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There exist several approaches to constructing g-analogues of prehomo-
geneous vector spaces of commutative parabolic type. In the present paper
we compare three approaches developed by H.P. Jakobsen, T. Tanisaki et
al., and L. Vaksman et al. Within framework of these three approaches the
following problem is solved: a g-analogue of the algebra C[V'] of holomorphic
polynomials on an arbitrary irreducible prehomogeneous vector space V' (of
commutative parabolic type) is constructed, and, moreover, the correspond-
ing (non-commutative) algebra is endowed with a structure of U-module
algebra with U being certain quantum universal enveloping algebra. We
prove that the three g-analogues of C[V'] are isomorphic as U-module alge-
bras.

For the sake of simplicity we consider only the case when V is the space
of 2 x 2 complex matrices. But we present such proof which is transfer-
able to the case of an arbitrary irreducible prehomogeneous vector space of
commutative parabolic type.-

1. Introduction: prehomogeneous vector spaces
of commutative parabolic type

To start with, we remind what a prehomogeneous vector space is. Let G be
an algebraic group over C, G — GL(V) its linear representation. The pair (G, V)
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is called a prehomogeneous vector space if there exists a Zariski open G-orbit
inV.

The theory of prehomogeneous vector spaces was initiated by Sato and Shin-
tani [7, 9]. Some important classes of prehomogeneous vector spaces are well
studied. For example, Sato and Kimura [8] have classified prehomogeneous vec-
tor spaces in the case when G is reductive and the representation G — GL(V)
is irreducible. This class contains a subclass of prehomogeneous vector spaces of
commutative parabolic type studied by Rubenthaler [6]. They are parameterized
by some of Dynkin diagrams with a distinguished vertex. Let us remind a defini-
tion of irreducible prehomogeneous vector spaces of commutative parabolic type.

Let g be a complex simple Lie algebra, b its Cartan subalgebra, {«a;},_i; simple
roots with respect to f. Let us associate to each o, € {ai}izl—’l a Z—gradiﬁg in the
Lie algebra g as follows. Let Hy € b is given by

27 Q; = Oy,

0, otherwise.

;i (Ho) = {
Then the Z-grading in g is defined by
def .

Y/
If g, is nonzero only for 7 € {—1,0,1} then the subspace g_; is said to be a pre-
homogeneous vector space of commutative parabolic type (see [5]).
Remark 1. Let us explain why g_1 is 'prehomogeneous’. Let G be
the adjoint group for the Lie algebra g, K the algebraic subgroup corresponding
to go. Then K acts in g_; and the pair (K,g_1) is a prehomogeneous vector
space.

Since K acts in g—; and go = LieK, one may consider the corresponding
representation of Ugg in the space C[g_1] of polynomials on g_;.

Remark 2. The Killing form of g makes the vector spaces g_; and g1
dual to each other. This allows one to identify the algebras Clg_1] and S(g+1)
(the symmetric algebra over g11). The latter algebra is isomorphic to Ugy; for
g+1 is an abelian Lie subalgebra in g. The action of Ugg in C[g_1] we deal with
corresponds (under the isomorphism C[g_;] ~ Ugy1) to the adjoint action of Ugg
in Ug+1.

There exist several approaches to constructing a g-analogue of the algebra
Clg—1]- In the present paper we concern with those developed in [3, 4, 10]. Within
framework of each approach a (noncommutative) analogue of C[g_1] is endowed
with an action of the quantum universal enveloping algebra U,go. We prove
that g-analogue of C[g_;] constructed in (3, 4, 10] are isomorphic as Uygo-module
algebras.
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We present a proof fit for the case of an arbitrary prehomogeneous vector
space of commutative parabolic type. But for the sake of simplicity we suppose
that g = sly, go = s(gly @ gly) (thus, g1 is the space of 2 x 2 complex matrices).

The paper is organized as follows. In Section 2 we fix a notation and remind
some well known facts from the quantum group theory. In Section 3 the three
approaches to constructing quantum prehomogeneous vector spaces of commuta-
tive parabolic type are described briefly. In Section 4 we formulate and prove our
result.

The author thanks L. Vaksman for stating the problem and discussing results.

2. Notation and auxiliary facts

Let g = sl4(C), i.e., the Lie algebra of 4 x 4 complex matrices with zero trace.
Let b C g be the Cartan subalgebra of diagonal matrices. Denote by A and W the
root system of g with respect to h and the Weyl group of this system, respectively.
Let also a1, a9, ag be the simple roots in A given by

ai(H) = a; — aj+1

with H = diag(a1, a2,as3,as4) € h. There exists an isomorphism of the group W
onto the group Sy such that the simple reflections sq,, Sa,; Sas correspond to
the transpositions (1,2), (2,3), (3,4). Let AL C A be the set of positive roots:

A+ = {al,ag,ag,al + oo, a0 + a3, 1 + g + (1/3}.

