Matematicheskaya fizika, analiz, geometriya
2000, v. 7, No. 3, p. 345-365

g-analogues for Green functions for powers
of the invariant Laplacian in the unit disc

D. Shklyarov

Mathematical Division, B. Verkin Institute for Low Temperature Physics and Engineering
National Academy of Sciences of Ukraine
47 Lenin Ave., Kharkov, 61164, Ukraine

E-mail:vaksman@ilt.kharkov.ua

Received November 10, 1999
Communicated by E.Ya. Khruslov

In the recent work of J. Peetre and M. Engli§ the explicit formulae were
obtained for Green functions of the powers A, A2, A3, A% of the Mdbius-
invariant Laplace operator in the unit disc U C C. In the present work
their q-analogues for A, A? are obtained. By the way a q-analogue of the
dilogarithm in Rogers’ form arises.

1. Introduction

In 1993 W.K. Hayman and B. Korenblum published among other results ex-
plicit formulae for Green functions of powers of the Laplace operator in the balls
in R™ (see [4]). J. Peetre and M. Englis [2] have obtained analogous results for
some powers of the Mobius-invariant Laplace operator in the unit ball in C*. In
the particular case of the unit disc U C C they have presented explicit formulae
for Green functions of the powers A, A2, A3 A* of the Mébius-invariant (equiva-
lently, SU(1,1)-invariant) Laplace operator. For A and A? the Green functions
are )
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where ) )
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z,w €U, Lig(t) = >, :n% is Euler’s dilogarithm.

The aim of the present work is the computation of g-analogues for these ker-
nels. Namely, we will concern with the quantum unit disc which is a homogeneous
space of the quantum group SU(1,1), and q is the parameter used in the theory
of quantum groups [1]. Of course, all our formulae become the classical ones at
the limit ¢ — 1.

The statement of our main result (Theorem 2.2.) is: for any finite function f
in the quantum unit disc the following equalities hold

Al = [ Gifdv, (1.1)

/

A2f= [ Gyfdy, (1.2)
/

(here A, and [ -dv are g-analogues of the SU(1,1)-invariant Laplace operator
U,

and invariant irftegral in the unit disc respectively, G; and Gp are certain kernels

given by explicit formulae (2.17),(2.18); precise definitions are to be found below).
Let us outline ideas of the paper. In the classical case all the integral operators

we are interested in are intertwining (i.e., they commute with the action of the

group SU(1,1) in spaces of functions in the unit disc). Thus the kernels of these

operators are functions in the simplest one:

(1-22)(1-¢0)
=201 -C2)

In [8] an algebra was considered of kernels of integral operators in the quantum
disc, and g-analogues were obtained of integer negative powers of (1.3):

G ={(1-¢C) U2 G aN(=C ¢ — 272) 71, (1.4)

(1.3)

with (a;q); o (1—a)-(1—aq)-... (1 —ag!). Furthermore, the kernels G;

may be defined for any [ € C by "analytic continuation" in the parameter ¢~
(see [8] or Section 2 of the present paper).

In the classical case "any" function of the kernel (1.3) can be expanded in
integral by powers of this kernel using the Melline transform. It turned out that
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in the quantum case as well as in the classical one the kernels G, Go of the
intertwining integral operators A;l, A;Q can be written in the form

Gy = / Gydo (1),

Gy = / Gudo (1),

with some distributions doi(l), doa(l). We find these integrals applying the ope-
rators Aq_l, Aq_2 to a g-analogue (denoted by fp in the text) of the delta-function
at the centre of the disc.

2. Statement of results

First of all, we remind some notations and results on function theory in the
quantum unit disc (see [6-9]).

Let ¢ € (0;1). We impose the notation Pol(C), for the involutive algebra
given by its generator z and the unique commutation relation

22 =22 +1—q°. (2.1)
Let y dof ) o Ttis straightforward that y = y*,

2y =qlyz*, 2y =q ’yz, (2.2)

and any element f € Pol(C), admits a unique decomposition

F=2"bm(y) + o) + Y ¥ m(y)z™ (2:3)

m>0 m>0

It is also not hard to show that the algebra Pol(C), admits the unique up to
unitary equivalence faithful x-representation by bounded operators in a Hilbert
space and the spectrum of the operator, corresponding to the element y, is the
set {0} U ¢?2+ (we shall use notation y both for the element of the polynomial
algebra as well as for an indeterminate in the set ¢?4+). This allows one to
introduce the algebra D(U), of finite functions in the quantum unit disc. By
the definition it consists of finite series of the form (2.3) with suppy,, C ¢*%+,
card(suppty,) < 0.

