Irregular subsets of the Grassmannian manifolds and their maps

M.A. Pankov

Institute of Mathematics, National Academy of Sciences of Ukraine
3 Tereshchenkovskaya Str., Kiev, 01601, Ukraine
E-mail:pankov@imath.kiev.ua

Received October 24, 1996 Communicated by A.A. Borisenko

The maps of the Grassmannian manifold \mathbb{G}_k^n which preserve the class of irregular subsets are studied. It is shown that in the case $n \neq 2k$ any map of this class is induced by a linear automorphism of \mathbb{R}^n .

Irregular subsets of the Grassmannian manifolds were introduced in author's paper [4] (see also [5]), in which it was considered the connection between irregular subsets of the Grassmannian manifold \mathbb{G}_k^n and projections of k-dimensional subsets of \mathbb{R}^n onto k-dimensional planes (we recall the results of paper [4, 5] in Subsection 1.2). Here we study bijective maps of \mathbb{G}_k^n into \mathbb{G}_k^n preserving the class of irregular sets. We do not restrict ourself to the case of continuous maps.

1. Some properties of irregular subsets

1.1. Definition of regular and irregular sets. A set $R \subset \mathbb{G}_k^n$ is called regular $(R \in \mathfrak{R}_k^n)$ if there exists a coordinate system in \mathbb{R}^n such that any plane belonging to R is a coordinate plane for this system. Any coordinate system in \mathbb{R}^n has

$$c_k^n = \frac{n!}{k!(n-k)!}$$

distinct k-dimensional coordinate planes. Therefore, if $R \in \mathfrak{R}^n_k$, then $|R| \leq c_k^n$. A regular set $R \subset \mathbb{G}^n_k$ is called $maximal\ (R \in \mathfrak{MR}^n_k)$ if $|R| = c_k^n$. It is easy to see that for any $R \in \mathfrak{R}^n_k$ there exists $\hat{R} \in \mathfrak{MR}^n_k$ such that $R \subset \hat{R}$.

Let $R \in \mathfrak{MR}_k^n$. Consider the coordinate system in \mathbb{R}^n such that any plane belonging to R is a coordinate plane for this system. Denote by $r_m(R)$ the set of all m-dimensional coordinate planes. Then $r_m(R) \in \mathfrak{MR}_m^n$ and the map

$$r_m:\mathfrak{MR}^n_k o\mathfrak{MR}^n_m$$
 ,

$$R \to r_m(R) \quad \forall R \in \mathfrak{MR}_k^n$$

defines an one-to-one correspondence between \mathfrak{MR}_k^n and \mathfrak{MR}_k^n .

A set $V \subset \mathbb{G}_k^n$ is called *irregular* $(V \in \mathfrak{I}_k^n)$ if there exists no $R \in \mathfrak{MR}_k^n$ such that $R \subset V$. An irregular set $V \subset \mathbb{G}_k^n$ is said to be $maximal\ (V \in \mathfrak{MI}_k^n)$ if for any $W \in \mathfrak{I}_k^n$ such that $V \subset W$ we have V = W.

Proposition 1.1 [5]. For any $V \in \mathfrak{I}_k^n$ there exists $W \in \mathfrak{MI}_k^n$ such that $V \subset W$.

Let $s \in \mathbb{G}_m^n$ and

$$\mathbb{G}_k^n(s) = \left\{ \begin{array}{ll} \{ \ l \in \mathbb{G}_k^n \mid l \subset s \ \} & m \ge k \ , \\ \{ \ l \in \mathbb{G}_k^n \mid s \subset l \ \} & m \le k \ . \end{array} \right.$$

Then $\mathbb{G}_k^n(s) \in \mathfrak{I}_k^n$ and we have the following

Proposition 1.2 [4, 5]. Let $V \in \mathfrak{MI}_k^n$ and k = 1, n - 1. Then there exists $s \in \mathbb{G}_{n-k}^n$ such that $V = \mathbb{G}_k^n(s)$.

1.2. Irregular subsets of \mathbb{G}_k^n and projections of k-dimensional subsets of \mathbb{R}^n onto k-dimensional planes. Let $X \subset \mathbb{R}^n$, l and s be k-dimensional and (n-k)-dimensional planes, respectively. Denote by $p_l^s(X)$ the projection of the set X into the plane l along the plane s. The projection $p_l^s(X)$ is well-defined if and only if the planes l and s are transversal.

It was proved by G. Nobeling [3] that for any k-dimensional F_{σ} -subset of \mathbb{R}^n there exists a k-dimensional plane l such that $\dim p_l^{l^{\perp}}(X) = k$, where l^{\perp} is the orthogonal complement to l.