Denote by (-]-) the W-invariant scalar product in h* such that (o;|a;) = 2.
The root ag plays the role of the 'distinguished’ root a, (see Introduction).
The associated element Hy € § is given by

Hy=H, +2Hy+ H; (2.1)

with H; = diag(1,—1,0,0), Hy = diag(0,1,—1,0), H3 = diag(0,0,1,—1).

Let A, def {ay,03,—a1,—as} C A, Ay def A \ A¢. Then

goza@(@ga),

aEA,
gr1i= P 9 9= P ta
a€EALNAL —a€ALNA,

with g, being the root subspace in g corresponding to a € A.
Let W, be the subgroup in W generated by sq,, Sa;. Thus, W¢ =~ Sy X Sg is
the Weyl group of the Lie subalgebra [go, go] = sl2 @ slo.
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In what follows the ground field is the field of rational functions C(q'/*) unless
the contrary is stated explicitly.

Let us recall one some definitions and facts of the quantum group theory (we
follow [1]).

The quantum universal enveloping algebra U,g is the algebra with the gene-
rators {E;, F;, Kiﬂ}i:ﬁ satisfying the following relations:

K,K; = K,;K;, KK '=K'K; =1,

KiE; = " E;K;,  KiFj =q “ FjK;,

K;— Kt
E;F; — FjE; = §;;————,
L' it ij q_q_l
1—a;j 1
— ajj —aji—
Sy [F] Bnm o0 i
s=0 q
1—ai; 1
— Qs e
s=0 q
where (a;;) is the Cartan matrix for g:
2, i—j=0
a5 = -1, ‘Z_]‘:l ’
0, otherwise
n| et [nlg! y def def ¢" —q "
| = nlgt = nlg-n—1]g-...-|1 Nlg = ————.
] e P e e T

The algebra U,g is endowed with Hopf algebra structure as follows
AE)=EQ®1+KQE, AF)=FQK '+18F, A(K)=K;®K,
S(E;)=-K 'E;, S(F)=-FK;, S(K;)=K",

e(E;) = ¢e(F;) =0, e(K;) =1,

with A, S, € being the comultiplication, the antipode, and the counit, respectively.

Let us use the short notation z(;)®z o) for the element A(z) € Ug @ Uyg (= €
U,g). For example, coassociativity of the comultiplication A : Uyg = Uyg @ Uyg
looks in this notation as follows

(1) @ T(2)(1) @ T(2)(2) = T(1)(1) ® T(1)(2) ® Z(2)- (2.2)

Sometimes we use the notation z(1) ® z(o) ® 7(3) for the right (and left) hand side
of (2.2). By analogy z(1) ® Z(2) ® T(3) ® T(a) = T(1) ® T(2)(1) ® T(2)(2) ® T(3) etc.
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The adjoint representation of the algebra U,g is defined as follows

adz(y) < Ty -y - S(z(2))

with =,y € Uyg. This adjoint action makes Uyg a Uzg-module algebra. It means
that the product map Uy,g @ Ugg — Ugg is a morphism of Uyg-modules and
the unit 1 € U,g is Uyg-invariant.

We fix the following notation for some subalgebras in U,g:

Uz’ = (E;, K| i=13), US? = (F, K| i=1.3),

U =(Ei| i=13), Uy =(F| i=1,3),
Ug = (K| i=T13), U= (K Ej,Fj| i=T13, j#2).

Let us recall one a definition of the Lusztig automorphisms 7T}, i = 1, 3, of the
algebra Uyg. The action of T; on the subalgebra Uq20 is given by

T;(K;) = K;- K; ™, Ti(E;) = —FK,,
Ti(Ej) = (—adE;) “0 (E;), i+ J.
To define T; completely one sets
Tiok =ko Ty,

where £ is the conjugate linear antiautomorphism of the C(ql/ *)-algebra U,g given
by
KE)=F;, k(F)=E, kK)=K" kg =q¢""

Let w € W and w = s;, 84, . .- S;, be a reduced expression (we write s; instead

of s,,). It is well known that the automorphism T, def T;,T;, ... T;, does not
; P 1442 k

depend on particular choice of a reduced expression of w.
All Uyg-modules we consider possess the property

V=PV Vi€ {eV| Kuv=q"vi=13}
WEZ3

with p = (1, 2, p3). This allows one to introduce endomorphisms H;, 1 = 1,3,
of any Uzg-module V' by Hyv = p;v for v € V), (4 = (p1, 2, 3)). Formally this

can be written as K; = ¢™i.
Let Ko € Ky - K2 K3 (ie., Ko = g0 with Hy given by (2.1)). It is
an important consequence of definitions that Ky belongs to the centre of the

algebra Uggo:

adKo(€) =€, €€ Uygo. (2.3)
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Let us recall one some facts concerning the universal R-matrix for U,g. The
notion of the universal R-matrix is due to V. Drinfeld. In context of the present
paper it have to be understood just as in [1].