The linear functional |7, Theorem 3.5]

o0

/fdv L 1-¢) Y wole®™a 2, (2.4)
U,

m=o
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where f =37 02" m(y) +Yo(y) + 2,50 Y-m(y)2*™ € D(U)y, is a g-analogue
for the SU(1, 1)-invariant integral in the unit disc (see Section 3). We impose the
notation L?(dv), for the completion of D(U), with respect to the norm

2

1)) % / Frdv| (2.5)
U

We need the well known first-order differential calculus over Pol(C),. It is
a Pol(C),-module Q'(C), given by its generators dz, dz*, and the commutation
relations

z-dz = q 2z z, 2*-d2* = *dz* 2, 2F-dz = Pdz-2*, z-d2* = q72dz" -z, (2.6)
and equipped with a linear map d : Pol(C), — 2!(C), such that
l.d:z—dz, 2"+~ dz¥
2. d(f1f2) =df1- fa + f1 - dfs for any fi, fo € Pol(C), (the Leibniz rule).

The partial derivatives %, % in Pol(C), are given by
_ . 0f . Of
df = dza +dz pres
The operator
0 0
A -z 2.7

is a g-analogue of the invariant Laplacian in the unit disc (see [7, 9]).
Some direct calculations allow one to define the operators %, %, Ag4 on the
space of finite functions (it is sufficient to use the formulae

7 fly) - f(ng) e () f(ng) i
Y —yq y—yq
f(y)dz = dzf(y),
fly)d=" = dz" f(y),

df (y) =

for f € Pol(C)q).
The following result was announced in |6, Proposition 3.2]:

Theorem 2.1. The operator Ay can be extended to the selfadjoint bounded
invertible operator in L?(dv),.
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To formulate our results we need the notion of an integral operator in the
quantum case.
Impose the notation D(U x U)j, for the space of formal series of the form

[= Z fijs (2.8)

(i,4)€2?

Zz®1¢23(y®151®y)1®zja ZZO,JZO,
@19y L1ey) 1®2, i<0,j>0,
21 (y®1,1Qy)-1®2Y, i<0,j <0,

with {1);;} being any functions on ¢+ x ¢?%+. Tt is convenient in the sequel to
write z,y,2*,(,n,(* instead of 2®1,y®1,2°® 1,10 2,1 ®y, 1 ® z*, respectively.
Note that D(U x U); can be made into a topological vector space. We describe
the topology in Section 3.

Let D(U); be the space of formal series of the form (2.3) with {9 (y)}mez
being any functions on ¢?“+. Then one shows that for any K € D(U x U); the
map

/deuf‘:efid®u(K-1®f), f € D(U),, u(f)déf/fdv,

Ug Uq

is a well defined operator from D(U), into D(U),. (Indeed, it follows from the
relations

Zo(y) = pl@®y)z*,  z(y) = d(q y)z,  suppp C ¢*L+

and

2 2F = (1-g*y)1—g*y) ... 1=g**y), 252" = (1-y)(1-q"2y) ... 1—g % 2y),

that D(U), is a D(U)g-bimodule. Now to prove the correctness of the definition
it sufficies to observe that for a finite fo(y)

/ FR)E faly)dr =0, E#£0 or j#£O,

Uq

/ FiW)2 2 foly)dy =0, k£,
U,

/fl(y)z*kfg(y)z*jdl/ =0, k#0 or j#0,
Uq
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/zkfl(y)f2(y)2*jdv =0, k#7j)
Uq
Such operators can be treated as integral operators.