The projection $p_l^s(X)$ is called regular if it is a set of second category in l. Consider

$$V^n_k(X) = \{\ l \in \mathbb{G}^n_k \mid \forall s \in \mathbb{G}^n_{n-k} \text{ the projection } p^s_l(X) \text{ is not regular } \} \ ,$$

$$W^n_{n-k}(X) = \{\; s \in \mathbb{G}^n_{n-k} \mid \forall l \in \mathbb{G}^n_k \text{ the projection } p^s_l(X) \text{ is not regular } \}\;.$$

We have the following

Theorem 1.1 [4, 5]. If dim
$$X \ge k$$
, then $V_k^n(X) \in \mathfrak{I}_k^n$ and $W_{n-k}^n(X) \in \mathfrak{I}_{n-k}^n$.

Theorem 1.1 shows us that for any coordinate system in \mathbb{R}^n there are k-dimensional and (n-k)-dimensional coordinate planes l and s such that

the projection $p_l^s(X)$ is regular. It is not difficult to see that if X is an F_{σ} -subset of \mathbb{R}^n and the projection $p_l^s(X)$ is regular, then $\dim p_l^s(X) = k$ and the Nobeling Theorem [3] is a consequence of Theorem 1.1.

We want to prove that for any k-dimensional set X the sets $V_k^n(X)$ and $W_{n-k}^n(X)$ are nowhere dense in \mathbb{G}_k^n and \mathbb{G}_{n-k}^n , respectively. It seems to be natural to ask how large may be an irregular set. Propositions 1.1 and 1.2 imply that in the cases k=1,n-1 any irregular set is nowhere dense in \mathbb{G}_k^n . For the case 1 < k < n-1 this statement is not proved. However, we have the following result supporting our conjecture

Theorem 1.2 [5]. If $V \in \mathfrak{I}_k^n$, then $Int(V) = \emptyset$.

Therefore, for any k-dimensional subset X of \mathbb{R}^n the sets $\mathbb{G}^n_k \setminus V^n_k(X)$ and $\mathbb{G}^n_{n-k} \setminus W^n_{n-k}(X)$ are everywhere dense in \mathbb{G}^n_k and \mathbb{G}^n_{n-k} ; moreover, in the case k=1,n-1 their complements are nowhere dense.

2. Regular maps of the Grassmannian manifolds

2.1. Definition and elementary properties. A bijective map f of \mathbb{G}_k^n into \mathbb{G}_k^n is called regular $(f \in \mathfrak{R}(\mathbb{G}_k^n))$ if it preserves the class \mathfrak{R}_k^n ; i.e., for any $R \subset \mathbb{G}_k^n$ we have $f(R) \in \mathfrak{R}_k^n$ if and only if $R \in \mathfrak{R}_k^n$. An immediate verification shows us that the following lemma holds true.

Lemma 2.1. The following statements are equivalent:

- (i) $f \in \mathfrak{R}(\mathbb{G}_k^n)$;
- (ii) f preserves the class \mathfrak{MR}_{k}^{n} ;
- (iii) f preserves the class \mathfrak{I}_k^n ;
- (iv) f preserves the class \mathfrak{MI}_k^n .

Let $\varphi_k^n:\mathbb{G}_k^n\to\mathbb{G}_{n-k}^n$ be the canonical homeomorphism; i.e., $\varphi_k^n(l)=l^\perp$ for any $l\in\mathbb{G}_k^n$. Then

$$\mathbb{G}_k^n(s) = \varphi_{n-k}^n(\mathbb{G}_{n-k}^n(s^{\perp}))$$
 (2.1)

and the following lemma holds.

Lemma 2.2 [4, 5]. The canonical homeomorphism φ_k^n maps the classes \mathfrak{R}_k^n , \mathfrak{MR}_k^n , \mathfrak{I}_k^n , \mathfrak{MI}_k^n into the classes \mathfrak{R}_{n-k}^n , \mathfrak{MR}_{n-k}^n , \mathfrak{I}_{n-k}^n , \mathfrak{MI}_{n-k}^n , respectively.

All regular maps of \mathbb{G}_k^n constitute the group $\mathfrak{R}(\mathbb{G}_k^n)$. Lemma 2.2 shows us that $\varphi_k^{2k} \in \mathfrak{R}(\mathbb{G}_k^{2k})$.

Let $s \in \mathbb{G}_m^n$. If $m \geq k$, then there exists the natural homeomorphism φ_s between $\mathbb{G}_k^n(s)$ and \mathbb{G}_k^m . In the case m < k consider the map

$$\varphi_s = \varphi_{s^{\perp}} \varphi_k^n : \mathbb{G}_k^n(s) \to \mathbb{G}_{k-m}^{n-m}$$

This is a homeomorphism of $\mathbb{G}^n_k(s)$ onto \mathbb{G}^{n-m}_{k-m} . Moreover, we have $R\in\mathfrak{R}^n_k$ if and only if $\varphi_s(R)\in\mathfrak{R}^m_k$ or $\varphi_s(R)\in\mathfrak{R}^{n-m}_{k-m}$ for any subset $R\subset\mathbb{G}^n_k(s)$.

