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We construct an analytic function f of Smirnov’s class in the unit disk
such that Ref vanishes almost everywhere on the unit circle and

liminf ¢ meas{C : |¢ = 1,(Q)] > £} = 0.

This answers negatively to the question posed by A. Aleksandrov. We also
find new sufficient conditions for representations of functions of Smirnov’s
class by the Schwarz and Cauchy integrals. These conditions extend previ-
ous results by Aleksandrov. -

§ 1. Analytic functions represented by Schwarz’ integrals

This note is motivated by the following question: when is an analytic function
f in the unit disc D represented by the Schwarz integral

f2) = [ 2 aue) (L1)

TC—2

of a real measure p on the unit circle T? Two classical necessary conditions are:
(i) (Smirnov). f € Ny, that is,

(+z
(—=z
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where m is the normalized Lebesgue measure on T, m(T) = 1. (We use the same
notation f for an analytic function in the unit disc and for its non-tangential
boundary values on the unit circle.)

In fact, Smirnov proved a stronger result: f € ﬂp < H”.

(ii) (Kolmogorov). f € L1*°(T), that is, ms(t) = O(t '), t = oo, where m(t) =
m{¢ € T: |f(¢)| > t}. More precisely, if f is represented in the form (1.1), then

C
mf(t)gy, 0<t< o0,
where C is a numerical constant.

Another necessary condition is
(iii) (Hruschev and Vinogradov [12]) if f is represented in the form (1.1), then
there exists a limit

lim ¢ (t) = ||#s1ng|| .

t—00 ™

A weaker result that lim; o, tmy(t) = 0 if the measure 4 in the representation
(1.1) is absolutely continuous, is due to Titchmarsh [11].

Besides the above conditions, there are the trivial restrictions:

" Ref (: dg;¢) cLX(T), and  £(0) (: /T du> ER.

In [1] and [2] Aleksandrov proved

Theorem A1l. The set of conditions (i), (ii), and (iv) is sufficient for represen-
tation (1.1), with

el < [IRefllr + Cllf 1,005

where |[.[[v = |[.[|lz1(ry, [|fl[1,00 = Supssotmy(t), and C is a positive numerical
constant.

That is, an analytic function f is represented by the Schwarz integral (1.1)
iff conditions (i), (ii) and (iv) hold. Furthermore, Aleksandrov suggested that in
the sufficiency part condition (ii) can be weakened and asked whether conditions
(1),

htlglnftmf(t) < 00,

oo

and (iv) already guarantee that f is represented by the Schwarz integral (1.1).
Another form of this question is (cf. [3]): whether there exists a non-constant
analytic function f of Smirnov’s class Ny such that Ref =0 a.e. on T and

htrglnftmf(t) =0. (1.4)

oo
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If such a function exists, then in view of the necessary conditions cited above,
it cannot be represented by the Schwarz integral (1.1). Here, we answer this
question.

Theorem 1. There exists a non-constant analytic function f € N, satisfying
(1.4) and such that Ref =0 a.e. on T.

On the other hand, condition (ii) can be really weakened:

Theorem 2. Let f be an analytic function in D satisfying conditions (i) and
(i), and let
o
t
lim inf R me() dt < 0. (1.5)

R—o00 R

Then f is represented by the Schwarz integral (1.1) of a real measure p, and
© me(t
Il < WIRels + Ctiine [~ 75 at,
R—o0 R t
where C' is a positive numerical constant.

It is worth to note that after integration by parts condition (1.5) can be written
as
lim inf RN (i> < 400,
R—o0 R
where

N(f) = / log™ |f|dm

is a “norm” in the Smirnov class N;.

§ 2. Proof of Theorem 1

We construct f as a universal covering of C\ E, where F is a closed subset
of iRy, by the unit disc D. We shall use some classical facts about universal
coverings, harmonic measures and Green functions [9].

Let E = U,,>[#rn, 2iry,], where ri = 1, rpq1/r — 00, and let

w(t) =w(0, EN{lz| 21}, C\ E)

be the harmonic measure of EN{z: |z| > ¢} with respect to C\ E evaluated at
the origin. We can choose the sequence {r,} increasing so fast that

liminftw(t) = 0. (2.1)

t—o0
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Indeed, let hy(z) be a bounded harmonic function in C\ ([, 2i] |J[iry,i00) ), van-
ishing on [z, 27], and having its boundary values equal identically to 1 on [iry,, 100).
Evidently, lim;,_, s h,(0) = 0. Hence, on the n + 1-st step we can choose a value
Tny1 sufficiently large that hy,.1(0) < r;2. Then by the maximum principle
liminftw(t) < liminf2r,w(2ry,)
t—00 n—00
= 2liminfr,w(rp4+1) < 2liminfr,h,+1(0) =0,
n—oQ n—oQ

proving (2.1).