We have already mentioned (see (1.4)) one important set of kernels introduced
in [8, Section 6]:

G ={1-C PGNP 227" 1=1,2,3..., (210)
where (a;q)p e (1—a)(1—agq)...(1—ag" '), and the brackets {} indicate that
z,z* should be multiplied within the algebra Pol(C)g” which differs from Pol(C),
by replacing its product to the opposite one (for example, {z-2*} = z*- z). These
kernels are invariant in a sense (we explain the term "invariant" in Section 3; see
also [8]) and therefore may be regarded as g-analogues of the kernels

(=39)"

with [ being a positive integer number. Using relation (1.3.2) from [3] one can
rewrite

(2.11)

G_ = i i q2k (szl; q2)k : (qul; q2)n zny—lz*kckn—lg*n (2_12)
(@% )k - (4% 4*)n ’

(the sum is in fact finite). It is evident that for any finite functions ¢1, ¢a the

Uq
This observation allows one to prove (just as it was done in [8]) that there exists
a unique vector-function of a complex variable ¢ with values in D(Ux U); which
coincides with the right side of (2.12) for ¢t € ¢ 2N. In the sequel G; will stand
for this "analytic continuation". In this way one obtains g-analogues of (2.11) for
any complex power [.
We will need also the kernels

function ¢ % a2 Gy g0 (2) of [ 1 (f G ;- ¢odv | dv belongs to Clt,t1].
q

A G —G
GN déf}_i)ﬁ]il]ﬁ, N = 1,2,... (213)
(the limit in the topology mentioned above).
Remark 2.1. Let
def 1 ¢ g2

Lo(¢) =0, Li(¢) = 1_§+1_q2£+...+ma

k=1,2,...,00.
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Using (2.12) and formulae

d d
ayl =Ilny-y, a(q”;qQ)n =h-Lu(¢*) - (¢*;¢*)n

one can show that for b % In g2

RN e e LI
where
Unpn 2 R(Lk(@N) + Ln(g®V) 2"y 25 CFpN ¢ 4 27N In(y) 2 RN ¢
+2"y™ 2 Y In(n)¢"

Note that i O

imor= (20—

_ = N _ =
mov=(= i) (i Hase):

The principal result of the present work is

Theorem 2.2. For any f € D(U),

A f :/(Gqfdu, (2.15)

Uq
A;Qf:/szdu, (2.16)

Uq

where
def = ¢ 2—1
Gt <) me’ (2.17)
m=1
S 2m—2 2m 2\2 2 -2
def i~ ¢ (1+¢")(1 —¢) l1—gq g =1 4

Gy = mzl o G —— n; S {Oms (218)

and Gy, Gy are given by (2.12), (2.13), respectively.
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3. Auxiliary result: radial part of the invariant Laplacian
It is easy to check by direct calculations that for any f(y) € Pol(C), or D(U),

Ayf(y) =q "D —qy)Df(y),

where
def f(q™'t) — flqt)
g 't—qt

Let L2(dv)y” € {f(y) € D(U),| 5%, |F(@*™)[2a~>™ < oo}. The following

proposition is proved in [7, Lemma 5.5]:
Proposition 3.1. AE, ) &t

operator in Lz(dl/)go) .

(D)) =

q 'y?D(1—qy)D is a bounded selfadjoint invertible

The term "radial part of the invariant Laplacian in the quantum disc" stand
for this operator.
Let fo = fo(y) be such a finite function that

_J 1 y=1
fo_{O y=¢*k=1,2,.... (3.1)

In this section we will prove the following

Theorem 3.2.

where

00 2m—2 2m 2\2 2 o0 -2
™ (14 ¢*™)(1 - ¢°) 1-¢q g -1
g (Z (1—g*m)? v h lnyn; qg—2m — ) B3

m=1

Remind some well known notations [3]:
(;0)n = (1= a)(1—ag)... (1 — ag"™"),

(@9)o0 € (1—a)(1—ag)...(1—ag" h)...,
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Pya) = LD (1 gy,

(4% @)oo
a1,a2,...,ar;49;2
)
' 3[ bla"'abs :|
(al;Q)n ' (a2; Q)n teelt (GITQQ)n n n(n—1)\ 1+§—T n
- —1) g T A
n€l (015@)n - (b23@)n - - - - - (bs; @)n(g5 @) (( )'-a )

1 o0
[ 1@dpy= =) > @,
0

m=0

We will use the following results from [6, 7, 9]:

Proposition 3.3. The functions

-1 142ip ,1-2ip. 2. 2
def Yy 9 »q yqd5 4
0p(y) S5 D2 [ , ] : (3.4)
q%,0
1-2ip ,1-2ip. 2. 2
def 1_j; q »q 14597y
bply) = y27" 2 @ |: q2—4ir ] ’ (35)
and p_,(y) for p € (C\Z—lz-N are solutions of the equation
AP fy) = Ap)f (v),
where ( 1+2ip)( 1 2ip)
l1—¢q l—q¢g~
)\(P) - Y
(1-4¢?)
Moreover,
T2(2ip) T2 (—2ip)
0o(y) = s oY) + =5 (¥)- (36)

ng(% - ’ip) -

Remark 3.1. ¢,(y)is a g-analogue of the spherical function in the unit
disc (see [5]).

Proposition 3.4 [9, Corollary 4.2]. The spectrum of A,(JO) is simple purely
continuous and coincides with the segment

1 1

1-9*" (1+9?]
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Proposition 3.5 [9, Proposition 4.17]. Consider the Borel measure do on
the segment [0; 2X] (h =1Ingq ?) given by

1 h Th(3—ip)lh(5 +ip)

dolo) = 1= T,2(—2ip)T 2 (2ip) (37)
Then the linear operator
1
10) = 502 [ o)1y 7y, (39
0

27,

defined on functions with finite supports inside ¢ is extendable by continuity

to a unitary operator
u: LQ(dV)((IO) — L?(do).

For all f € L2(dv){

u- AP f = Np)uf, (3.9)
and the inverse operator is
2 /h
10 [ i 0)ds(o) (3.10)
0

Remark 3.2. Formulae (3.8), (3.10) present a decomposing in eigenfunc-

tions of the operator AS,O). The function f(p) is called the spherical transform of

f(y) while f(y) is the inverse spherical transform for f(p).
Now let us turn to proving of Theorem 3.2.

Lemma 3.6. Let g, (y) stand for the function such that
AP g (y) = fo- (3.11)

Then
oo q2Nk+2k:

= (0% )k
<R TV = ) (@21 6o
€S, —
TN (T — @™ (1 - gr)™(¢*FH T ¢?)%

gm(qQN) — (_1)m(1 _ q2)2m(q2;q2)ooqN

(3.12)
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Proof of the lemma. Applying the spherical transform to the
both sides of (3.11), using (3.9) and equality ¢,(1) =1 we get

Ap)"gm(p) =1—-¢° (3.13)
and then

) B . (1 _ q2)2m+1
gm(p) = (—1) (1 — gl +2ip)m(1 — g1—2ip)m

(3.14)

Now to obtain g, (y) in an explicit form it is sufficient to apply the inverse
spherical transform to the both sides of (3.14), i.e

2m/h

) = (M= it [ dap). (35

Next, to compute the integral in the right side of (3.15) we replace ¢,(y) by
its decomposition into sum of two items (cf.(3.6)):

2w /h

_ ¥p(y) 2% (5 —ip)
gm(y) = Cm / (1 _ q1+2ip)m(1 — q1—2ip)m Fq2(—22',0)
0
2n/h ) 1 .
Y—p(y) Lo (5 +ip)
em / (1 _q1+2z'p)mp(1 — g —%nym %q2(2z’ 0) dp, (3.16)

where ¢, = (_4172m (1 —g?)?™h.

The two integrals in the right side of (3.16) are equal to each other (to check
this one should replace p by —p in the former integral and observe that all the
functions under the integrals are 2T”—pelriodic).

Hence
2m/h 2 1 .
_ =" om / P(y) Fq2(§ —ip)
gm(y) = o (1—¢9)""h / (1 — g'+2ip)m(1 — gl=2ip)ym T ,(—2ip) dp-
(3.17)
Now let us make use of the equalities
1 2ip.
g ) 2k, k
P,y 1/2 ip gy 3.18
j{: 2 41p q q q ) ( )
and
2 (1 _ (¢%;9%)2% o 2\142i iy
L2(5 —ip) _ (<11‘2“’;112)%<,(1 ) = (%) (T3¢ oo (3.19)
- - . . - ? o0 -
Pp(=2ip) G (1 g2)142ip (72705
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Thus
(—1)mh 2 1 q y
= 1— m /2 A
gm(y) = 5 — (1= )™ 00y Z T,
2m/h 1—2ip. 2\2
y 1 (@"72:¢*); (T ¢%) o —ing
J (1 — g+ 2inym(1 — gb 2ie)m (2—Hin; 2), (g1 %p;q2)2.Y P