2.2. Linear automorphisms. Any linear automorphism of \mathbb{R}^n induces a regular map of \mathbb{G}_k^n . A map of \mathbb{G}_k^n induced by a linear automorphism of \mathbb{R}^n is called *linear*. All linear maps of \mathbb{G}_k^n form a group. Denote it by $\mathfrak{L}(\mathbb{G}_k^n)$. Let $\mathfrak{GL}(n)$ be the group of all linear automorphisms of \mathbb{R}^n . Then we have the following

Proposition 2.1.

$$\mathfrak{L}(\mathbb{G}^n_k) \approx \left\{ \begin{array}{ll} \{ \ l \in \mathfrak{GL}(n) \mid \det l = 1 \ \}, & n \neq 2i \ , \\ \{ \ l \in \mathfrak{GL}(n) \mid |\det l| = 1 \ \}, & n = 2i \ . \end{array} \right.$$

Proof. Consider the homomorphism

$$\pi_k^n: \mathfrak{GL}(n) \to \mathfrak{L}(\mathbb{G}_k^n)$$
,

where $\pi_k^n(l)$ is the automorphism induced by $l \in \mathfrak{GL}(n)$. Then

$$Ker\pi_k^n = \{ \alpha Id \mid \alpha \in \mathbb{R}, \alpha \neq 0 \}$$

and

$$\mathfrak{L}(\mathbb{G}_k^n) \approx \mathfrak{GL}(n)/Ker\pi_k^n$$
.

Two last equations imply our statement (it must be pointed out that in the case n = 2i we have $\det l > 0$ for any $l \in Ker\pi^n_-k$).

Let $f \in \mathfrak{L}(\mathbb{G}_k^n)$ and $f' \in (\pi_k^n)^{-1}(f)$. For any $i = 1, \ldots, n-1$ define

$$L_{k,i}^n(f) = \pi_i^n(f') .$$

If $f'' \in (\pi_k^n)^{-1}(f)$ and $f' \neq f''$, then

$$f'(f'')^{-1} \in Ker\pi_k^n = Ker\pi_i^n$$
.

This implies that $\pi_i^n(f') = \pi_i^n(f'')$ and $L_{k,i}^n(f)$ is well-defined for any $f \in \mathfrak{L}(\mathbb{G}_k^n)$ and i = 1, ..., n - 1. The similar arguments shows us that

$$L_{k,i}^n: \mathfrak{L}(\mathbb{G}_k^n) \to \mathfrak{L}(\mathbb{G}_i^n)$$

is an isomorphism between $\mathfrak{L}(\mathbb{G}_k^n)$ and $\mathfrak{L}(\mathbb{G}_i^n)$ for any $i = 1, \ldots, n-1$. Moreover, for any $f \in \mathfrak{L}(\mathbb{G}_k^n)$ we have

$$f(\mathbb{G}_k^n(s)) = \mathbb{G}_k^n(f_i(s)), \quad \forall s \in \mathbb{G}_i^n ,$$
 (2.2)

where $f_i = L_{k,i}^n(f)$.

2.3. In the next section we prove the following

Theorem 2.1. If $n \geq 3$ and $n \neq 2k$, then $\mathfrak{R}(\mathbb{G}_k^n) = \mathfrak{L}(\mathbb{G}_k^n)$. Moreover, the group $\mathfrak{R}(\mathbb{G}_k^{2k})$ $(k \geq 2)$ is generated by $\mathfrak{L}(\mathbb{G}_k^{2k})$ and φ_k^{2k} .

For any $l_i \in \mathbb{G}_1^2$ (i = 1, 2) such that $l_1 \neq l_2$ we have $\{l_1, l_2\} \in \mathfrak{MR}_1^2$. Therefore, any bijective map of \mathbb{G}_1^2 into \mathbb{G}_1^2 is regular.

The group $\mathfrak{L}(\mathbb{G}_k^{2k})$ is normal subgroup of $\mathfrak{R}(\mathbb{G}_k^{2k})$ and

$$\mathfrak{R}(\mathbb{G}_k^{2k})/\mathfrak{L}(\mathbb{G}_k^{2k}) \approx \mathbb{Z}_2$$

(this statement is a simple consequence of Theorem 2.1, and we do not prove it here). The subgroup $\{Id, \varphi_k^{2k}\}$ is not normal and the group $\mathfrak{R}(\mathbb{G}_k^{2k})$ is not isomorphic to the group $\mathfrak{L}(\mathbb{G}_k^{2k}) \times \mathbb{Z}_2$.

3. The Chow Theorem. Proof of Theorem 2.1 in the cases k = 1, n - 1

3.1. Proof of Theorem 2.1 in the cases k = 1, n - 1. In the case k = 1 our statement is a trivial consequence of the Main Theorem of Projection Geometry (see [2]). Consider the case k = n - 1.