The R-matrix satisfies some well known identities. We don’t adduce a full
list of these identities but recall one those important for us:

id® A°P(R) = R'? - R"3, (2.4)

A®(n)-R=R-A(n), n €Uy, (2.5)

with A°P(z) o T(2)®T(1), Rr12 % >, a;®b;®1, R def > ai®1®b; provided
R= Zz a; ® b;.

Remind an explicit formula for the R-matrix (the so-called multiplicative for-
mula). Let wy € W be the maximal length element. Identifying W with Sy

we get
(1 2 3 4
=14 3 2 1)

The length of any reduced expression of wy is equal to 6. To a reduced expression
wy = 84, Siy - - - Sig one attaches the following data:

i) the total order on the set Ay of positive roots:

/31 = Oy, ﬂQ = 84 (aiz)’ s /36 = 8418y - - - 3i5(ai6);

ii) the set of elements Eg,, Eg,,... Eg; € U, Fp,,Fp,,...Fg; € Uy which
are g-analogues of root vectors in g:

= E;, EﬂzzTil(Eiz)a Eﬂeznlﬂz"'n5(Ei6),

1

Fﬂ = F, FﬂzzTil(FiQ)a Fﬁsznlnr“Tis(Fie);

1

iii) the multiplicative formula for the R-matrix:

R= equz((q_1 —q)Eg, ® Fgg) - ... - equ2((q_1 —q)Eg, ® Fg,)
expp((¢™ — ) B, ® Fg,)-q" (26)

with t & — >ij CijHi ® Hj, the matrix (c;;) being the inverse to the Cartan

matrix, and
, e o0 k . 'dif k 1—g
equ2()_Z(k) N ( )q2'_H 12
k=0 *""4 j=1

2j

[N
h
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3. Three approaches to quantization of prehomogeneous vector
spaces of commutative parabolic type

3.1. First approach

In this subsection we describe an approach to constructing g-analogues of
prehomogeneous vector spaces of commutative parabolic type developed by S. Si-
nel’shchikov and L. Vaksman in [10].

Let us consider the generalized Verma module V(0) over Ug given by its
generator v(0) and the relations

Ew(0) =0, Kjw(0)=uv(0), i=1,3, (3.1)

Fw(0) =0, i#2. (3.2)
V(0) splits into direct sum of its finite dimensional subspaces V(0)x, —k € Z,
with

V(0) & (v e V()] Kov=q**v}.

Consider the graded dual U,g-module:

Clol,® @ (Vo))"

—k€EZ 4

Let us equip the tensor product V' (0) @ V(0) with a Uyg-module structure via
the opposite comultiplication

§(v1 ® v2) = (g)(v1) ®E(1)(va), E€Uyg, w1,v2 € V(0). (3.3)
Due to (3.1), (3.2) the maps
v(0) — v(0) ® v(0), v(0) — 1 (3.4)
are extendable up to morphisms of U,g-modules
A_:V(©0) = VO)Q V), e_:V(0) = CgV*).

It can be shown that A_ and ¢ make V(0) into a coassociative coalgebra with
a counit. Thus, the dual maps

m=(A_)":Clg_1]g Q) Clo-1]g = Cla—1ly, 1= (c-)": C(¢""*) = Clg_1],
(3.5)
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make C[g_i], into an associative unital algebra. Moreover, the product
map m is a morphism of U;g-modules and the unit 1 is U,g-invariant, i.e., Clg—1],
is a Ugg-module algebra. In particular, it is a Uygo-module algebra. This Ug,go-
module structure is just the one we mentioned in the Introduction.

Remark 3. Letus comment this construction. As we have mentioned
in Introduction, g_; is the space of 2 x 2 complex matrices. This vector space
contains the so called matrix ball

U={T eg.|TT" <1}

(with * being the hermitian conjugation and 1 the unit matrix). Evidently, U is
an open subset in g 1. It is known that the real simple Lie group SUs 2 acts in
U via biholomorphic automorphisms. Thus, elements of the universal envelop-
ing algebra Usuy o (and hence elements of Usly) act in the space of holomorphic
functions in U via differential operators. These differential operators have a poly-
nomial coefficients and, thus, preserve the subspace of polynomials. Suppose v(0)
is the "delta function", i.e., the functional on the space of polynomials which
sends a polynomial to its value at the origin of U. It is clear how to apply differ-
ential operators to the delta function. Thus, one can consider the Usls-module
generated by v(0). It turns out to have a rather simple structure. Specifically,
it is a generalized Verma module. This observation suggests the idea (see [10])
to construct quantum prehomogeneous vector spaces of commutative parabolic
type and quantum Cartan domains starting from generalized Verma modules over
quantum universal enveloping algebra (they have a lot of nice properties) and then
passing to dual modules. By the way the above arguments allow one to observe
"hidden" Usly-symmetry of the algebra Clg_].

