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We prove the existence of a wide collection of finite sets of functionals
that completely determine the long-time behaviour of solutions to nonlin-
early damped wave equations. This collection contains finite sets of deter-
mining modes, nodes and local volume averages. -

Introduction

In a smooth bounded domain @ C R we consider the following nonlinear
wave equation:

ug + g(ug) — vAu + f(u) = h(t,z), z € QC RY, >0, (1)
uloa =0, (2)
uli=o = uo(z), utl=0 = u1(z). (3)

Under some natural conditions on the continuous functions g(u) and f(u) and
on the right-hand side h(t, ) we prove the existence of a wide collection of finite
sets of functionals that completely determine, in the sense that we explain below,
the long-time behaviour of solutions to the equations (1)-(3). The approach
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presented relies on the concept of a completeness defect (see [3] and [4]) for a
set of linear functionals and it involves some ideas from abstract approximation
theory. A similar problem for the second order in time evolution equations was
studied under the hypothesis that the damping term g(u;) is linear function of wu;
(see [2] and also the survey [3]). However the presence of the nonlinear damping
term requires completely different approach to the problem.

The question of the number of functionals that are necessary for the descrip-
tion of the long-time behaviour of solutions to nonlinear partial differential equa-
tions was first discussed by Foias and Prodi [6] and by Ladyzhenskaya [10] for
the 2D Navier—Stokes equations. They proved that the asymptotic behaviour of
the solutions is completely determined by dynamics of the first NV Fourier modes,
if N is sufficiently large. After [6] and [10] similar results were obtained for other
functionals and other evolutionary equations and a general approach to the prob-
lem of the existence of a finite number of determining parameters was developed
(see the survey [2] and the literature quoted there).

Long time behaviour of solutions of wave equations with nonlinear damping
is studied in [9], [7], [8],[12],[11], [5], [13] (see also the references therein). This
paper can be considered as a development of [9],where the rate of decay of the
difference of two solutions to the problem (1) and (2) with f(u) = 0 is studied.

1. Preliminaries

We assume that g(u) and f(u) are continuous functions with the properties:
9(0) =0, (g(u) — g(v))(u —v) > ao(u —v)* +ar|u — o™, u,v €R;
l9(u) — g(v)] < ag(l +[u[™ +[0[") - lu —v], w0 Ry
(f(w) = f(v))(u =) +bo(u —v)* > bi]u —vfP*?, w,v€R;
|f(u) = fF) < bo (T + [ulf’ + [v°) - Ju — o], w,veR;
:/Ouf(s)dsz—(}’, u € R. (1.5)

Here ag, by, C' are nonnegative and a1, ao, b1, by, p are positive numbers. We
also assume that if d > 3 and p < m then m < ﬁ. In the case ag > 0 we can
also admit a; = 0. As a simple example of functions g(u) and f(u) with these
properties we can consider

g(u) = apu+a1|u|™u and  f(u) = —bou + by |ulPu. (1.6)

We suppose that h(t,z) € Loo(R4;L2(2)) and we assume that for every uy €
H}(Q2)NLyi2(R) and ug € Ly(S2) the problem (1)—(3) has a unique global solution
such that

u(t) € C(0,T; Hy(Q) N Ly12(2)) (1.7)
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and
u(t) = ug € C(0, T La(Q)) N Lyps2((0,T) x Q) (1.8)

for each T' > 0. Here and below H} () is the first order Sobolev space with the
zero boundary conditions and equipped by the norm ||V ||, where ||| is the norm
in space Ly(f2). We also use the notation || - ||; for the norm in Ly(£2). We note
that in the example (1.6) the global existence theorem in the class of functions
possessing the properties (1.7) and (1.8) is well-known (see, e.g., [11]).