Let $f \in \mathfrak{R}(\mathbb{G}^n_{n-1})$. Then Lemma 2.1 and Proposition 1.2 imply the existence of bijective map f_1 of \mathbb{G}^n_1 into \mathbb{G}^n_1 such that equation (2.2) holds for i=1, k=n-1. Moreover, for any $R \in \mathfrak{MR}^n_1$ we have

$$f_1(R) = r_1(f(r_{n-1}(R)));$$
 (3.1)

i.e., $f_1 \in \mathfrak{R}(\mathbb{G}_1^n)$. Consider the homeomorphism

$$F:\mathfrak{R}(\mathbb{G}^n_{n-1})\to\mathfrak{R}(\mathbb{G}^n_1)=\mathfrak{L}(\mathbb{G}^n_1)$$
,

$$F(f)=f_1.$$

If F(f) = Id, then equation (3.1) shows that f = Id and F is a monomorphism. It is easy to see that

$$F|_{\mathfrak{L}(\mathbb{G}^n_{n-1})}=L^n_{n-1,1}$$

and $F(\mathfrak{R}(\mathbb{G}_{n-1}^n)) = \mathfrak{L}(\mathbb{G}_1^n)$. Therefore, $\mathfrak{R}(\mathbb{G}_{n-1}^n) = \mathfrak{L}(\mathbb{G}_{n-1}^n)$.

3.2. The Chow Theorem. We say that $l \in \mathbb{G}_k^n$ and $s \in \mathbb{G}_k^n$ (1 < k < n-1) despote in the neighbourhood if there exists $p \in \mathbb{G}_{k+1}^n$ such that $l \in \mathbb{G}_k^n(p)$ and $s \in \mathbb{G}_k^n(p)$. This is equivalent the existence of $t \in \mathbb{G}_{k-1}^n$ such that $l \in \mathbb{G}_k^n(t)$ and $s \in \mathbb{G}_k^n(t)$.

We also say that a bijective map f of \mathbb{G}_k^n into \mathbb{G}_k^n preserves the neighbourhood if for any $l \in \mathbb{G}_k^n$, $s \in \mathbb{G}_k^n$ the planes f(l), f(s) despoce in the neighbourhood if and only if l and s are neighbouring. Denote by $\mathfrak{C}(\mathbb{G}_k^n)$ the class of all bijective

maps of \mathbb{G}_k^n into \mathbb{G}_k^n preserving the neighbourhood. It is easy to see that $\mathfrak{C}(\mathbb{G}_k^n)$ is a group. To prove Theorem 2.1 we exploit the following

Theorem 3.1 [1] (see also [2]). If 1 < k < n-1 and $n \neq 2k$, then $\mathfrak{C}(\mathbb{G}_k^n) = \mathfrak{L}(\mathbb{G}_k^n)$. The group $\mathfrak{C}(\mathbb{G}_k^{2k})$ $(k \neq 1)$ is generated by φ_k^{2k} and $\mathfrak{L}(\mathbb{G}_k^{2k})$

Theorem 3.1 implies that Theorem 2.1 will be proved if we show that $\mathfrak{R}(\mathbb{G}_k^n) = \mathfrak{C}(\mathbb{G}_k^n)$ for 1 < k < n - 1.

4. Proof of Theorem 2.1 in the case 1 < k < n-1

4.1. Index of exactness of regular sets. In this subsection we introduce the index of exactness of regular sets and study its properties. We use it to prove Theorem 2.1.

A regular set $R \in \mathfrak{R}^n_k$ is said to be $exact\ (R \in \mathfrak{ER}^n_k)$ if there exists a unique set $\hat{R} \in \mathfrak{MR}^n_k = \text{such that } R \subset \hat{R}$. For any $R \in \mathfrak{R}^n_k$ consider

$$Ind(R) = \min_{\hat{R} \in \mathfrak{SR}_k^n, \; R \subset \hat{R}} \{|\hat{R}| - |R = |\} \;.$$

It is easy to see that Ind(R) = 0 if and only if $R \in \mathfrak{ER}_k^n$. The number Ind(R) is called the *index of exactness* of the regular set R.

We have the following simple

Proposition 4.1. The canonical homeomorphism φ_k^n and a map $f \in \mathfrak{R}(\mathbb{G}_k^n)$ preserve the index of exactness; i.e., for any $R \in \mathfrak{R}_k^n$ we have

$$Ind(f(R)) = Ind(R)$$
,

$$Ind(\varphi_k^n(R)) = Ind(R)$$
.

If k = 1, n - 1, then Ind(R) = n - |R| and $\mathfrak{ER}_k^n = \mathfrak{MR}_k^n$. In the case 1 < k < n - 1 the situation is more complicated.