The next two approaches are related to the construction of Remark 2 (see
Introduction).

3.2. Second approach

Now we are going to describe briefly an approach of H.P. Jakobsen [3] to
quantization of C[g_].
It follows from the definition of Ug that

adK>(Fs) = ¢*Es, adK1(Es) = adK3(Es) = g~ ' Es,
adFl(EQ) = ang(EQ) = 0,
(adE1)?(Fs) = (adE3)?*(Es) = 0.

Thus, adU,go (F2) is a finite dimensional U,go-submodule in U,g. Let us denote by
(C[g,l]}l the minimal subalgebra in Uyg which contains the subspace adU,go(E?2).
Evidently, it is a Uygo-module subalgebra in U,g. The algebra (C[g_l]fl can be
treated as a g-analogue of C[g_1] (see Remark 2 above).
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3.3. Third approach

Let us turn to description of an approach of A. Kamita, Y. Morita, and
T. Tanisaki [4]. Note that notation in [4] differs from ours.

Let wy € W be the maximal length element. Evidently, wy = (1,2) - (3,4).
Consider the subspace (:[9_1]2I in Uyg defined by

Clo—1ly = U NT,, (UF)- (3.6)

Obviously the subspace Clg—1]; is a subalgebra in U,g. It is shown in [4] that
(C[g_l]flI is a Uygo-module subalgebra in U,g with respect to the adjoint action.
It is one more g-analog of the algebra C[g_1].

4. Comparison of the approaches

The aim of this paper is to prove

Theorem 4.1. The algebras Clg_1]q, Clg_1]}, and Clg_1] are isomorphic to
each other as Uygo-module algebras.

Note that the algebras (C[g_l]fl and (C[g_l]}zI are subalgebras in the quantum
universal enveloping algebra U;g. Our proof of the above theorem consists of
the following steps:

i) we construct an embedding T' of the algebra C[g_1], into U,g which inter-
twines the Ujgo-action in Clg_;], mentioned in subsection 3.1 and the adjoint
Uyg0-action;

ii) we show that the subalgebras T(Clg_1],), (C[g,l]fl, and (C[g,l]}ll in Ugg
coincide.

4.1. Clg_1]g ~ Clg_1]}

In this subsection we construct an Ugo-equivariant embedding T" of the al-
gebra Clg_1], into Uyg, and then we show that T(Clg_1];) = Clg—1];. The em-
bedding T is constructed via a standard technique due to [2].

Let us use in the sequel the notation ), a; ® b; for the series

Z le,...,kG(Elﬂcé . E’g‘f ® F[I;el ) _.Fge) gt
(kl,...,ks)EZi

which determines the universal R-matrix for U,g. The coefficients ag, ..., , may
be calculated via (2.6). Consider the linear map T : Clg_1], — U,g given by

T(f) € 3 ai(biw(0). /) (4.)
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with f € Clg_1]q, v(0) being the generator of the generalized Verma module
V(0), (-,-) being the pairing V(0) x Clg_1], — C(g'/*) arising from the equality
Clg_1]4 = (V(0))* (see Subsection 3.1).

Proposition 4.2. The map T is well defined, i.e., the right hand side of (4.1)

s a finite sum for any f.

Proof  Denote by Ug®V(0) the vector space [1720Ugs ® V(0)-;
Equip this vector space with a topology by setting the subspaces {Hjoi NUq8 ®
V(0)_;}%_, to be a base of neighborhoods of 0.

It follows directly from Lemma 4.5. that ) a; ® bv(0) is an element of
U,9®V (0). What remains is to remind the definition of Clg_1],. |

Proposition 4.3. T is a homomorphism of algebras.

Proof. Let f,¢ € Clg_1]y- Then due to (3.5), (3.4), (3.3)

sO)ZZai(bw( = X ailb0)m( @ 9)

_Zaz ).f ®¢) = Za (A% (b:)(v(0) ® v(0)), f @ ).
By (2.4)

> ai{ A (bi) (v(0) ® v(0)), f ® ) = Zaz a;((bi ® b;)(v(0) ® v(0)), f ® )

:(Zaz<bv ) (Zaab” ) =T(f) - T(p).
i
Proposition 4.4. T is a morphism of Uygo-modules.