As in [2, 3, 4] we involve the concept of the completeness defect for a descrip-
tion of sets of determining functionals. Assume that X and Y are Banach spaces
and X continuously and densely embedded into Y. Let £L = {l;: j =1,..., N} be
a finite set of linearly independent continuous functionals on X. We define the
completeness defect e£(X,Y) = e, of the set £ with respect to the pair of the
spaces X and Y by the formula

ec =sup{|lw|ly :weX, lj(w) =0, l; € L, |[w|x <1}. (1.9)

The value €, is proved to be very useful for characterisation of sets of determin-
ing functionals (see, e.g., [2, 3, 4] and the references therein). One can show that
the completeness defect €£(X,Y) is the best possible global error of approxima-
tion in Y of elements u € X by elements of the form u, = Z;VZI lj(u)¢;, where
{¢; : 5 =1,... ,N} is an arbitrary set in X. The smallness of e£(X,Y) is the
main condition (see the results presented below) that guarantee the property of a
set of functionals to be asymptotically determining. The so-called modes, nodes
and local volume averages (the description of these functionals can be found in
[3, 4], for instance) are the main examples of sets of functionals with a small
completeness defect. For further discussions and for other properties of the com-
pleteness defect we refer to [3] and [4]. Here we only point out the following
estimate

lully < Cr-ne(u) +ec- fullx, weX, (1.10)

where C > 0 is a constant depending on £ and

ne(u) = max{|l;(u)| : j=1,... ,N}. (1.11)

2. Determining functionals
Our first result is the following assertion.

Theorem 2.1. Assume that u(t) is a solution to the problem (1)-(3) with
h(t,x) = h(xz) € La(Q)) possessing the properties (1.7) and (1.8). Let w(x) €
H} () N Lyy2(Q) be a stationary solution to the problem (1) and (2), i.e. to the
problem

—vAu+ f(u) = h(z), T €Q, wulgg =0. (2.1)
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Assume that L= {l; : 5 =1,... ,N} is a set of functionals on H}(Q) and ez =
ec(HY(Q), Ly()) is the corresponding completeness defect. Then the condition

t_l:_inoolj(u(t)) =lj(w) foral j=1,...,N (2.2)
implies that
Jim (@12 + [V (u(t) = )2+ lu(®) —wifi3) =0, (23)

provided e < \/z/bal.

Proof. Werely here on some ideas developed in [11]. Below we assume that
aq > 0 (for the case a1 = 0 and a¢ > 0 arguments are similar). Let v(t) = u(t) —w.
Then for v(t) we have the following problem

vy + g(v)) —vAv + fw+v(t) — f(w) =0, € QCRY, t>0, (2.4)

ulan = 0, ul=o = uo(x), utlt=0 = u1(x). (2.5)

Multiplying the equation (2.4) in Lo(f2) by v; we obtain:

5 5 (P + vIV@I) + (Fw) — ), o) + (gl w) =0. (26)
It is not difficult to see that
(F() ~ £ ), ) = (F() ) — (£ a), v) = (oD,

Consequently from (2.6) we obtain the equality:
d

aE(t) + (g9(ve),v1) =0, (2.8)
where 1
14
B(t) = Sl @ + S IVo@)|” + @(u(2)). (2.9)
We use the condition (1.3) to get the following inequalities:
bo, 2 by P42
B(0) 2 — ol + Lol (2:10)
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B(v) — (fw+v) — f(w),v) = /0 (f(w + 20) — f(w +v)), v)dz

b1
p+2

In what follows we will use the following inequality which follows from (1.10) with
X = H}(Q) and Y = Ly(Q):

1
b
—— [ )~ fwt ), v)ds < Phol - ZolplptE (210
ol < (1 -+ 0) Vol + e max ()P, (212)

for each d > 0. Using the inequalities (2.10) and (2.12) we get the following
estimate of E(t) from below:

1 v b
B) > Jlul? + (5 - 2 +9)) |90
b1 P42 2
+- ol — Ceamax (o) (2.13

Let us note that it follows from (2.8) and the condition (1.1) that the function
E(t) is monotony decreasing. The inequality (2.13) also implies that if 2 < vby "
and limy, o0 [j(v(¢)) = 0 then limy_,  E(t) > 0. Thus E(t) > 0 for each ¢ > 0.

Integrating the equality (2.8) with respect to ¢ and using the condition (1.1)
we also obtain:

t
BO) ~ B0) > a1 [ (o) [3:3ds. (2.14)
0
Multiplying the equation (2.4) by v we find

d

o) = oe|” = V[ Vol* = (f(v +w) = f(w),v) = (g(v1), ).