Let $R' \in \mathfrak{MR}_k^n$. Consider the coordinate system in \mathbb{R}^n such that any plane belonging to R' is a coordinate plane. Let s be an m-dimensional coordinate plane for that system, and

$$R(s) = R' \cap \mathbb{G}_k^n(s)$$
.

Then

$$|R(s)| = \begin{cases} c_k^m, & m \ge k, \\ c_{k-m}^{n-m}, & m \le k. \end{cases}$$

$$(4.1)$$

Proposition 4.2. Let $R \in \mathfrak{R}^n_k$ and $R \subset R'$. Then the following statements holds true:

(i) if n-k < k < n-1 and $|R| = c_{k-1}^{n-1}$, then $Ind(R) \le 2$ and Ind(R) = 2 if and only if there exists $s \in \mathbb{G}_1^n$ such that R = R(s);

- (ii) if n=2k and $|R|=c_k^{n-1}=c_{k-1}^{n-1}$, then $Ind(R)\leq 2$ and Ind(R)=2 if and only if there exists $s\in \mathbb{G}_i^{n=}$ (where i=1,n-1) such that R=R(s);
- (iii) if 1 < k < n k and $|R| = c_k^{n-1}$, then $Ind(R) \le 2$ and Ind(R) = 2 if and only if there exists $s \in \mathbb{G}_{n-1}^n$ such that R = R(s).

Statement (iii) of Proposition 4.2 is a consequence of statement (i), (2.1) and Proposition 4.1. In the next subsection we prove statements (i) and (ii).

4.2. Proof. Let

$$R_i = R \cap R(x_i) , \quad s_i = \bigcap_{l \in R_i} l$$

and

$$n_i = \left\{ egin{array}{ll} \dim s_i \,, & R_i
eq \emptyset \,, \ 0 \,, & R_i = \emptyset \,. \end{array}
ight.$$

Then we have $R \in \mathfrak{ER}_k^n$ if and only if $n_i = 1$ for any $i = 1, \ldots, n$. A set R_i is said to be *maximal* if for any j such that $R_i \subset R_j$ we have $R_i = R_j$.

Lemma 4.1. If R_i is maximal, then $n_i = 1$.

Proof. Let $l \in R$. Then we have the following two cases:

- (i) $l \in R_i$;
- (ii) $l \notin R_i$.

In the first case $l \in R(s_i)$. Consider the case (ii). Let s be the $(n-n_i)$ -dimensional coordinate plane transverse to s_i . We prove that $l \in R(s)$. Assume that $l \notin R_i$ and $l \notin R(s)$. Then dim $l \cap s_i \geq 1$. This implies the existence of j such that $i \neq j$ and $x_j \subset l \cap s_i$. It is easy to see that

$$R_i \cup \{l\} \subset R_j \text{ and } R_i \neq R_j ;$$

i.e., R_i is not maximal.

We have

$$R \subset R(s_i) \cup R(s)$$
.

Then equation (4.1) implies that

$$c_{k-1}^{n-1} \le |R| \le |R(s_i)| + |R(s)| = c_{k-n_i}^{n-n_i} + c_k^{n-n_i}$$
.

This inequality holds if and only if $n_i = 1$.

Consider the collection

$$\mathcal{R}_i = \{ R_i \mid R_i \subset R_i \text{ and } R_i \neq R_i \}.$$

A set $R_j \in \mathcal{R}_i$ is said to be maximal in $\mathcal{R}_{=i}$ if for any $R_p \in \mathcal{R}_i$ such that $R_j \subset R_p$ we have $R_j = R_p$.

Lemma 4.2. If R_i is maximal and R_j is maximal in \mathcal{R}_i , then $n_j = 2$.

P r o o f. Let $l \in \mathbb{G}_k^n$. Lemma 4.1 implies that $n_i = 1$, and we have the following three cases:

- (i) $l \in R_i$;
- (ii) $l \notin R_i$ and $l \in R_i$;
- (iii) $l \notin R_i$.

In the first case $l \in R(s_j)$. Consider the cases (ii) and (iii). Let s be the $(n-n_j+1)$ -dimensional plane generated by x_i and the $(n-n_j)$ -dimensional coordinate plane transverse to s_j . Let s' be the (n-2)-dimensional coordinate plane transverse to the plane generated by x_i and x_j . We show that $l \in R(s) \cap R(s_i)$ in the case (ii) and $l \in R(s')$ in the case (iii). Let $l \in R_i$ (i.e., $l \in R(s_i)$) and $l \notin R_j$. Recall that R_j is maximal in \mathcal{R}_i . Therefore, $l \in R(s)$ (see the case (ii) in the proof of Lemma 4.1). Let $l \notin R_i$ (the case (iii)). Then $R_j \subset R_i$. This implies that $x_i \not\subset l$ and $x_j \not\subset l$; i.e., $l \in R(s')$.