(we have exchanged summation over k and integration over [0; 22] because of the
uniform convergence of the series (3.18) for any fixed y € q2Z+)
Let y = ¢?N. Remind that ¢ = e "/2. Then

2m/h 1-2i 4
/ 1 (g "?:0°)% (075 6%) o0 ~2Nib g,
s (1= gty (1 — gt=2e)m (q2=40; %)k (¢~ ¢%)%
2n/h hi ohi
_ / 1 (qe Zpaq ) ( W,q )OO thpdp
S (L= qemMeym(l — qehte)m (qehie; ¢%)g (geh?; q%)5
_ i/ 1 (970%)k (1%¢")o0 w1,
hi J (1= 2)m(1 —qr)™ (¢*72; 4%k (a7;¢1)%
- i/ T ) i ey
hi ] (1 —q)™(1 —qr)™ (¢ 175¢%)3,
This completes the proof of the lemma. [

Thus by Lemma 3.6 we have

2N N2/ 2. 2 2N - CIQNHZIc (q2k+4 CI)
91(¢"") = —(1-¢°)*(¢79") g : :
Bk (@)%
2\2/.2. 2 2N — q2Nk+2k
=—(1-9¢7)"(q"9")oq
(1- (% Voo 2:: &= &)
) 2N G2 k+2k
—(1-¢°)*(q
Z 2’““ (4% 4?)
Hence
= §2—1
gi(y) = —(1—¢°) Z T_lym. (3.20)

m=1 q
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For go the calculations are much more complicated
R ( TN (1= ) (P ) o )
eSr—
TN (T = 9?1~ gn)2 (¢ T ¢?)%

d (TN+1(1 ) (22 g2) 1 )
S N S 4% oo )
dr \ (1—gr)? (@ 76%)2% ) 1=

One proves that
d
—(73¢%)o0 = —(756") 00 - Loo(T)

dr
(here we use the notation Ly, from Section 1). Thus
d (TN—I-l(l — 7'2) . (q2k+2 2.q2) 1 )
’ o
(1—gr)? (g*F 175 ¢%)%

- T
dr
B (N+ 1)7_N . (N—I— 3)7_N+2 . (qZIc—k27_2;q2)oo
(1—gqr)? (g% +171;¢%)2,
2q(7_N—|—1 _ TN+3) (q2k‘+27_2; qZ)OO TN+1 _ TN+3
(1—gr)3 (g®+11;¢2)%, (1—qr)?
(q2k+272; q2)oo 2%k+1 2k+1 (q2k+2T2; q2)oo
X | =202 27 Loo (¥ 272) oo 4 2¢2F T Lo (629 7) i
( * (g% 173 ¢%)%, > (g7 ¢%)%

For 7 = q we get

(N+1g" = (N+3)¢"? (¢ ¢°)o0 | 29(¢" " —¢") (™ ¢") o0

: +
(1—¢%)? (%125 ¢%)3, (1—¢%)? (¢%*+2;¢%)3
_qN+1 _ g3 g ti] : 2k+4) (%% ¢%) oo
R e T
+qN+1 - CIN+32 2k+1p ( 2k+2) (q2k+4; q2)oo
M-y T R
N(N+1) = (N+3)¢* 1
(1—¢%)? (1 —g**2)(¢**% ¢*) o
N 24V 1
(1-¢*)?% (1-¢*)(¢*%¢%) o
. gt _2q2k+3Loo(q2k+4) 1
(1-4¢% (1 — g% +2)(¢%*+% ¢?) oo
+ qN+1 2q2k—|—1L (q2k—|—2) 1
o
(1-4¢? (1 —g*+2)(¢%*+% ¢*) o
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1
T (1= - ) (¢ ¢%) o0

% (qN(N +1)+ 2q2k+1 . qN+1(Loo(q2k+2) . q2Loo(q2k+4))) _

But
H42) _ 21 (g2 = o G g>m e 1
Loo(¢™*")—q"L Z 1= q2m+2k+2 Z 1— @m+2k+s — ] _ g%k+42
m=0 m=0

Hence finally we obtain

TN+1(1 —r )(q2k+2 2’q )
Resr—q (u — (1 — ) (P >oo>

1
(1= )1 - )2 (¢ %)
and, using (3.12),

@V (N +1)(1 = g% + 24N g7,

2N 2 3 2 2 2N (12Nk+2k
92(¢"") =(1—q°)°(q
Z 1 _ q2k+2)2(q2k+2; q2)oo

X((N +1)(1 = ¢**2) + 2¢°5+2).