Proof. Consider a Ujg-module structure in the vector space Uzg ® V(0)
given by

En®v) ¥ ey 0 ST (Ew) ®Egp, EnEUs, veV(0).

Evidently, one can extend this Ugg-module structure by continuity up to
a Ugg-module structure in Uy,g®V (0) (see the proof of Proposition 4.2).
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Lemma 4.5. For anyv € V(0) the element ), a; @ bjv (with ), a; @ b; being
the universal R-matriz) belongs to U,g®V (0).

Proof of the lemma. Equip the algebra U, with a Z-grading as
follows

degF; = { (1): f);:r’wise. (4.2)
This grading can be described in another way:
(Ug); =1 €U | adKo(§) =g ¢} (4.3)
Thus, for § € Uy
deg(§) =0 & €U, NUygo- (4.4)

Consider the Z-grading in the vector space V' (0) given by deg(v) = k for v €
V(0)—k. Obviously, V(0) is a graded U, -module, i.e.,

deg(év) = deg(§) + deg(v)

for any homogeneous £ € U, , v € V(0).
Let wyg € W be the maximal length element. We fix a reduced expression for
wy:

wo = (1, 2)(3,4)(2, 3)(1,2)(3,4)(2,3) — 5158382515352. (45)

Obviously wy = w(s2s15382 with w( being the maximal length element in W,.
Describe explicitly the order in Ay attached to the expression (4.5) (see
Section 2):

B = ai, B2 = as, B3 = a1 + ag + as,

Bs = az + as, Bs = a1 + ag, Bs = az.
Thus f3, B1, Bs, Be belong to Ay, Bi, B2 belong to A.. Using (4.3) one shows
that deg(Fj3,) = deg(Fj3,) = 0. By (4.4)

Fﬂl,FgQ € Uq_ N Uqg(). (46)

Let v € V(0)_k. By (2.6)

Zai®bw=

7
k k k k ks 1k
Z b m B B ER KM K K™ @ Fj . Fae Fgov.
k=(k1,.--,ks)€ZE ,m=(m1,ma,m3)€Z3
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Note that V(0)_ is a finite dimensional Uggo-submodule in V'(0) for any &k € Z..
Therefore by (4.6) ngFgfv = 0 for a sufficiently large k5 + kg. What remains is
to use the equalities

deg(Fs,) = ... = deg(Fs,) = 1
|
Lemma 4.6. The linear map
V(0) = U,g®V(0), v Zai ® bv
is a morphism of Uyg-modules.
Proof of the lemm a. LetéEUqg,vEV(O). Then
5(2 a; @ bv)) = 25(3 aiS™ " (§n)) ® {2)biv
= Z e(6)@)40aS ™ €w) ® &)
= Zf(s 1aiS™ (§1)) ® Eapbie(§3)(2) )0
= 26(2 (€)@ Eyybie(E) )o-
Let us make use of the property (2.5). We get
é(Z a; ® biv) = Z& 2@@S ™ (€u)) ® Eyybie(és))v
= Z%& 1S~ (E)) ® bikay)e(€s))v
= Z%& @S Enyy) ® bikey)e€@)@))v
= Z aie(&a)) ® bi)v = Z a; ® bie(§(1))§(2)v
= Z a; ® bév.
z |

Lemma 4.7. An element Zj nj®uj € Uqg(§V(0) is Uggo-1nvariant iff for any
f S Ung

25(1 7S (§2)) ® vj = an ® S(& (4.7)
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Proof of the lemma. Let ) 7 ®v; € Ug®V(0) satisfies (4.7)
for any & € U,go. Rewrite (4.7) for ¢ := S™1(():

Z Sil(C( 1) ®v; = Z nj ® Cvj. (4.8)
J
Using (4.8) one gets
5(2 nj ®vj) = Zﬁ 51iS ™ (€)) ® E2)v;
J
= Z& 55 Ee)niéen S Ew) ® v
= ZE @S E@ )€y @S (Ena)) ® v;

= 25(5(2))7]]' (6 ) ®v; =¢( 277] &® vj.

J

Thus };n; ® vj is Uggo-invariant.
Conversely, suppose that Zj nj ® v; is Uggo-invariant. Let us prove (4.8)
(obviously, it is equivalent to (4.7)).