We have

$$R \subset R(s_j) \cup (R(s) \cap R(s_i)) \cup R(s')$$
.

Then equation (4.1) implies that

$$c_{k-1}^{n-1} \leq |R| \leq |R(s_j)| + |R(s) \cap R(s_i)| + |R(s')| = c_{k-n_j}^{n-n_j} + c_{k-1}^{n-n_j} + c_k^{n-2} \ .$$

This inequality holds if and only if $n_j \leq 2$. Recall that $R_j \subset R_i$ and $R_j \neq R_i$. Therefore, $n_j = 2$.

Lemma 4.3. In the case n - k < k we have $n_i > 0$ for any i = 1, ..., n. If n = 2k and there exists i such that $n_i = 0$, then R = R(s), where s is the (n-1)-dimensional coordinate plane transverse to x_i .

P r o o f. If $n_i = 0$ (i.e., $R_i = \emptyset$), then $R \subset R(s)$. Equation (2.2) shows that $|R| \le c_k^{n-1}$. It is easy to see that $c_k^{n-1} < c_{k-1}^{n-1} \ (n-k < k)$ and $c_k^{n-1} = c_{k-1}^{n-1} \ (n=2k)$.

Lemma 4.4. For any i = 1, ..., n we have $n_i \leq 2$.

Proof. Let $n_p > 1$. Then Lemmas 4.1 and 4.2 imply the existence of i and j such that $n_i = 1, n_j = 2$ and $R_p \subset R_j \subset R_i$. Let $l \in R$. Then we have the following four cases:

- (i) $l \in R_p$;
- (ii) $l \notin R_i$;
- (iii) $l \in R_i$ and $l \notin R_i$;
- (iv) $l \in R_i$ and $l \notin R_p$.

In the case (i) $l \in R(s_p)$. Let s be the $(n-n_p)$ -dimensional coordinate plane transverse to s_p . Then in the case (ii) $l \in R(s)$ (see the case (iii) in the proof of Lemma 4.2). Let s' be the $(n-n_p+1)$ -dimensional plane generated by s and x_i , and s'' be the $(n-n_p+2)$ -dimensional plane generated by s' and x_j . In the cases (iii) and (iv) $l \in R(s') \cap R(x_i)$ and $R(s'') \cap R(s_j)$, respectively (these cases are similar to the case (ii) in the proof of Lemma 4.2).

We have

$$R \subset R(s_p) \cup R(s) \cup (R(s') \cap R(x_i)) \cup (R(s'') \cap R(s_j))$$
.

Equation (4.1) implies that

$$c_{k-1}^{n-1} \leq |R| \leq |R(s_p)| + |R(s)| + |R(s') \cap R(x_i)| + |R(s'') \cap R(s_j)|$$

$$= c_{k-n_p}^{n-n_p} + c_k^{n-n_p} + c_{k-1}^{n-n_p} + c_{k-2}^{n-n_p} = c_{k-n_p}^{n-n_p} + c_k^{n-n_p+1}.$$

This inequality holds if and only if $n_p \leq 2$.

Denote by m_R (resp. n_R) the number of all R_i such that $n_i = 1$ (resp. $n_i = 2$). It is easy to see that $m_R + n_R = n$ if and only if $n_i > 0$ for any i = 1, ..., n.

Lemma 4.5. Suppose that $n-k \le k \le n-1$, $n_i > 0$ for any i = 1, ..., n, and $n_R \ge n-k$. Then $n_R = n-1$.

Proof. Let p = n - k. Consider the case p = 1 (k = n - 1). We have $|R| = c_{n-2}^{n-1} = n - 1$ or |R| = n. It is easy to see that in the first case $n_R = n - 1$ and in the second case $n_R = 0$. This implies the required.

Let p > 1. Consider i and j such that $R_j \subset R_i$, $n_j = 2$ and $n_i = 1$. Let s be the (n-1)-dimensional coordinate plane transverse to x_j . Then

$$R \subset R(s_i) \cup R(s) . \tag{4.2}$$

Consider

$$R' = \varphi_s(R \cap R(s)) \in \mathfrak{R}_k^{n-1}$$
.

Equations (4.1) and (4.2) imply that

$$|R'| \ge |R| - |R(s_j)| \ge c_{k-1}^{n-1} - c_{k-2}^{n-2} = c_{k-1}^{n-2}$$
.

The inductive hypothesis shows that we have the following two cases:

- (i) $n_{R'} < n k 1$ and $m_{R'} > k$;
- (ii) $n_{R'} = n 2$.

Equation (4.2) shows that $n_R = n_{R'} + 1$. Therefore, in the case (i) $n_R < n - k$ and in the case (ii) $n_R = n - 1$.

