s;), respectively (these cases are
similar to the case (ii) in the proof of Lemma 4.2).

We have

R C R(sp) UR(s) U (R(s") N R(z;)) U (R(s") N R(s;)) -
Equation (4.1) implies that
21 <RI < [R(sp)l + |R(s)| + |R(s") N R(z:)| + |R(s") N R(s;)]

_ n—"np n—"np n—"np n—np _ N—Np n—"np n—np+1
= Cpp, + ¢ +e_ 1 te__o= Cr—n, +c +c_y .

This inequality holds if and only if n, < 2.
Denote by mp (resp. ng) the number of all R; such that n; = 1 (resp. n; = 2).
It is easy to see that mpr +ng = n if and only if n; > 0 for any ¢ =1,...,n.

Lemma 4.5. Suppose thatn —k < k<n-—-1,n; >0 foranyi=1,...,n,
andng >n—k. Thenng =n— 1.

Proof. Letp=mn—k. Consider the case p =1 (k = n —1). We have
|R| =" 3 =n—1or |R| =n. It is easy to see that in the first case ng =n — 1
and in the second case nrp = 0. This implies the required.

Let p > 1. Consider ¢ and j such that R; C R;, n; = 2 and n; = 1. Let s be
the (n — 1)-dimensional coordinate plane transverse to ;. Then

R C R(sj) UR(s) . (4.2)

Consider
R = p,(RNR(s)) e P~ .

Equations (4.1) and (4.2) imply that
IR > B = |R(s)| > 67} — 73 =77

The inductive hypothesis shows that we have the following two cases:
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(i) np <n—Fk—1and mg > k;
(i) npr =n—2.

Equation (4.2) shows that ng = ng + 1. Therefore, in the case (i) ng < n —k
and in the case (ii) ng = n — 1.
By Lemmas 4.3-4.5 we have the following four cases:

(i) n—k<k<n—1and ng =0, mgr =n;
(i) n—k<k<n—land0<ng=n—mgr<n-—Kk;
(i) n—k<k<n—land ng=n-—1,mg=1,

(iv) n = 2k and there exists 4 such that n; = 0.

In the case (i) we have R € R} and Ind(R) = 0.
Consider the case (ii). Let

I1:{z|n,=2},
I, = {i|n; =1 and there exists j € I such that R; C R; },

I3={1,...,ﬂ}\(]1UI2).

It is easy to see that for any 4 € I; there exists unique j € I such that R; C R;.
Therefore,
|I2| < |I1‘ <n—Fk and |11U13‘ > k.

This implies the existence of a set Iy C I3 such that [I4 U ;| = k. Let
LUT = {i1,...ig}
and [ be the plane generated by z;,,...,z; . Then
RU{l} € eR}

and Ind(R) = 1.
In the case (iii) there exists a unique 7 such that n; =1 and R; C R; for any
j =1,...,n. Therefore, R = R(z;). Forany l € R\ R

RU{l} ¢ eRy,
and for the set RU {l} we have the case (ii). Therefore,
Ind(RU{l}) =1

and Ind(R) = 2.
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In the case (iv) there exists s € G'_; such that R = R(s). Then for the set
©2¥(R) we have the case (iii) and, by Proposition 4.1 and (2.1), Ind(R) = 2.
4.3. Now we prove Theorem 2.1. Let f € R(G}}) and R € MNR}. Then

Ry = f(R) € MRY .

Consider the coordinate systems {z;}?; and {y;}I~; in R” such that any plane
belonging to R (resp. Ry) is a coordinate plane for the system {z;}j_; (resp.
{yi}1). Let s’ be a coordinate plane for the system {y;}?* ;. Set

Ry(s') = Ry N GL(s)).
Lemma 4.6. Let s be an (n—1)-dimensional coordinate plane for the system

{z;}?_. Then the following statements hold true:

(i) if1 <k <n—1and n # 2k, then in the system {y;}i—, there exists
an (n — 1)-dimensional coordinate plane s' such that
f(R(s)) = Ry (s") (4.3)
(recall that R(s) = RN G} (s));

(ii) if n = 2k, then in the system {y;}7_, there ezists an m-dimensional coor-
dinate plane s' (where m = 1,n — 1) such that equation (4.3) holds.

Proof (i). In the case 1 < k < n — k our statement is a consequence of
Propositions 4.1, 4.2. Consider the case n —k < k <n — 1.
In the system {z;}}_; consider the axis z; transverse to the plane s. Then

R(s) = R\ R(=;) .

Proposition 4.1, 4.2 imply the existence of an axis y; in the system {y;} ; such
that

f(R(zi)) = Ry (y;) -

Denote by s’ the (n — 1)-dimensional coordinate plane in the system {y;},
transverse to the axis y;. Then we get the required.
(ii). In this case our statement is a consequence of Propositions 4.1 and 4.2.