Since —%||Vv||2 = —E(t) + |jvi]|? + ®(v) we have:

d 3 9 U 9
E(U’U’*) = §||Ut|| §||VU||

+H{®(v) — (f(w +v) = f(w),v)} = (g(ve),v) — E(H).

By using the inequalities (2.11) and (2.12) we obtain from the last relation the
following inequality:

1
% (v,m) < ~B(t) — 3 (v~ 31+ 3)bo) [V

b1 +2 3 2
I+ S + (g )]

+Cp,5 max |lj(v)|* —
J
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Integrating the last inequality with respect to ¢ we obtain:
t
[ B@)ds < ~0,00) + ((0), (0
0
/ s(3)| ds+C45/ a5 (0(s)) s

t
m-+1
+a2/0 ||vs(s)||||v(s)||ds+a2/0 /Q|vs(s,x)| Ly (s, z)|dzds. (2.15)

By using (2.14) and (2.10) one can easily get:

bo b1 1 v
—lol? + =S ol + Sl @I + SIVel? < B@) <EBQ)  (216)

The following estimate is an easy consequence of the last inequality

|(v(0),v:(0)) = (v(t), v:(2))| < Ch- (2.17)

By using the Holder inequality and the inequality (2.14) we obtain:

[ itspas = [ [ uts.aras

+ m m
(/ ||ve(s ||Tm”i§ds> - (Vol (R2) - t)ym+2 < Oy - tm+2. (2.18)

Let us estimate the last two terms in the right hand side of the inequality (2.15).
By using the inequalities (2.16) and (2.18) we obtain:

/Ot () |l[v(s)]|ds < (/Ot ||Ut(8)||2ds>é ‘ </0t ”v(s)szS);

1

5 m

<C- sup ||Vo(s) (/ loe(5)| ds) 43 < Oy tmts, (2.19)
0<s<t

Due to the Holder inequality and the inequality (2.16) under the condition m < p

we have: .
/ / fon(s, 2)[™+ (s, 7)|dirds
0 Q
1

t oot i )
< ( / / |vt(s,w)|m+2d:vds> ( / / |v(s,w)|m+2dwds> <0yt
0 JQ 0 JO

(2.20)
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If m > p and if either d < 2 or m < 4(d —2) ™!, then we have H(Q) C Ly,12(f).
Therefore using (2.16) we also have (2.20) for this case.

So due to the inequalities (2.17)-(2.20) and the inequality tE(t) < fg E(t)dt
(E(t) is a decreasing function) we obtain from (2.15) the following inequality:

tE(t) < C1 + Cy - t¥? + Cy - tmt? + Oy - tinre.

The last inequality implies that E(f) < Cs -t /(m+2) Therefore from (2.13)

1

under the condition ez < y/vb; " we have

loel|? + 1Vl + [lo[[515 < C1(£) - ¢ 4 Gy (L) - max [I; (v (1)) 2. (2.21)
J

This implies the assertion of Theorem 2.1.

Remark 21. Under the conditions of Theorem 2.1 the relation (2.21)

. . +2

provides us also an estimate of the decay rate of the value [[v¢||*+[|Vo||* + [|v[[p]5
when t — oo.

Remark 22. Theorem 2.1 remains true, if instead of stationarity of the
right hand side h(¢,z) in the equation (1) we assume that h(t,z) — h(x) in the
sense that

o
/ rlIh(r) — h|2dr < oo.
0

The proof follows step by step to the argument given above with minor modifi-
cations in the relations (2.8), (2.14) and (2.15). Instead of monotonicity of E(t)
we make use of monotonicity of the function E(t) — f(f(h(T) — h,v(7) dT.

Theorem 2.1 implies immediately the following assertion.

Corollary 2.1. Let wi(z),wa(z) € Hi(Q) N Lp+2(Q) be two stationary solu-
tions to the (2.1) with h(z) € Lo(Q?). Let L ={l; : j = 1,... ,N} be a set of

functionals on HE(Q) and ez (H§(Q), L2(Q)) < y/vby*. Then the condition
Li(w) =lj(w) forall j=1,...,N
implies that w1 (z) = wa(z).
Two following corollaries deal with the case when the problem possesses pre-
compact trajectories. For conditions that guarantee the precompactness of tra-
jectories see [7] and [5], for example.