By Lemmas 4.3–4.5 we have the following four cases:

- (i) $n k \le k < n 1$ and $n_R = 0$, $m_R = n$;
- (ii) $n k \le k < n 1$ and $0 < n_R = n m_R < n k$;
- (iii) $n k \le k < n 1$ and $n_R = n 1$, $m_R = 1$;
- (iv) n = 2k and there exists i such that $n_i = 0$.

In the case (i) we have $R \in \mathfrak{ER}_k^n$ and Ind(R) = 0.

Consider the case (ii). Let

$$I_1 = \{ i \mid n_i = 2 \},$$

 $I_2 = \{ i \mid n_i = 1 \text{ and there exists } j \in I_1 \text{ such that } R_j \subset R_i \}$

$$I_3 = \{1,\ldots,n\} \setminus (I_1 \cup I_2) .$$

It is easy to see that for any $i \in I_1$ there exists unique $j \in I_2$ such that $R_i \subset R_j$. Therefore,

$$|I_2| \le |I_1| < n - k \text{ and } |I_1 \cup I_3| > k$$
.

This implies the existence of a set $I_4 \subset I_3$ such that $|I_4 \cup I_1| = k$. Let

$$I_4 \cup I_1 = \{i_1, \dots, i_k\}$$

and l be the plane generated by x_{i_1}, \ldots, x_{i_k} . Then

$$R \cup \{l\} \in \mathfrak{ER}_k^n$$

and Ind(R) = 1.

In the case (iii) there exists a unique i such that $n_i = 1$ and $R_j \subset R_i$ for any j = 1, ..., n. Therefore, $R = R(x_i)$. For any $l \in \hat{R} \setminus R$

$$R \cup \{l\} \notin \mathfrak{ER}_k^n$$
,

and for the set $R \cup \{l\}$ we have the case (ii). Therefore,

$$Ind(R \cup \{l\}) = 1$$

and Ind(R) = 2.

In the case (iv) there exists $s \in \mathbb{G}_{n-1}^n$ such that R = R(s). Then for the set $\varphi_k^{2k}(R)$ we have the case (iii) and, by Proposition 4.1 and (2.1), Ind(R) = 2.

4.3. Now we prove Theorem 2.1. Let $f \in \mathfrak{R}(\mathbb{G}_k^n)$ and $R \in \mathfrak{MR}_k^n$. Then

$$R_f = f(R) \in \mathfrak{MR}_k^n$$
.

Consider the coordinate systems $\{x_i\}_{i=1}^n$ and $\{y_i\}_{i=1}^n$ in \mathbb{R}^n such that any plane belonging to R (resp. R_f) is a coordinate plane for the system $\{x_i\}_{i=1}^n$ (resp. $\{y_i\}_{i=1}^n$). Let s' be a coordinate plane for the system $\{y_i\}_{i=1}^n$. Set

$$R_f(s') = R_f \cap \mathbb{G}_k^n(s')$$
.

Lemma 4.6. Let s be an (n-1)-dimensional coordinate plane for the system $\{x_i\}_{i=1}^n$. Then the following statements hold true:

(i) if 1 < k < n-1 and $n \neq 2k$, then in the system $\{y_i\}_{i=1}^n$ there exists an (n-1)-dimensional coordinate plane s' such that

$$f(R(s)) = R_f(s') \tag{4.3}$$

(recall that $R(s) = R \cap \mathbb{G}_k^n(s)$);

(ii) if n = 2k, then in the system $\{y_i\}_{i=1}^n$ there exists an m-dimensional coordinate plane s' (where m = 1, n - 1) such that equation (4.3) holds.

P r o o f. (i). In the case 1 < k < n - k our statement is a consequence of Propositions 4.1, 4.2. Consider the case n - k < k < n - 1.

In the system $\{x_i\}_{i=1}^n$ consider the axis x_i transverse to the plane s. Then

$$R(s) = R \setminus R(x_i)$$
.

Proposition 4.1, 4.2 imply the existence of an axis y_j in the system $\{y_i\}_{i=1}^n$ such that

$$f(R(x_i)) = R_f(y_i) .$$

Denote by s' the (n-1)-dimensional coordinate plane in the system $\{y_i\}_{i=1}^n$ transverse to the axis y_i . Then we get the required.

(ii). In this case our statement is a consequence of Propositions 4.1 and 4.2.

Lemma 4.7. Let s be a (k+1)-dimensional coordinate plane for the system $\{x_i\}_{i=1}^n$. Then the following statements hold true:

(i) if 1 < k < n-1 and $n \neq 2k$, then in the system $\{y_i\}_{i=1}^n$ there exists a (k+1)-dimensional coordinate plane s' such that equation (4.3) holds;

(ii) if n = 2k, then in the system $\{y_i\}_{i=1}^n$ there exists an m-dimensional coordinate plane s' (where m = k - 1, k + 1) such that equation (4.3) holds.

Proof. Denote by s_i (resp. s_i') the (n-1)-dimensional coordinate plane in the system $\{x_i\}_{i=1}^n$ (resp. $\{y_i\}_{i=1}^n$) transverse to the axis x_i (resp. y_i).