Now to complete the proof of Theorem 3.2 it is sufficient to replace ¢V by y and
N by —% Iny in the last formula.

Remark 3.3.

1. The explicit form (3.2) of g1(y) was obtained in [9, Proposition 1.1] in
another way.

2. The function go(y) given by (3.3) can be treated as a g-analogue of Rogers’
dilogarithm. Probably, there exist some identities for this function similar to the
classical ones (for instance, the famous pentagon identity).

4. Some more auxiliary results: quantum symmetry

Remind that the quantum universal enveloping algebra Uysly is a Hopf algebra
over C determined by the generators K, K !, E, F and the relations

KK '=K 'K=1, K*E=¢®EK*, K*'F=¢7FK*,

EF —FE— (K- K Y)/(g—q")
AKT)=K*' @K*', A(E)=E®1+KQ®E, A(F)=FQ®K '+1QF.
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Note that
e(E) =¢(F) = e(K* —1) =0,
S(K*)=KT!, S(E)=-K'E, S(F)=-FK,
with € : Ugsly — C and S : Uysly — Uysly being respectively the counit and the
antipode of Uysls.
Let F' stand for an algebra over C with a unit and equipped also with a
structure of Uyslo-module. F is called an Uysly-module (covariant) algebra if

1. the multiplication m : F @ F' — F' is a morphism of Ugsla-modules;
2. for any £ € Uyslo

£(1) =¢(é) -1

(here 1 is the unit of F'). Note that an element v of an Usla-module is called
invariant if for any £ € Uysly

Let M be an Ugslo-module and F-bimodule for some covariant algebra F'.
Then M is called covariant if the maps

mL:FOM > M, mp:M®F—> M

are morphisms of Ugsly-modules.
Equip Uyslz with the involution given by

E*=—-KF, F*=—-EK™!, (K*)* =K% (4.1)

Uysuy,1 is the »-Hopf algebra produced this way.
An involutive algebra F' is said to be Ugsu; j-module algebra (covariant x*-
algebra) if it is an Ugysle-module one and

(€f) = (SE)* - f*

for any £ € Ugsuy 1 and f € F.
It is very well known (see, for instance, [7]) that Pol(C), can be equipped with
a structure of a covariant *-algebra in the following way:

Ktz =¢™%z, Ez= —q1/2z2, Fz= q1/2, (4.2)
K2t = ¢, Ez*=q 3% Fz=—q 522 (4.3)
The formulae (4.2),(4.3) imply: for any polynomial f
q\/2

K fy) = fv), Ef(y) =—{p2(fy) — (),

/2

Ffy) = —E£a(fly) - fa®y))z".
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(4.4) allow one to "transfer" the structure of Ugsu; ;-module from Pol(C), onto
D(U),.

Remark 4.1. The functional (2.4) possesses the following properties: for
any f € D(U)q, € € Ugsly

1. [ f*dv = [ fdv (follows from the definition);

U, U,

2. [ f*fdv>0, [ f*fdv=0<«= f=0([7, Remark 3.6]);
U, U,

3. [ €fdv=e(€)- [ fdv (|7, Theorem 3.5]).
U, U,

These properties allow one to regard the functional as a g-analogue of the
SU(1,1)-invariant integral.

