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We proved two theorems about almost periodic continuous solutions
w(z) of the equation F(z,w) = 0, where F(z,w) is an analytic function
in P={(z,w) : 2 € S,|w| < ¢} and almost periodic in z € S. -

1. Introduction

In 1938 H. Bohr, D.Flanders [1] and V.V. Brytik, S.Yu. Favorov [2] in 2000
proved that a continuous in the strip S = {z € C: a < Imz < b} (a can be —oo
and b can be +00) solution w(z) of equation

A (2)W™ + a1 (2)w™ 4 -+ a1 (2)w + ag(z) =0 (1)

with analytic almost periodic coefficients a;(z), 7 = 0,...,m, in a strip S is
almost periodic. However in [1] this result was obtained with following conditions:
a) am(z) = 1, b) the discriminant D(z) of (1) does not vanish; this result was
proved without any restrictions in [2].

Note that the assumption for a;(z) to be analytic in S is important. A. Walther
[7] constructed a continuous almost periodic function b(z), z € R, such that every
continuous solution of the equation w? — b(x) = 0 is not almost periodic.

R.H. Cameron [3| obtains sufficient conditions under which any continuous
solution #(z), z € R, of the equation F(z,t) = 0, where F(z,t) is almost periodic
function in z, z € R, is also almost periodic. The main condition is F}(z,t) > 0
on the set {(z,t(z)) : z € R}.

In the present paper we prove two theorems about almost periodic continuous
solutions w(z) of the equation F(z,w) = 0, where F(z,w) is an analytic function
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in P={(z,w) : z € S, |w| < ¢} and almost periodic in z € S. In the first theorem
we assume some restrictions on the function F, (z,w) on the set {(z,w(z)) : z €
S}.(However this condition is essentially weaker than Cameron’s). In the second
theorem we assume that the zeros of F(z,w) and F, (z,w) are asymptotically
coprime. These results generalize the result from [2].

Recall that a function f(z) is said to be almost periodic in the real azris R if
f(z) belongs to the closure of the set of finite exponential sums

D ane™*, an €C, M €ER, (2)

with respect to the topology of uniform convergence on R.

We write ' cC Sif ' ={z€ C:d <Imz <V¥V}, a<d <V <
b. A function f(z) is said to be analytic almost periodic in a strip S if f(z)
belongs to the closure of the set of sums (2) with respect to the topology of
uniform convergence on every substrip S’ CC S. The equivalent definitions are
the following: the family {f(z + h)}, g is a relative compact set with respect to
the topology of uniform convergence on R (for almost periodic functions on the
axis) or with respect to the topology of uniform convergence in every substrip
S" cC S (for analytic almost periodic functions).

By AP(S) we denote the space of all analytic almost periodic functions in S
equipped with the topology of uniform convergence in every substrip S’ CcC S;
the zero set of a function f € AP(S) is denoted by Z(f).

A function F(z,w) is called almost periodic in z € S, uniformly inw € Q C C,
where € is bounded and closed set, if the family {F(z+ h,w)} is normal in S’ x
S" cC S (for example, see [4]).

By AP(S, Q) we denote the space of all analytic almost periodic functions on
S x Q equipped with the topology of uniform convergence on every subset S’ x Q,
Ss'ccs.

The function F(z,w) is called limiting for F(z,w) z € S, w € Q if there exists
a sequence {hy}, b, € R such that F(z+hy,,w) converges to F(z,w) in AP(S,Q).

By B(0,r) we denote an open disk in C of radius r, centered at 0. By B(0,r)
we denote a closed disk in C of radius r, centered at 0.

2. Lemma

We will need the following simple lemma on implicit function.

Lemma. Let f(w) = 0 at a point w € Q. Let W be a point of the set Q.

Suppose that sup |f"(€)| < B. If € > 0 satisfies:
§€fw,d]
1) |f'(w)| = 4Be,

2) |f(w)| < 3Be”.
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Then either |lw —w| < € or |lw —w| > 3e.