Let h(t,z) = h(z) € Ly(R2) and let u(t) be a solution to the problem (1)—(3).
We recall that the set

7+ (w0, ur) = U{(u(t);ue(?)) : t >0}
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in the space & = H}(Q) N Ly12(2) x La(Q) is said to be the semi-trajectory
emanating from (ug;u;) of the dynamical system generated by (1) and (2) in £.
We also define the w-limit set of the semi-trajectory v, (ug,u1) by the formula

w(rs) = wluo,ur) = Nrso [U{(u(t)w(t) : ¢ > 7}, (2.22)

where [A]¢ is the closure of the set A in &.

Corollary 2.2. Let h(t,z) = h(z) € Lo(Q) and L={l; : j=1,... ,N} be a
set of functionals on H{(Q)) such that ez = e (H(Q), La(Q)) < y/vby . Assume

that u(t) is a solution to the problem (1)-(8) with precompact semi-trajectory
Y+ = v+ (ug,u1) and there exists the finite limits

lim L(u)=1l; j=1,...,N. (2.23)

t—+4o0

Then there ezists a stationary solution w(z) € H () N Ly42(Q) such that (2.8)
holds.

Proof Precompactness of v, implies that w-limit set w(7y4) is non-empty
compact set in £. As in the proof of Theorem 2.1 it is easy to see that the
functional

Bo(u(t), u(t)) = gllue@) + IV + (Flu(®), 1) (2.24)

possesses the property

d

aEO(U(t),Ut(t)) + (g(ug(t)), ue(t)) = 0,

This implies that Eg(u,u;) is the Lyapunov function (see the books [1] and [7])
and therefore the w-limit set w(y4) lies in the set A of equilibrium points to the
problem (1) and (2), i.e.

w(yy) CN ={(w;0) € £ :w is asolution to (2.1) }.

From (2.23) we have that {;(w) = [; for all (w;0) € w(y4+) C N. Consequently
Corollary 2.1 implies that w(7y;) consists of a single point (w;0) and therefore
(2.3) holds.

Corollary 2.3. Let the assumptions of Corollary 2.2 concerning the function
h(t,z) and the set L of functionals on H(Q)) be valid. Assume that u(V(t) and
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u® (t) are solution to the problem (1) and (2) with precompact semi-trajectories

fyg_l) and 'yf) and

im (D) - 5P (@) =0 j=1,..,N. (2.25)

t—+o00

Then we have w('yg)) = w('yf)). If the set N of equilibrium points is finite, then

there exists a stationary solution w(z) € H(Q) N Ly42(Q) such that

Jdim (O + 19O @) —w)? + (@) —wl23) =0, =12,

Proof Let(2,0) € w(’yg)) C N. Then there exists a sequence {t,,}
such that t,, — +oo and u(t,,) — 21 in the space H}(Q) N Lyi2() when
m — oc. Since 'yf) is precompact set, we can choose a subsequence {tm, } C {tm}
such that u® (t,,,) — 22, where (22,0) € w('yf)) C N. The property (2.25)
gives that [;(z1) = lj(z) for all j = 1,2,... ,N. Consequently Corollary 2.1
implies that z; = 2 and therefore we have (z1,0) € w('yf)). This implies that
w('yg_l)) = w(fyf)). If NV is finite, then it is easy to see that w(’ys_l)) = w('yf))
consists of a single equilibrium point. This implies the assertion of the corollary.

The following assertion gives some generalisation of Corollary 2.1 allowing one
of the solutions to be non-stationary.

Theorem 2.2. Assume that u(t) is a solution to the problem (1) and (2) with
h(t,z) = h(z) € La(Q2) defined on R and possessing the properties like (1.7) and
(1.8) for every interval of R. Assume also that

timsup ([lu(8)]2 + V@) + [u(®) 553 < oo, (2.26)
t——00

Let L = {l; : j = 1,...,N} be a set of functionals on H}(Q)) and ez =
ec(HE(Q), L2 () < \/vbyt. If for some solution w(z) € HE(Q) N Lp12(Q) to
the problem (2.1) we have

Li(u(t)) =lj(w) forall teRand j=1,...,N, (2.27)

then u(t) = w.