Lemma 4.7. Let s be a (k + 1)-dimensional coordinate plane for the system
{z;}7_1. Then the following statements hold true:

(i) if 1 < k <n—1and n # 2k, then in the system {y;}_, there exists
a (k + 1)-dimensional coordinate plane s' such that equation (4.3) holds;
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(ii) if n = 2k, then in the system {y;};_, there exists an m-dimensional coor-
dinate plane s' (where m =k — 1,k + 1) such that equation (4.3) holds.

P roof. Denote by s; (resp. s;) the (n —1)-dimensional coordinate plane in
the system {z;}?_; (resp. {y;}I~) transverse to the axis z; (resp. y;).
(i) Lemma 4.6 implies that for any 4 there exists j; such that

f(R(si)) = Ry(sj,) - (4.4)

Consider the subset {i1,...,ig41} of {1,...,n} such that the axes z4,,..., 7,
generate the plane s. Assume that

{’il,...,‘ik+1}={1,...,k+1}.

Then "
R(s)= [ R(si)
i=k+2
and .
F(RG) = [ Re(sh) = Re(s),
1=k+2
where s’ is the plane generated by the axes v, ..., yj, 1

(ii) Lemma 4.6 shows that we have the following two cases:
(a) there exists j; such that equation (4.4) holds for i = 1;
(b) there exists j; such that f(R(s1)) = Rs(yj,)-

Consider the case (a). We show that for any i there exists 7; such that equation
(4.4) holds. Then the proof of statement (ii) is similar to the proof of statement
().

Assume that there exist ¢ and j; such that f(R(s;)) = Ry(y;;). Let § = s1Ns;.
Then

R(3) = R(s1) N R(s;)

and
F(R(3)) = Ry(sj,) N Ry(y;,) -
Equation (5.1) imply that
|R(3)] = *~2
and
Ry (s5,) N Ry (ys)l = 277 -

An immediate verification shows us that cik_Q # cik:f and our hypothesis fails.
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Now consider the case (b). It is not difficult to see that ¢2F f satisfies the

condition defining the case (a). Therefore, there exists s” € G,%’il such that

(PR F(R(s)) = ¢ (Ry) N GR(s") -

This implies that equation (4.3) holds, if s’ = 2%, (s").

Lemma 4.7 implies that for any neighbouring I € G}, s € G} the planes f(I),
f(s) despoce in the neighbourhood. Consider the regular map f '. Lemma 4.7
shows that if f(I), f(s) despoce in the neighbourhood then [ and s are neigh-
bouring. Therefore, R(G}) C €(G}). The inverse inclusion is a consequence of
Theorem 3.1.

Acknowledgment. I wish to express our deep gratitude to S.I. Maximenko,
E.A. Polulyakh, V.V. Sharko for their interest in my research and a number of
valuable conments and the reviewer who acquainted me with Chow’s results.

References

[1] W.L. Chow, On the geometry of algebraic homogeneous spaces. — Ann. Math.
(1949), v. 50, p. 32-67.

[2] J. Dieudonné, La géométrie des groupes classiques. Springer—Verlag, Berlin, Hei-
delberg, New York (1971).

[3] G. Nobeling, Die Projektionen einer kompakten m-dimensionalen Menge in Ry,. —
Ergebnisse Math. Koll. (1933), v. 4, p. 24-25.

[4] M.A. Pankov, Projections of k-dimensional subsets of R" onto k-dimensional planes.
— Mat. fiz., analiz, geom. (1998), v. 5, No. 1/2, p. 114-124.

[5] M.A. Pankov, Projections of k-dimensional subsets of R* onto k-dimensional planes
and irregular subsets of the Grassmannian manifolds. — Top. and App. (2000),
v. 101, No. 2, p. 121-135.

WpperynsapHbie IOAMHOXKECTBA I'PACCMAHOBBIX
MHOroo6pasuii nu ux orodparkeHust

M.A. ITaakoB

W3zyuaroTcs oToOpaskeHns: TpaccMaHoBa MHOroobpasus G B cebs, co-
XPAHSIOIIME KJIACC UPPErYJISPHBIX OAMHOXKECTB. JlOKa3aHo, 4TO mpu N #
2k oTobpakeHusi JAHHOTO KJIACCA WHIYIMPOBAHBI JIMHEHHBIMUA aBTOMOP(hU3-
mamu R”.
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M.A. Pankov

Ipperyngapsi niiMHO>KUHA TPAaCCMAaHOBUX MHOTOBUIB
Ta X BigoOpakeHHs

M.O. ITaukos

BupualoThess BimoOpazkeHns rpaccMmanoBa mMuorosuny Gf, ski 36epira-
I0Th KJIAC IpperyisipHux miaMHOXKuH. JloBeneHo, Mo y BUNAAKY 1 # 2k i
BimoOpazkenHst iHaykoBaHi JiHiiHUMEU aBTOMOpdizmamu R™.
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