Proof of Lemma. Wehave

0= f(w) = (w—w)f"(w) + /[f'(ﬁ) — f(w)]dé + f ().

w

Therefore,
w
o — 3[4Be < |w — 1| max |/f”(§)d£| +3Be>. (3)
£€w,w)]
3

Let us consider the polynomial
BX? —4BeX + 3Be”.

Let X; = €,X2 = 3¢ be the roots of this equation. From (3) we deduce that this
polynomial is nonnegative as X = |w — w|. Hence, |w — | takes values off the
segment [e, 3¢]. This proves the lemma.

3. Theorem 1

Theorem 1. Let w(z) be an analytic and bounded (|w(z)| < €) function in S.
Suppose w(s) satisfies the equation F(z,w(z)) = 0. Let F(z,w) be an analytic
function in P = {(z,w) : |w| < ¢,z € S}, ¢ > ¢ with the following properties:

1) F(z,w) is a.p. in z uniformly in w for all win |w| < ¢;

2) Fy(z,w(z)) € AP(S);

3) Fy(zw(z)) £0.

Then w(z) € AP(S).
Proof of Theorem 1. Wesetr= 2. Since F'(z,w) is a. p. in

z uniformly in w for all w in |w| < ¢, F(z,w) is bounded in P (for example, see
[4, p. 52]).

It follows from properties of an analytic function that all derivatives are
uniformly bounded in a smaller domain, in particular in P, = {(z,w) : |w| <
¢+ -1,z € S1}. Tt is easy to see that F, (z,w) is uniformly continuous in w uni-

formly for all z in a smaller domain. We will show that for an arbitrary sequence
{hn} C R there exists a subsequence {h,s} such that w(z + h,) is a Cauchy se-
quence in the space AP(S). It is sufficient to check that these functions converge
uniformly on each substrip So CC S§1 CC S.
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Without loss of generality, we may assume that the sequence F(z + hy,w)
converges to the function F(z,w) uniformly in z and w in Py and F.,(z+hy,, w(z+
hy)) converges to ®(z) in the space AP(S).

Since the function ®(z) belongs to AP(S), the number of its zeros inside a
rectangle {z € S; : |Rez — t| < 1} is bounded by a number K independent
of t € R (see [5]). We denote by Z(®) the zero set of ®(z) in S. Let U, be
the r-neighborhood of the set Z(®) (] S1. We claim that for sufficiently small r
there exist closed rectangles II; = {z : ¢, < Rez < ¢}, d; < Imz < d}} such that
So € UIL; € S and 911, disjoint from U, for all I € N (see, for example, [2]).

l

It follows from the properties of analytic almost periodic functions (see [5])
that |®(z)] > m for zin M = {2z : z € S1\ U, }, where m is a strictly positive
constant. Hence for n > N and z € S1 \ Uy, we have |F,,(z+hp, w(z+hy))| > m.
In other words, |F, (z,w(2))] >m in z € {M + hy;n > N}.

Suppose zg € [JOT; and |®(zp)| > m. Then we get |F), (20+ hn, w(z0+hy))| >

l

m for large enough n. Since w(z) is bounded, we can assume without loss of the
generality that the sequence {w(zyp + h,)} converges.

Let B = sup|F,,(z,w)| for (z,w) € P;. We show that for arbitrary ¢ < %

there exists N1 such that for every n,k > Ni:
|lw(z + hy) —w(z + hg)| <e for z€Sp.
For n, k large enough we have:

|w(zo + hn) —w(zo + hg)| < &, (4)

|F(z 4 hp,w) — F(z + hy,w)| < 3B (5)
Since F(z + hg,w(z + hg)) = 0, we see that |F(z + hy,, w(z + hg))| < 3Be?. Using
Lemma 2, we have two possibilities at every point of LlJ oll;:
|lw(z + hyp) —w(z + hg)| <€ (6)
or
|lw(z + hy) —w(z + hg)| > 3e. (7)
Inequality (6) holds for z = zp. Since the set LlJaHl is connected and the func-

tion w(z) is continuous, we see that (6) holds on this set. Using the maximum
principle, we obtain that (6) is true for all z € [J;II; D Sp. Since the inequality
is true for large enough n, k, the proof is complete.
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Corollary. Let w(z) be an analytic and bounded (Jw(z)| < ¢) function in S.
Let F(z,w) be an analytic function in P = {(z,w) : |w| < ¢,z € S}, ¢ > ¢ with
the following properties:

1) F(z,w) is a.p. in z uniformly in w for all w in |w| < ¢;
2) F(z,w(z)) € AP(S);
3) Fy(z,w(z)) € AP(S);

4) Fy(z,w(z)) #0.
Then w(z) € AP(S).
Proof of Corollary. Let F(z,w(z)) = f(z). Denote Fi(z,w) =
F(z,w) — f(z), then Fy! (z,w) = F, (z,w). We see that Fy(z,w) satisfies condi-

tions of Theorem 1. Therefore, w(z) is almost periodic in S. This completes the
proof.

R em ark Note that the conditions of the Theorem 1 are necessary in
certain sense for w(z) to be almost periodic in S. In fact, if F(z,w) is almost
periodic in z uniformly in w for all w and w(z) is also almost periodic in S, then
F(z,w(z)) is almost periodic in S. Therefore, if w(z) € AP(S) is a solution of
the equation F'(z,w) = 0, then F(z,w(z)) = 0 and Fgf) (z,w(z)) € AP(S) for all
n. Let k be a maximum of such n that F,E;LL) (z,w(z)) = 0 for all n < k. Then
conditions of the theorem hold for FSZ) (z,w). The case Fﬁ) (z,w(z)) =0foralln

is impossible if F'(z,w) # 0. Indeed, since Fgf)(zo, W) |w(z) = 0, using uniqueness
theorem we obtain F'(zg,w) = 0. Consequently, F(z,w) =0 in P;.

4. Theorem 2

Theorem 2. Let w(z) be an analytic and bounded (|w(z)| < €) function in S.
Suppose w(s) satisfies the equation F(z,w(z)) = 0. Let F(z,w) be an analytic
function in P = {(z,w) : |w| < ¢,z € S}, ¢ > ¢ with the following properties:

1) F(z,w) is a.p. in z uniformly in w for all w € B(0,c);

2) the zero sets of F(z,w) and F,(2,w) are coprime. And the same is true
for all limiting functions F(z, w).*

Then w(z) € AP(S).

* This condition means that the map (F(z,w), Fiy(z,w)) : S x {w : |w| < ¢} = C? is regular
in the sense of [6].
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Proof of Theorem 2. Asabove,wesetT:%. We show that for

an arbitrary sequence {h,} C R there exists a subsequence {h, } such that the
functions w(z + hy) form a Cauchy sequence in the space AP(S). It is sufficient
to check that the sequence converges uniformly on each substrip Sy CC S; CC
Sy CC S. We may assume that the sequence F(z + hy,w) converges to F(z,w)
in AP(S,B(0,c)). Hence, the sequence F,(z + hn,w) converges to F,,(z,w) in
AP(S,B(0,c)).

It is easy to see that F(z,w) and F,(z,w), F(z,w) and F;U(z, w) are uniformly

3
continuous in Py = {(z,w) : z € Sy, |w| € B(0,¢ + ZT)} First note that at every
point z = zy € S the equation F(z,w) = 0 has a finite number of the roots in
3 — —
w € B(0,¢+ ZT) Otherwise we would have F(z,w) = F.,(z0,w) = 0. This

contradicts condition (2) of the theorem.
We call a point (zg,wg) to be "exceptional" if the following conditions hold:

1) F(z0,wo) = 0;

2) F,(z0,wp) = 0.
Let us check that the projections of the "exceptional" points from the set Py =
{(z,w) : z € S,|w| € B(0,¢+ %7‘)} onto the plane w = 0 have no accumulation

points in the interior of the strip S.