Note (see |7, Proposition 4.1|) that 1-3 imply: for any fi, fo € D(U)q, & €
Uqﬁ[g

(€f1, f2) = (f1,€" f2), (4.5)
where (f1, f2) & [ f3 frdv.
The followingquormulae can be obtained
K= fy) = a2 f(y), KX f()2" = a7 f(y)", (4.6)
B 1) =~ (10) ~ ') (@)
1/2 .
B 0)7) = ~1= 5= a ) 0) + (1= 9)fa )00, 21, (43)
F(# f(y)) = —%zj_l((y — N+ A -y)f@y), 21, (49
5/2 . .
B(f)2) = ~{= 5 (1)~ F (@)= 0. (4.10)
Impose the notation /; j, 1=0,1,2,..., j=0,%+1,%2,..., for the functional
> M (y) + o) + D pom()Z™ ™ = 4h(q*)
m>0 m>0
on the space D(U); (see Sect. 1). Endow D(U), with the weakest among the

topologies in which all the linear functionals [; ; are continuous. Obviously, D(U),
is a dense subspace in D(U);. As a straightforward consequence of (4.6)—(4.10)
we get

Proposition 4.1. Any element £ € Uysly defines a continuous linear operator
D(U)y = D(U)q (here D(U), is regarded as a topological vector space with the
topology induced by the topology on D(U), described above).
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Corollary 4.2. The Ugsly-action on D(U)g can be transferred by continuity
onto the space D(U);.

In fact the Uyslp-module D(U); is a covariant D(U)4-bimodule.

One can apply the above arguments to D(U), ® D(U)y, D(UxU)g, {lij ®lmn}
instead of D(U)q, D(U)g, {li;} to make D(Ux U), into a topological vector space
and an Ugslp-module. The continuity of the Uysla-action in D(U x U); may be
proved just as in the case of D(U)j.

The results listed below are proved in [7, 8].

Proposition 4.3 [7, Proposition 4.5]. An integral operator with a kernel K
is a morphism of the Uysla-module D(U), onto the Uysle-module D(U);, iff K is
an invariant.

Proposition 4.4 [8, Section 6]. G, given by (2.12) is invariant for anyl € C.

Proposition 4.5 [7, Theorem 4.3, Proposition 5.2] A, being regarded as an
operator D(U); — D(U)}, is a morphism of Uysla-modules. Moreover, Ag = q~'Q
where

1
CY PRy —— ('K gk —g—q") (4.11)

(' —q)

is an element of the centre of Uysly called the Casimir element.

Proposition 4.6 [7, Theorem 3.9]. fo given by (3.1) generates the Ugysla-
module D(U),.

Corollary 4.7. Let A,B be morphisms of Uysly-modules D(U), — D(U),.
Then A = B iff Afo = Bfo.

5. Proof of Theorem 2.2: reduction to the results of Section 3
about radial part of the quantum Laplacian

Firstly it should be proved that the integral operators in the right-hand sides of
(2.15) and (2.16) are well defined (i.e., G; and Gg do belong the space D(UxU)y ).

It could be done just as in the case of G; and G x (see Sect. 1) and we don’t adduce
such calculations.

Lemma 5.1. For any N € N the kernel Gy given by (2.13) is invariant.
Proof Inour casethe invariance of G N Ineans
E(Gn) = F(Gn) = (K™ = 1)(GN)

and follows from the continuity of the Ugsly-action in D(U x U); and Proposi-
tion 4.4. |
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Lemma 5.2.

/Glfodvzm(y), /szodlfzgz(y)a (5.1)
U

where g1(y), g2(y) are given by (3.2) and (3.3) respectively.

Proof. (5.1) reduce to (2.12), (2.14) and the following equalities:

z*- fo=0 (see [7, Proposition 3.1]);
2. f(y)- fo=f(1) (follows from the definition (3.1) of fo);

_ 2 —
3. [ ZFfodv = { l—¢" k=0, (follows from the definition (2.4) of
]Uq 0, k == ]., 2’ P

the integral). m

Thus we have proved (Proposition 4.4, Lemma 5.1) that the operators in
the right-hand sides of (2.15) and (2.16) are morphisms of Ugslp-modules. By
Lemma 5.2 and Theorem 3.2

/Gl fodv = A;lfo,

/ Go fodv = A% fo.
Uy

By Corollary 4.7. to complete the proof of Theorem 2.2. it suffices now to
prove the following lemma.

Lemma 5.3. A;l and A;Q being regarded as operators from D(U), onto
D(U), are morphisms of Uyslz-modules.
Proof. Lett, bethe automorphism of the algebra Pol(C), given by
to(z) = €%z, ts(z*) = e 2",

Impose the same notation ¢4 for the automorphism

D 2™ (y) + o) + D om

m>0 m>0
— Z ezmd) m’lﬁ _|_ 'lpO + Z e—zmd)w
m>0 m>0
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of the algebra D(U),.