(i) Lemma 4.6 implies that for any i there exists j_i such that

$$f(R(s_i)) = R_f(s'_{i_i})$$
 (4.4)

Consider the subset $\{i_1,\ldots,i_{k+1}\}$ of $\{1,\ldots,n\}$ such that the axes $x_{i_1},\ldots,x_{i_{k+1}}$ generate the plane s. Assume that

$$\{i_1,\ldots,i_{k+1}\}=\{1,\ldots,k+1\}$$
.

Then

$$R(s) = \bigcap_{i=k+2}^n R(s_i)$$

and

$$f(R(s)) = \bigcap_{i=k+2}^{n} R_f(s'_{j_i}) = R_f(s'),$$

where s' is the plane generated by the axes $y_{j_1}, \ldots, y_{j_{k+1}}$.

- (ii) Lemma 4.6 shows that we have the following two cases:
- (a) there exists j_1 such that equation (4.4) holds for i = 1;
- (b) there exists j_1 such that $f(R(s_1)) = R_f(y_{j_1})$.

Consider the case (a). We show that for any i there exists i_j such that equation (4.4) holds. Then the proof of statement (ii) is similar to the proof of statement (i).

Assume that there exist i and j_i such that $f(R(s_i)) = R_f(y_{j_i})$. Let $\hat{s} = s_1 \cap s_i$. Then

$$R(\hat{s}) = R(s_1) \cap R(s_i)$$

and

$$f(R(\hat{s})) = R_f(s'_{j_1}) \cap R_f(y_{j_i})$$
.

Equation (5.1) imply that

$$|R(\hat{s})| = c_k^{2k-2}$$

and

$$|R_f(s'_{j_1}) \cap R_f(y_{j_i})| = c_{k-1}^{2k-2}.$$

An immediate verification shows us that $c_k^{2k-2} \neq c_{k-1}^{2k-2}$ and our hypothesis fails.

Now consider the case (b). It is not difficult to see that $\varphi_k^{2k}f$ satisfies the condition defining the case (a). Therefore, there exists $s'' \in \mathbb{G}_{k+1}^{2k}$ such that

$$(\varphi_k^{2k}f)(R(s)) = \varphi_k^{2k}(R_f) \cap \mathbb{G}_k^n(s'') .$$

This implies that equation (4.3) holds, if $s' = \varphi_{k+1}^{2k}(s'')$.

Lemma 4.7 implies that for any neighbouring $l \in \mathbb{G}_k^n$, $s \in \mathbb{G}_k^n$ the planes f(l), f(s) despote in the neighbourhood. Consider the regular map f^{-1} . Lemma 4.7 shows that if f(l), f(s) despote in the neighbourhood then l and s are neighbouring. Therefore, $\mathfrak{R}(\mathbb{G}_k^n) \subset \mathfrak{C}(\mathbb{G}_k^n)$. The inverse inclusion is a consequence of Theorem 3.1.

Acknowledgment. I wish to express our deep gratitude to S.I. Maximenko, E.A. Polulyakh, V.V. Sharko for their interest in my research and a number of valuable conments and the reviewer who acquainted me with Chow's results.

References

- [1] W.L. Chow, On the geometry of algebraic homogeneous spaces. Ann. Math. (1949), v. 50, p. 32–67.
- [2] J. Dieudonné, La géométrie des groupes classiques. Springer-Verlag, Berlin, Heidelberg, New York (1971).
- [3] G. Nobeling, Die Projektionen einer kompakten m-dimensionalen Menge in \mathbb{R}_k . Ergebnisse Math. Koll. (1933), v. 4, p. 24–25.
- [4] $M.A.\ Pankov$, Projections of k-dimensional subsets of \mathbb{R}^n onto k-dimensional planes. Mat. fiz., analiz, geom. (1998), v. 5, No. 1/2, p. 114–124.
- [5] $M.A.\ Pankov$, Projections of k-dimensional subsets of \mathbb{R}^n onto k-dimensional planes and irregular subsets of the Grassmannian manifolds. Top. and App. (2000), v. 101, No. 2, p. 121–135.

Иррегулярные подмножества грассмановых многообразий и их отображения

М.А. Панков

Изучаются отображения грассманова многообразия \mathbb{G}^n_k в себя, сохраняющие класс иррегулярных подмножеств. Доказано, что при $n \neq 2k$ отображения данного класса индуцированы линейными автоморфизмами \mathbb{R}^n .

Іррегулярні підмножини грассманових многовидів та їх відображення

М.О. Панков

Вивчаються відображення грассманова многовиду \mathbb{G}^n_k , які зберігають клас іррегулярних підмножин. Доведено, що у випадку $n \neq 2k$ ці відображення індуковані лінійними автоморфізмами \mathbb{R}^n .