Suppose 2y is an accumulation point. Let {wi}le be the roots of the equation
F(29,w) = 0. In small enough neighborhoods of these points Uy, »; = {(2,w) €
P : |z — 2| < 0w, |w —wi| < i} we have the following representations, which is
given by Weierstrass Preparation Theorem:

F(z,w) = ((w —wi)' + cf(2) (w — wi) 71 + -+ + ¢f(2)) @i (2, w) (8)
cj(z0) =0 j=1...1; @i(z,w) #0 in Uy,

F;U(z,w) = (I(w —w;) ! + (- 1)ct (2)(w — wi)l*Q_ ot (2)Pi(z,w)
+((w —wi) 4 & (2)(w —w;) 4 -+ (2) Rity (2, W) -
(9)

Since F(z,w) = 0, we see that the second term in (9) is equal to zero. It is readily
seen that "exceptional" points in the neighborhood U, ,,; are the points such that
the following conditions are satisfied:

(w—w) 4+ (2)(w —w) L+ --- 4+ ¢i(2))) = 0. (10)

(Uw —wi)' ™+ (= 1€l (2) (w —wi) 2 4+ ¢y (2)) = 0. (11)
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This means that the projections of the "exceptional" points onto the plane {w =
0} can be only at the points where the discriminant of the polynomial (10) is
equal to zero. The number of these points inside UZ ,,, = {2 : (z,w) € Uyyu;}
is finite, otherwise there would be an accumulation point. Hence discriminant
. . . f— —I
is identically equal to zero and the zero sets of F'(z,w) and F,(z,w) are not
coprime. That is impossible.
= . —/n = 3 .

Suppose F(zg,w') # 0 at a point (zq,w"), w' € B(0,¢ + ZT) Then there exists
a neighborhood U, . = {(z,w) € D : |z — 20| < 0,5, |[w — w'| < sy} such
that F'(z,w) # 0 in this neighborhood. In the same way we can consider the case

F (70, w!) # 0 at a point (zp, w’). We can choose a finite covering {U, i} from

20w
the covering B(0,¢ + ZT) by the neighborhoods Uy ,, = {w : (z,w) € Uyw,}
and Uy, = {w: (2,w) € Uy }. If 6 =mind,:, then there exists only a finite
number of "exceptional" points in a J—neighborhood of the point zy. This leads
us to a contradiction with the assumption about zj.

Suppose S; CC S3. We show that the number of "exceptional" points of
F(z,w) is bounded inside the rectangle {z € S1,w € B(0,¢ +3 L T) : |Rez—t| < 1}
by a constant P independent of .

Indeed, if it were not true, we would have a sequence {z,} such that the
number of "exceptional" points of F(z,w) in the set {z € S;,w € B(0,¢ + %7’) :
|zn, — t| < 1} is at least n.

Consider the sequence F(z+zp,w). Without loss of generality we can assume
that F(z + z,,w) converges to a function ?(z,w) in AP(S,B(0,c)). Therefore
F.,(z + Tn,w) converges to ?;,(z, w) in AP(S, B(0,c)).

It is easy to see that there exists a sequence {hy} such that ?(z, w) is limiting
for F(z,w). Consequently, zero sets of ?(z,w) and Ew(z,w) are coprime. For
the same reason, function ?(z,w), as well as F(z,w), has a finite number of the
"exceptional" points in the set C' = {(z,w) : z € S1, |Rez| < 1,w € B(0,¢ + %T)}

Let us show that this contradicts the choice of the sequence {zx}. We con-
sider points of the compact C of the followmg three types according to whether
F(zo,wo) # 0, 7 w(z0,wo) # 0, or both F(zy,wg) =0, 7 w(z0,wo) = 0.