Proof. We apply the same idea as in the proof of Theorem 2.1 but with
reversed time. Let us consider the function v(t) = u(—t) — w as a solution to the
problem

v — vAv + f(w +v(t) — f(w) = —g(—w;), z € QC RY, >0, (2.28)
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ulag = 0, v|i=0 = uo(z) — w(z), vilt=0 = —u1(x).

As in the proof of Theorem 2.1 it follows from (2.28) that the function E(t) defined
by (2.9) satisfies:

d

%E(t) = —(g(—vs),ve) > a1 ||l () 17255 (2.29)

Integration of (2.29) over (0,t) gives
¢
E(t) > E(0) + ar / lon(s)m2ds, ¢ > 0. (2.30)
0
Due to (2.27) instead of (2.12) we have

loll* < €z [IVol. (2.31)

Thanks to the the last inequality and also to the conditions (1.4) and (2.26) we
have

1
Sl + Vw2 +

v|l,os < E() <C (2.32)

for all ¢ > 0, where 1y = v — boe% > 0 and C is a constant depending on the
solutions u(t) and w.

By using (2.27) and (2.11) as in the proof of Theorem 2.1 we obtain from the
relation

d 2 2
73 (Vo ve) = [oell” = v Vol” = (f (v + w) = f(w),v) = (9(~wt),v)

the following inequality

t 3 t 9
|| Ble)s < ~w0,0) + 00,0 0) + 5 [ on(e) P

t t
+a2/0 los(s)|[(s) [ ds + az/o /Q\vs(s,w)|m+1|fu(s,w)\da:ds. (2.33)
The condition (2.26) implies that
[(v(0),v:(0)) — (v(t),ve(2))| < D (2.34)

It follows from the Holder inequality, (2.30) and (2.32) that

/Hvt I < (/ o (s Wi%dS)M (Vol (Q) - #)7%3

< DoE(t)m2tmt? < Datintr. (2.35)
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By using the first two inequalities in (2.19) and also (2.35) and (2.32) we obtain
t m-+1
[ I llots)lds < D, (2.36)
0

The first inequality in (2.20) and also (2.30) and (2.32) imply the following in-
equality

t
/ / lvs (5, 7)™ [v(s, 7)|dzds < Dyt (2.37)
o Ja
Since E(t) is nondecreasing function (see (2.25)) by using (2.34)—(2.37) we obtain
from (2.33) the inequality

t
Emﬁg/"E@mssDFA¢mH+¢ME+¢Jm}
0

The last inequality implies that E(0) must be equal to 0. Thus we get uy = w
and u; = 0. Therefore u(t) = w because of the uniqueness of the solution.

Corollary 2.4. Let the assumptions of Theorem 2.2 concerning the function
h(t,x) and the set L of functionals on H()) be valid. Assume that u(V(t) and
u® (t) are solution to the problem (1) and (2) defined on R and possessing the
properties like (1.7) and (1.8) for every interval of R. Assume also that these
solutions have precompact trajectories v = U{(u(t);us(t)) : te R}, i = 1,2,
and

LiwD @) =1((w? () forall teRand j=1,...,N. (2.38)

Then there exists a stationary solution w(zx) € HY(Q)NLy42(Q) such that u(V(t) =
@) =
u w.

Proof. Asin the proof of Corollary 2.3 it is not difficult to find that
w(y') =w(y®) = a(y?) = a(41?), (2.39)

where w(y®) is w-limit set of the trajectory () defined by (2.22) and a(y{®) is
a-limit set of the trajectory 4 defined by the equality

a(y®) = N, <o [u {(u@')(t);ug“ (1) : t< T}]g, i=1,2.

The property (2.39) implies that the functional FEy(u,u;) defined by (2.24) is
constant on the both solutions u(D(t) and u(?(t). Therefore u(Y(t) and u(? (t)
are stationary solutions. Consequently (2.38) and Theorem 2.2 give that u(!) () =
u® (t) = w, where w is a solution to the problem (2.1).