Now, let f : D — C\ E be the universal covering map normalized by f(0) = 0.
Since FE has a positive capacity, f is of bounded type in D, and therefore, has
non-tangential boundary values a.e. on T. By the invariance of the harmonic
measure,

C+z
Lo nOre ((52) amie) = [ owutsrmern), @2
where @ is an arbitrary continuous function on E (as the boundary of C\ E). In
particular,

/T (o f)dm = /E o(n) w(0,dn,C \ E). (2.2a)

After a monotonic limit transitions, relations (2.2) and (2.2a) also hold for semi-
continuous functions, and therefore

my(t) = w(t), 0<t<oo. (2.3)
Now, the function f has pure imaginary boundary values a.e. on T, and

lim inf tmp(¢) =) liminftw(t) %) 0.

t—00 t—00
It remains to observe that f is of Smirnov’s class N;. Indeed, representing a
subharmonic function log|w| in C\ E as a sum of the Green function and the

Poisson integral, we have
log u] = G (0,0) + [ logln wlw,dn. €\ B) + oaKp(w),  (24)
E

where Go\g(w,0) is Green’s function for C \ E with pole at w = 0, Kg(w) is a
positive harmonic function in C\ E vanishing on E (so-called Martin function),
and o € R.

First, we shall show that @ < 0 (in fact, a minor modification of the following
argument shows that o = 0, though it is not needed for our purposes). Indeed, if
a > 0, then as follows from (2.4), the function Kg has a logarithmic growth at
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infinity. Setting Kg(z) = 0 for z € E we obtain a subharmonic function in C of
logarithmic growth, so that the set E must be thin at infinity [4] and according
to the Wiener criterion

where E, = EN{z: 2" < |z| < 2"} and ¢(.) is the logarithmic capacity (cf.
[5, Chapter 7] or [10, Chapter 5]). Since E contains intervals [iry,, 2ir,] and since
the logarithmic capacity of the interval equals one quarter of its length, we see
that the series must diverge and therefore a < 0.

Omitting the non-positive terms on the RHS of (2.4), we get

log [w] < / log [n] w(w, dn, C \ E).
E

Setting here w = f(z), n = f({), and making use of (2.2), we obtain

C+=z
(—=z

which completes the proof. ]

g ) < [ toglf (@)1 Re (52 ) dm(@), €.

§ 3. Proof of Theorem 2

We may assume that Ref = 0 a.e. on T. Otherwise, we decompose

(+=z
TC—2

f(z) = fi(z) + (Ref) (€)dm(C) = f1 + f2,

where Ref; = 0 a.e. on T, and limy;_, tmy,(t) = 0.
Following [6, 7, 8] we introduce a “logarithmic determinant”

up(w) = /Tr log |1 — wf ()] dm(¢) (3.1)

The function u; is subharmonic in C, harmonic in the right and left half-planes
I+, and u(0) = 0. Furthermore,

us(w) < Ofloguwl),  w oo,

so that, uy is represented by the Poisson integrals in II1. The function uy has a
lower bound
us(it) > log |1 —itf(0)| >0, teR

By the maximum principle applied to us in I, the function u; is non-negative
everywhere in C.
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Our goal is to estimate from above the integral

Iy:= 1/ uy (i) dt.
R

s 12

But first, we shall show that this integral controls the norm || f||1,00 (cf. the proof
of Theorem 2 in [7]). Indeed, estimating the Poisson integrals in IT1 we have

oy T|cos0| / ug(it) t2 r
_ __dt<—"_ T, 0<r<oo.
u(re™) ™ R t2 |it—rei27" = |cos b f rsee

In particular, us(re'?) < rv/2Z; within the angles {|f] < 7/4} and {|0] > 37/4}.
Applying the maximum principle to the harmonic function u(z)—2Z¢|Imz| within
the complementary angles {n/4 < |0 < 3w /4}, we get

M(r,uf) := aerfl_a;xﬁ]u]v(rew) < 2Tyr, 0<r<oo.

Let p1y be the Riesz measure of the function uy, and let py(r) = p{|lw| < r} be
its counting function. Then by the Jensen formula

pr(r) < M(er,uy) < 2eZyr, 0<r<oo.

It remains to observe that
(3.1)
my(r) =" psp(l/7), (3.2)
so that
1 f111,00 < 2€Z . (3.3)

Now, we estimate the integral 7y using an integral formula which has been
used previously in a similar situation (cf. the proof of Theorem 3 in [6]). For
|6] < /2 we have

uy(rei?) = rcosﬂ/ uy(it)dt
R

s |reid —4t]2 "

Integrating this against cos 8, we get

/2 . T /2 cos? 0dO
ur(re?)cos0do = —/ wr(it dt/ —
/7r/2 (re”) T JR s ) /2 |rei? —it|?