Suppose F(zo,wo) # 0 or F w(#0,wo) # 0. It is not hard to prove that for
n large enough there exists the neighborhood U,y w, C {(z,w) : z € S2,w €
B(0,¢ + ZT)} such that F(z + z,,w) has no "exceptional" points in this neigh-
borhood.
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= =}
Let F(zp,wp) = 0 and F,(z0,wg) = 0. Then there exists a neighborhood
3
Usowo C {(z,w) : z € So,w € B(0,é+ ZT)} such that we have

Flzw) = (w=w) + e =wo) ™+ +a(2) 8 w)
= P(z,w)®(z,w), ®(z,w) #0 in Uy w,- (12)

"Exceptional" points are roots of the discriminant of the (12). We recall the
way we construct the coefficients of the polynomial (12). We can find r§ such
that ?(zo,w) # 0 for {w : 0 < |w —wp| < r{’}. Since ?(z,w) is continuous,
there exists a circle B(zg,r{) such that f(z,w) # 0 in the set {(z,w) : z €
B(zy,7§),|lw — wo| = r§’}. Suppose 2’ € B(zg,7§). Then the number of zeros of
?(z’,w) in the set 2’ € B(wp,r{’) is equal to

=
!
1 RCRO

271 T (s 1
BB(wo,'rg)”) F(z ’w) ( 3)

where 1 is independent of 2z € B(zo,7§).

Since F(z + zg, w) and F;u(z + zp, w) converge to F(z,w) and Flw(z, w) respec-
tively and F(2/,w) # 0 on {(2/,w) : w € dB(wp,r¥)}, we see that for k large
enough:

F Z + zg,

)dw:l,
F(z' + ok, w)

aB (wo,ry’)
where | is independent of 2z € B(zo,7§).
In other words, for each 2’ € B(zg,7§) for k large enough the functions F(z'

=
zk,w) and F,(z',w) have the same number of zeros in the set B(wq,7y).
We fix a point 2’ € B(zo,7§). Let

v=1...1,
v

1...1,

wy = wy(2'),
W’ = w (),

— ==
be roots of F(z' + z,w) and F,(2',w) respectively in B(wg,ry). We consider
the polynomials:

l
Py(zw) = [[(w = wh(2) = ((w = wo) + ¢} () (w — wo) ™" +--- + (")),
v=1

(14)
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l
P(z,w) = [[(w—w" (")) = (w —wo)" + c1(2) (w — wo)" " + -+ + cu(2)).
v=1

(15)

It easy to prove that the coefficients of these polynomials are analytic in the set
B(zo,7§). Using the argument principle for analytic function S(w), we obtain:

y (@ + zE, w)
> Buk() / B) = (16)

B(wo,ry’)

Zﬂ(w"(z’))=i. / ﬂ(w)%m an)

O0B(wo,ry)

Since F(z,w) and F(z + x,,w) are not equal to zero when w € 9B(wy,r¥),
z € B(zo,r§), we see that the sums in the left part of the equalities (16) and (17)
are analytic in B(zp,7§).

Substituting w” for B(w) v =1...1 in (16)and (17), we obtain that the sums
of the v—degrees of the roots of (14) and (15) are analytic in B(zp,r§). The

coefficients of (14) and (15) are the polynomials of these sums. Since F:U(z’ ,w) #
0 in the set w € B (wo,ry), from (16) and (17) we get that the sums of the
v—degrees of the roots of (14) converge to v—degrees of the roots of (15) uniformly
on B(z,r§). Therefore, c'(z) converges to ¢;(z) uniformly on B(zp,r§). It can
be easily be checked that functions

?(z, w)

F(z + zp,w)
P(z,w)

D(z,w) = Pz w)

and ®,(z,w) =
are analytic in the polydisc Uy, = {(2,w) : |2 — 20| < 7§, |w —wo| < wf’'} and
are not equal to zero in this polydisc. From convergence of c}'(z) to ¢;(z) it follows
that the sequence of discriminants D, (z) in (14) converges to the discriminant
D(z) in (15) uniformly on B(zp,r§). This implies that for large enough n Dy, (z)
has the same number of roots as D(z). Hence, the number of "exceptional”
points of F(z + Zg, w) in U,y u, is uniformly bounded. Choosing a finite covering
from the covering of the compact C by U, ,,, we obtain that the number of the
"exceptional" points of F(z + zx,w) in C is bounded. It obviously contradicts
the assumption.