Matematicheskaya fizika, analiz, geometriya , 2001, v. 8, No. 1 225



Igor D. Chueshov and Varga K. Kalantarov

[1]
[2]
13l

[4]
[5]
[6]

7
8]
9
[10]
[11]
[12]

[13]

226

References

A.V. Babin and M.I. Vishik, Attractors of Evolution Equations. North—Holland,
Amsterdam (1992).

I.D. Chueshov, On the finiteness of the number of determining elements for von
Karman evolution equations. — Math. Meth. Appl. Sci. (1997), v. 20, p. 855-865.

I.D. Chueshov, Theory of functionals that uniquely determine asymptotic dynamics
of infinite-dimensional dissipative systems. — Russian Math. Surveys (1998), v. 53,
p. 731-776.

I.D. Chueshov, Introduction to the theory of infinite-dimensional dissipative sys-
tems. Acta, Kharkov (1999) (in Russian).

E. Feireisl, Global attractors for semilinear damped wave equations with supercrit-
ical exponent. — J. Diff. Eq. (1995), v. 116, p. 431-447.

C. Foias and G. Prodi, Sur le comportement global des solutions nonstationnaires
des équations de Navier—Stokes en dimension deux. — Rend. Sem. Mat. Univ.
Padova (1967), v. 39, p. 1-34.

J.K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and
Monographs, Vol. 25. AMS, Providence, RI (1988).

A. Harauz, Systemes Dynamiques Dissipatifs et Applications, RMA, Vol. 17. Mas-
son, Paris, (1991).

A. Harauzx and E.Zuazua, Decay estimates for some semilinear damped hyperbolic
problems. — Arch. Rat. Mech. Anal. (1988), v. 100, (2), p. 191-206.

O.A. Ladyzhenskaya, A dynamical system generated by the Navier—Stokes equa-
tions. — J. Soviet Math. (1975), v. 3, p. 458-479.

P. Marcati, Decay and stability for nonlinear hyperbolic equation. — J. Diff. Eq.
(1984), v. 55, p. 30-58.

M. Nakao, Asymptotic stability for some nonlinear evolution equation of the second
order with unbounded dissipative terms. — J. Diff. Eq. (1978), v. 30, p. 54-63.

P. Pucci and J. Serrin, Asymptotic stability for nonautonomous wave systems. —
Comm. Pure Appl. Math. (1996), v. XLIX, p. 177-216.

Matematicheskaya fizika, analiz, geometriya , 2001, v. 8, No. 1



Determining functionals for nonlinear damped wave equations

Onpenensifomue (PyHKINOHAIBI AJISI BOJTHOBBIX
YPaBHeHUiI ¢ HeJINHEWHBbIM JeMI(pUPOBaAHNEM

N.A. Yyemor, B.K. KananTrapos

JlokazaHO CYIECTBOBAHWE IMTUPOKOTO CEMEHCTBA KOHEYHBIX MHO-
KECTB (DYHKIIMOHAJIOB, KOTOPBIE TTOJHOCTHIO OMPEIEISIIOT ACUMIITOTUIECKOE
[MOBE/IEHUE PEIIEeHUI BOJHOBBIX YPABHEHUI C HEJIMHEWHBIM 1eMII(DUPOBAHU-
eM. ITO CeMelCTBO COJAEPIKUT KOHEYHBIE MHOMKECTBA, ONPEIEJISIIONINX MO/,
y3JI0B U JIOKAJbHBIX O0bEMHBIX CPETHUX.

Busnauyaroui (pyHKI[IOHAIN OJI XBUJIBOBUX PIBHAHDb
3 HeJsiHiliHuM nemndyBaHHAM

I.1. Yyemos, B.K. Kajauntapos

JloBeneHO iCHyBaHHSI IIMPOKOIO KJACy CKIHYEHHHMX MHOXKHMH (DyHKIHO-
HAJIIB, sIKi IOBHICTIO BU3HAYAIOTH ACUMITOTHYHY IIOBEIHKY PO3B’S3KiB XBU-
JIbOBUX PiBHSAHD 3 HeJliHiMHUM aeMndysBannsM. [lei kiac MicTuTb CKiHYeHHI
MHOXXWHY BU3HAYAIOUYNX MOJ, BY3JIiB Ta JIOKAJTHHUX 00’€MHUX yCepeIHEHbD.
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