Obviously, each operator ¢4 can be extend to a unitary operator L?(dv), —
L?(dv), and thus we obtain a unitary representation of the group U(1).

Let’s prove that for any ¢

to-Dg=Ag -ty
Indeed, let L,, be the subspace in D(U), of function of the form 2" f(y) (for n > 0),
f(y) (for n =0) or f(y)z*" (for n < 0). Then it is obvious that
Ly, ={f € D(U)q : t4(f) = €™ f, ¢ € [0;2m)} = {f € D(U)q : K(f) = ¢*"f}.

The latter equality and Proposition 4.5 imply A4(L,) C Ly, and thus

to(Rq(f)) = Aq(t4(f))

for any ¢4 and f € D(U),.
Let L,, be the closure of Ly, in L?(dv),. It is evident that Ay(L,) C Ly, and,
moreover, Aq_l(L_n) C L, (this follows from the invertibility of A,).
Denote by Lz(du){;m the space @,,c5, Ly (note that L, L Ly, for n # m). We
have established that
A (L2 (dv))™) C L (dv)j™,

and
172 ' 2 '
AFHIA(dv)™) C L (dv)]n.
Obviously, D(U), C L*(dv)}™ and therefore

A;™(D(U)y) C L*(dv)]im

for any m € N. .
To complete the proof of Lemma 5.3 it suffices to prove that L2(du)£m is an
Uysla-submodule in D(U);. Thus we have to verify inclusions

K(L*(dv)i™) c L?(dv)I™, (5.2)
B(L2(d)f™) € L2 ()™, (53)
F(L*(dv)™) c L*(dv)]™. (5.4)
(5.2) is evident. Let us prove (5.3) ((5.4) can be proved in a similar way).
Formulae (4.8), (4.10), imply E(L,) C Lp+1 and we need to prove that E is

extendable onto L. Let f € L. Then (see (4.5))

(Ef,Ef) = (f, B*Ef) LY (5, KFEf)
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(see(4.11)) g 'K 149K —qgl—gq
- (. K-(Q—
(f, K- ( Py )f)
¢ ' +qK?— (¢ + 9K
=—(f,KQ
(f, KQf) + (, g7 f)
-1 4n+1 -1 2n

(.0 g +q — (¢ +9)q

(Proposi:tion 4.5) —q2”+1(f A f) n q—l 4 q4n+1 _ (q—l 4+ q)q2n (f f)
T (¢t —q)? ’

So the boundedness of A, allows one to establish the boundedness of E : L, —

Ly 41. This completes the proof of Lemma 5.3 and thus of Theorem 2.2.

Acknowledgement. I am very grateful to L.L. Vaksman who explained me
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spaces.
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g-a"Hasiorn pyHkuuii 'puHa creneHeii ”HBapUaHTHOTO
Jlansacuana B € AUHUYHOM KpPyTe

. IMxknsapos

B nenasueit padore 2K. [Mutpn u M. Durauca moaydeHsbl sBHbIE (DOpMY-
abt ais byskmait [puna crenereit A, A%, A3, A* SU(1, 1)-unBapuanTHOro
oneparopa Jlamiaca B equangaom kpyre U C C. B macrosimieii padbore mo-
JIy9eHBI g-aHaJoru 31ux dopmya g A, A2, TlomyTHO BOZHHKAET ¢-aHAJIOT
aunorapudma B popme Poakepca.

g-anajioru yukiiii ['pina creneuniB iHBapiauTHOTO
JlaniaciaHa B OMHUYHOMY KpY3i

. Mxastpos

B nenaswiit pobori 2K. Ilitpi Ta M. Exrsica orpumano sBHi (dopmysin ajist
dynkuiit Ipina crenenis A, A%, A3 A* SU(1, 1)-inBapianTHOro oneparopa
Jlantaca B oquanunomy kpy3i U C C. B mawiit poboTi oTpuMaHo g-aHajgoru
mux popmya ana A, A2, TlomyTHo BUHEKAE ¢-aHAJIOT Aigorapudma y dbopmi
Pomxepca.
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