We show that there exists m = m(r) such that for every z in M = {z €

— 1
Si,w € B(0,é + 57),p@arojectz'on(z,w),projectz'on”e:cceptz'onal”poz’nts) > r}
the quality F(z,w) = 0 implies the inequality |F,(z,w)| > m .
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Assume for contradiction that there exists a sequence (z;, w;) € M such that
the following conditions hold

F(z;,w;) =0,

-/

1
[Fy (i wi) | < 55

We can assume without loss of generality that y; — § and w; — @, F(z + z;, w)
and E;u(z + x4, w) converge to F(z,w) and F! (z,w) respectively. Since F(z,w)
and F',(z,w) are uniformly continuous in P>, we have

F(iy,®) = lim F(iy; + z;,w;) = 0,
N S
Fry iy, w) = lim Fy, (iyi + i, wi) = 0.

As above, we obtain that the functions F(z + zj,w) for large enough k have
"exceptional" points in the g—neighborhood of the point (iy,w). Since yx — ¢

. . r . .
and wy, — W, we see that points (iyg, wy) are in the g—nelghborhood of the point

(1yg, wy). This contradicts the definition of M.
Since the number of the "exceptional" points of F(z,w) inside the rectangle
{z € S1 : |Rez — t| < 1} is bounded by a number K independent of ¢ € R, we
claim that for sufficiently small r there exist closed rectangles I} = {z : ¢, <
Rez < ¢}, di < Imz < d;} such that So C JII; C S and 9II; are disjoint from
l

r—neighborhoods of the "exceptional" points for all [ € N (for details see [2]).
Furthermore, since F(z,w(z)) = 0 and |JOII; C M, we have an inequality
l

|F,,(z,w(z))| > m at every point of |J OI;.
l

From conditions of the theorem, we see that the function w(z) is bounded.
Therefore, without loss of generality it can be assumed that sequence w(z + hy,)
converges uniformly on every compact set to an analytic function w(z). Since
F(z + hy,,w) converges to F(z,w) in AP(S,Q) and since the functions F(z,w)
and F(z,w) are uniformly continuous, we see that F(z,w(z)) = 0.

We choose zg € Sy such that \F;U(zo,w(zo)ﬂ > m. Then |F} (zo + hp,w(z0 +
hp))| > m for n large enough .

Let us note that |F,, (z 4+ hn,w(z + hy))| > m at every point of |JOII; —
l
hn. To be definite, assume zy € I, — hn. Using the maximum principle for

F)(z + hp,w(z + hy)), we see that the connected component of the set {z :
|Fy,(z + hn,w(z + hy))| > m}, containing zp, intersects OI;, — hy,. Denote this

component by E,. It is clear that |J 0Il; — h,, C E,.
l
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Let B = sup |F}},,(z,w)| for (z,w) € P,. Arguing as at the end of the Theo-
rem 1, we get that for n, k large enough inequality

|lw(z + hy) —w(z + hy)| < &, (18)

holds for all z € E,. Using the maximum principle, we obtain that (18) is true
for all z € Sy. Since the inequality is true for large enough n,m. The proof is
complete.

The author is grateful to S.Yu. Favorov for his guidance and constant atten-
tion to this work.
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V.V. Brytik

HO‘ITI/I nepuognvdeCKue pelieHumuA d)YHKI_I\I/IOHa.T[bHI)IX
ypaBHEHU

B.B. Bputuk

JOKa3aHbI Be TEOPEMBI O IIOYTU MEPUOIUICCKUX HENPEPLIBHBIX Pelle-
Husix w(z) ypasuenus F(z,w) = 0, one F(z,w) — aHannTudeckass QyHKIus
B P ={(2,w) : 2 € S, |w| <c¢} unourn nepuonuyeckasi o z € S.

Maiixke nepioauusi po3B’sa3ku (PYHKI[IOHAJIBHUX PIBHIHD

B.B. Bpurik

JoBeneHo nBi Teopemu npo Maike nepioguyHi HenepepBHi pO3B’sSI3KU
w(z) dysruionanbuux piBaaub F(z,w) = 0, ne F(z,w) — romomopdna
dyskuis y P = {(z,w) : z € S,|w| < ¢} 1 Takok Maiixke nepioguyHa 110
z€S.
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