T . . 11
= E/Ruf(zt)mln <t_2’7"_2> dt,

/"/2 cos® 6df T 1 1
— = —min| 5,5 | .
e L 27 r?

since
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Using a similar relation in the left half-plane, we have

1 1 1 /" )
/ us(it) min (—2, —2> dt = —/ us(re’)| cos 0] db
R tv'r T J

1 (" .
< —/ Uf(rew)dﬁ

r ()

= 2—71-/‘7. —Iu,f(S) ds.
0

T S

At last, making the monotonic limit transition as r — 0, and setting R = 1/r, we
get

r (3.2) 00
T, < drliminf = / 1) 40 it e [ D g (3
0

r—=0 7r S R—o00 R T

Combining inequalities (3.3) and (3.4) with Theorem A1, we complete the proof.
u

§4. Concluding remarks

4.1. The technique of logarithmic determinants used in the proof of Theorem 2
also allows us to prove another theorem of Aleksandrov [1, 2|:

Theorem A2. Let f be an analytic function in the unit disc satisfying con-
dition (i), let f € (<1 H?, and let

lim inf(1 — p)|| f||a» < 00.
pTl

Then f is represented by the Schwarz integral (1.1) of a real measure p, and

el < [IRef|l + Clir}x)tlTilnf(l =P flae - (4.1)

(In fact, Aleksandrov proved this estimate with C'= 7 on the RHS.)
Our proof follows the same lines as that of Theorem 2, only in the last step
we use other integral formulas to estimate the integral Zy:

. dt .
/Rlog|1—zt)\||ﬂTp:\/\|p1—7(:ot7, AeiR, 0<p<l1,

and

up(it) .~ m  mp
[ a-Zeot 2 [l ), 0<p<t.
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On the other hand, Theorem A2 follows directly from our Theorem 2 since
the p-th power of the LP norm can be written as the integral

o0 o0 o
p / ) gy / -1 ( / my(s) ds> dt.
0 t 0 t s

This yields that if

t—o0 S

o
limt/ mf(s)ds:oo,
t

then limyy (1 — p)I|f[lp = oc.
We also note that it is not difficult to construct a function h on [—m, 7] such

that -
lim inf ¢ / ma(%) gs —
t

t—00 S

while h does not belong to any of the LP spaces for p > 0. This shows that the
assumptions of Theorem 2 are really weaker than those of Theorem A2.

4.2. The counter-example provided by Theorem 1 is related to the logarithmic
determinants by the following formula (in the notation of §2):

/T log [1 - wf(¢)|dm(¢) *2” Gy (1, 00)
where E* = {\: 1/\ € E}.

4.3. Theorems 1 and 2 can be easily reformulated for analytic functions
represented by Cauchy-type integrals

o= [

of complex-valued measures p of finite variations. In this case, condition (iv)
must be replaced by

(iv’) Tf € LY(T), where Tf({) = limy4¢ (f(r() — f(T_IC)).
We leave the details to the reader (cf. [1, 2]).

Acknowledgements. I thank A. Aleksandrov, I. Ostrovskii and P. Yuditskii
for their numerous useful remarks and suggestions.
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Bonpoc Anekcess AnekcanapoBa u jiorapudMudeckue
AeTepMUHAHTbI

M. Comun

ITocTpoena ananurnyeckas: byHkIws f, npuHaanexkamas kiaaccy Cmup-
HOBA B €IMHUYIHOM Kpyre, Takast 4To Ref = 0 mourw Bciogy Ha equMHUYHOM
OKDPY2KHOCTHU U

liminf tmeas{¢ : I¢] = 1,[/(0)] > ¢} = 0.

DTOT NpUMEp aeT OTPHUIATENLHBIM OTBET HAa BOmpooc A. Ajiekcanaposa.
Tak>ke Hali/IEHbI HOBbBIE JIOCTATOYHBIE YCIOBUsI IPEJACTABUMOCTY (DyHKIUH 13
kiacca CmuproBa unrerpanavu [IIsapua u Komm. 9tu ycmoBus ycunusaroT
onuH pesyabrar A. AjekcaHaposa.

IIntanna Ounekcisa AJjiekcanaposa ta jorapudpmiuni
JeTepMiHAHTH

M. Cogin

TlobymoBano anagituuny dyukmio f 3 kaacy CMipHOBA B OIUHUYHOMY
Kpy3i, Taky mo Ref = 0 maiike BCHOM HA OJMHUYIHOMY KOJIi T4,

liminf ¢ meas{C : |¢ = 1, (Q)] > ¢} = 0.

Ieit npuka nae HeraTuBHY Biqnosiab Ha nutands O. AylekcanapoBa. 3Hal-
JIEHO TAKOXK HOBi JOCTaTHI yMOBH 151 300pazkenHs GyHKii kinacy CmipHO-
Ba iarerpasamu IIsapma ta Komi. i ymoBu miacuio0Ts OnuH PE3yJIbTAT
0. Anekcanaposa.
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