ZS 2Ny ®vj = Z5_1(E(z))77j8(§(1)(2))§(1)(1)®’vj
J
= 25_1(5(3))771'5(5(2))6(1)®’vj-
J
U,go-invariance of 3, n; ® v; implies
2 _elbe)n @v; = wa 1S (Ew) © L@@
J
Thus
ZS )@V = 2571 S E@w)éw ®é@)@v;
= ZS EammsS™ Eme)én ) ®&e@v;

= 25(5(3))773'8(5(1 ® Eo)vj = Z”J®5“J

J

Matematicheskaya fizika, analiz, geometriya , 2001, v. 8, No. 3 337



D. Shklyarov

Let us complete the proof of Proposition 4.4. By (3.1), (3.2) v(0) is
U,go-invariant. Due to Lemma 4.6. the element Y. a; ® bjv(0) € U,g®V(0) is
Uggo-invariant. By (4.7) we have: for f € Clg_1]q, £ € Uygo

TESf) = Z%(bw(o),ff)Zzai<5(§)bw(0),f)

= D" twaiSEw) bin0), f) = ade(T(5)).

We have constructed the mapping T': Clg_1]q — Uyg which is a morphism of
Uyg0-module algebras. It turns out to be an embedding.

Proposition 4.8. T is injective.

Proof. Let wy € W be the maximal length element. Consider the reduced
expression (4.5) for wy.
It follows from (3.1), (3.2), and (4.6) that

D a;®@bw(0) =Y A; ® Bjv(0),
( J

where ), a; ® b; is the universal R-matrix,
def _ _
YA ® Bj = exp((¢! — q)Epy © Fpg) - exppa((q" — 9) Epy ® Fy)

xexp,2((¢~" — q)Ep, ® Fa,) - exp2((¢™" — q)Eg, ® F,). (4.9)
It is clear that
Y A4;@Bj= > ak,. kES .. ER@FL . F, (4.10)
J (k1. s ka)ELY

where all ay,,... k, are nonzero elements of (C(ql/ ). Thus we get the formula

T(f)= > Gk kB ESFR . Fyiv(0), f). (4.11)
(k1,...,k4)€Zi

To complete the proof of Proposition 4.8 it is sufficient to prove that the elements
k k
{Eﬁels T Eﬁg}(kl,---,kdezi
are linearly independent, and the elements
k k
{Fﬁ; .- Fg;‘v(ﬂ)}(kl yourr ka)EZY

constitute a basis in V(0). For this purpose we need the following theorem
[1, p. 14]:
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Theorem 4.9. i) The monomials {Fj Fy>.. . FA* K" Ky» K§* El E? ..E% }
with (ki,... ,ke) € Z%, (m1,ma,m3) € Z3,(l1, ... ,ls) € Z% constitute a basis in
Uqg:'

i) for i < j one has:

il0f _ k1 ok k
Eg By, —q W% By Bp = Y an,. .k BE5Ep - B,
(k‘l,...,kle)EZi

where ag, .. ks 70 only when ks =0 for s <i or s> j.

It is not hard to prove that this theorem implies linear independence of the vec-
tors {Egé ---Eléi}(kl,...,k4)ezi-

Let us prove that the elements {Fgﬁ1 . F§§U(O)}(k1,...,k4)ezi constitute a basis
in V(0).

Obviously, V(0) is the linear span of {F;;ﬁ1 . Fggv(o)}(kl,...,m)eZi- Indeed,
this follows from statement i) of Theorem 4.9, from the observation that the map
Us9 — V(0), £ — &v(0) is surjective, and from the relations

Eﬁl’l)(O) = 0’ IL = 1a65
K{U(O) = 'U(O)a 1= 13_3’
F,(0) = Fg,v(0) = 0.

What remains is to prove that {Fgﬁ1 . Fg:'u(O)}(k Lo ka)EZA ATE linearly indepen-
dent. We prove this statement using its correctness for ¢ = 1.
Let A be the ring Clg'/*,q1/4], Uy the A-subalgebra in U, generated by

{E}l:ﬁ Evidently, as (C(ql/4)-a1gebras

Uy ~C(¢""*) QU (4.12)
A

It is not hard to prove that {F, }i:m belong to U} . Consider the U -module

V(0)4 % U7v(0) C V(0). Similarly to (4.12)

V(0) ~ C(¢"/*) Q) V(0) 4 (4.13)
A

as C(g'/*)-modules.
There is a natural homomorphism of C-algebras

J:U; U/ =1)-U; ~U,
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where U™ is the subalgebra in the classmal universal enveloping algebra Ug gene-

rated by {J(F;)};_r3. Denote by V(O) a U~ -module given by the generator ’U(O)
and the relations

J(Fv(0) =0, i#2

It is clear that the map v(0) — v(0) can be extended up to a map

—~—

Jo:V(0)a — V(0)

such that for any £ € Uy

J(£)v(0) = Jo(£v(0)), (4.14)

(in particular, Jy is a C-linear map).

It is well known that the vectors {J(Fg,)* "'J(Fﬂs)k4v(0)}(k1,...,k4)eZi con-
stitute a basis in the C-module m Now it is an easy exercise to prove that
the vectors {Fgﬁ1 . ..Fg;v(O)}(kl7___7k4)ezi are linearly independent over A (and

thus over C(¢'/*)).
We have completed the proof of Proposition 4.8. [

Corollary 4.10. Linear span of {E’Cl . Ek“} (k1.
subalgebra in Ugg. It coincides with T((C[g,l] ).

)ezt 15 a Uzgo-module

5

Proof By formula (4.11) the linear span is the image of T. By Propo-
sition 4.3 the image is a subalgebra in Ugzg. By Proposition 4.4 the image is
an adUggo-invariant subspace in U,g. It remains to observe that any adU,go-
invariant subalgebra in U,g is a Ugo-module subalgebra. ]

Remark 3. The fact that linear span of {ElﬂCl Ek4} (ke ka)eZ4 18
a subalgebra in U, easily follows from the statement ii) of the Theorem 4.9.

The main statement of this section is

Proposition 4.11. T(Clg_1]q) = (C[g,l]}].

Proof Let usstart with

Lemma 4.12. For some c € (C(ql/4)

E,B6 = C-EQ.

340 Matematicheskaya fizika, analiz, geometriya , 2001, v. 8, No. 3



On g-analogues of certain prehomogeneous vector spaces...

Proof of the Lemma. The elements Eg, Ey of the UP-module
U, are weight vectors of the weight ay € h*. But the subspace in U, of weight
vectors of that weight is 1-dimensional (this follows from linear independence of
the weights ay, ag, a3 € h* of the generators Ey, Ey, E3). [

Equip the algebra U;‘ with a Z,-grading as follows

1, i=2,
deg i _{ 0, otherwise, ° (4.15)
In other words,
(U); ={E € US| adKo() = ¢¥¢}. (4.16)

Obviously,
deg(Eﬁs) = deg(Eg4) = deg(Eﬁs) = deg(Eﬁe) =1

It follows from (2.3), (4.16) that endomorphisms from adU,go preserve this grad-
ing: for £ € Uygo and 7 € U;'

deg(ad{(n)) = deg(n)

provided adé(n) € U,. Using this observation and Corollary 4.10 we get
aqugo (Egﬁ) - linear span{Egs, Eﬂ4, Eﬁs y EﬁG}' (4.17)
Actually the spaces in the both sides of (4.17) coincide: dimension of adUygo(Epg,)
is equal to 4 just as in the classical case ¢ = 1. Thus, by Lemma 4.12 and by the
definition of the algebra Clg 1]}
C[G—l]z = <Eﬂ3’Eﬂ4’Eﬂ5’Eﬂ6>' (4.18)

What remains is to use Corollary 4.10. |

4.2. (C[g,l]fl = (C[g,l]g

In this subsection we use the notation of the previous one.

Proposition 4.13. Clg_1]; C Clg_1]j.
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P roof. By Corollary 4.10 and Proposition 4.11 the linear span of {Egé Eg‘s‘}

coincides with Clg_1];. Thus, due to the definition (3.6) of Clg_1]; it is sufficient
to prove that

-1
. (Es,) € U/, k =3,6.
Let us prove this, for example, for Eg,. By definition
Eﬂ6 = T1T3T2T1T3 (EQ) = Tw6T2T1T3(E2).

One gets
T, (Ep;) = TV T5(EB).

It remains to make use of the following well known fact.

Lemma 4.14. Ifw € W and w(a;) € Ay for somei = 1,3 then Ty, (E;) € U

[
Now we are ready to prove
Proposition 4.15. Clg 1]i! C Clg 1]}
Proof. Let Y a,. kE5 ... B €Clg]l, ie,
— k k
Tw61 (E akl,_",k6Eﬁé .« E,Bf)
_ -1 ( ok ka) =1 (ks | ok n
= Dok, wly (B B T (Bl - ER) e U (4.19)
By Proposition 4.13
-1 k k +
T, (B .. ER) eu;. (4.20)

Lemma 4.16. T,! (Ep,) € Uz, T, (Ep,) € U,

Proof of the Lemma. Suppose that §; is a compact root (8x = 31 or
B = B2)- Let 8;, 84, --- 8i,, be a reduced expression of wy (of course, in our case
M = 2 and there are only two different reduced expression for wj). One has

ﬂk = 841 Siy "'Sik—l(ak)’ Eﬁk :Tz'1Tz'2 ...T%k_l (Ek)
Since T% =T1;T,...T;,, we get
Tq;al(Eﬁk) =TTt L TYE).

IM T ITM-1 Lk
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So we have to prove that

T T TN (By) € USRS (4.21)

M TiM—1 T g

Consider the antiautomorphism 7 of the algebra U,g given by
T(Ki) = Ki_la T(Ez) = E’l T(E) — Fz

It is not hard to prove that
ToT; = TZ-_1 oT.

Thus the inclusion

T, T; Ty, (By) € US° (4.22)

M—1""

is equivalent to (4.21). One has T;, (Ej) = —F},Kj,. Therefore (4.22) is equivalent
to

Tiw T .- Tik+1 (Fk) Ty Tipg s "'Tik+1 (Kk) € UqSO

M—-1 "

and thus to

T, T; Ty (Fi) € USS. (4.23)

M_1-°"

Applying the antiautomorphism & ( see Section 2) to (4.23) we get the equivalent
inclusion

TingTirg_y - Tippy (Bi) € UZC. (4.24)
But (4.24) is a direct consequence of Lemma 4.14. ]

The following result is well known.

Lemma 4.17. The multiplication in Ugg induces the isomorphism of vector
spaces

US ® US - Uyg.

It follows from (4.20) and Lemmas 4.16, 4,17 that (4.19) holds iff ay, .. x, = 0
for ks # 0 or ks # 0. So, by (4.18) Y ax,,.. kB --- Ef> € Clg 1]y provided

Zakl,_",;%E’ﬂ“é . Elﬂ“‘f € C[g_l]g. We have proved Proposition 4.15 and, thus,
Theorem 4.1. [
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O g-anajiorax HEKOTOPBIX IIPEAOTHOPOAHBIX BEKTOPHBIX
IPOCTPAaHCTB: CPaBHEHUE HECKOJLKUX MOJIXOI0B

. Mxaspos

CylecTByeT HeCKOJIbKO TOAXOA0B K MTOCTPOEHUIO ¢-aHAJIOTOB TTPEI0IHO-
POOHBIX BEKTOPHBIX TPOCTPAHCTB KOMMYTATUBHOTO Hapa6OJII/I‘IeCK01"O THUIIA.
B Hnacrosimeit pabore CpaBHUBAIOTCSI TPH MOAX0Ha, passurhie X.II. JIxa-
kobcenom, T. Tanucaku u ap., JI. Bakcmanom u ap. B pamrax stux tpex
HOJXOZIOB pelleHa CAeyIomas 3a1a4a: HocTpoeH g-aHasor anrebper C[V]
I‘O.TIOMOp(l)HbIX IIOJIMHOMOB Ha HpOI/IBBOJIbHOM HerI/IBOﬂI/IMOM HpeﬂOﬂHOpOﬂ—
HOM BEKTOPHOM ITPOCTPAHCTBE V (KOMMYTATHBHOTO MapabOIMIecKoro Tuma,),
n, 6omee TOro, COOTBETCTBYIOmAs (HEKOMMYTATHBHAS) aarebpa HaJeIeHa
crpykTypoit U-modyavtoti anrebpel, rae U — HeKOTOpasi KBAHTOBAsI YHU-
BepcaJibHas 00EPTHIBAOMIAs aJreOpa. Mbl JOKA3bIBAEM, 9TO TPHU ¢-aAHAJIOTA,
anre6per C[V] uzomopdubr kak U-MonysbHbIE anreGpsr.

JlJ1s IPOCTOTHI PACCMATPUBAETCST TOJBKO Cry4dail, Korga V' — mpocTpaH-
CTBO KOMILIEKCHBIX MATPHUI[ BTOPOrO MOpPsigka. HO mpuBoamMoe IOKa3a-
TEJILCTBO MEPEHOCUTCS Ha, CJIydail MPOU3BOJBHOTO HEIPUBOIUMOrO MPEIO-
HOPOJIHOTO BEKTOPHOrO MPOCTPAHCTBA, KOMMYTATUBHOIO MapabOIMIecKOro
THUIIA.

IIpo g-anajyioru gesKuX NPEIO0HOPIAHUX BEKTOPHUX
IPOCTOPiB: NOPiBHAHHA AEKIJIBKOX MiAXO0aiB

. Mksipos

Icuye pmexinbka nigxoniB 4o noOy/yBaHHsI ¢-aHAJOrIB NPEIOIHOPIIHUX
BEKTOPHMX MPOCTOPiB KOMYTATHBHOIO mnapabosivnoro tumy. B niit pobori
NOPiBHIOIOTHCs TPU nifgxoau, siki po3sunyTo X.I1. xakobcenom, T. Tanica-
ki Ta iam., JI. Bakcmanom Ta imm. B pamkax mux Tphox minxomiB Bupirre-
HO HACTyNHy 3azady: nobymoBaHo g-anajor anrebpu C[V] romomopdrux
[IOJIIHOMIB Ha J0BLJIBHOMY HE3BiTHOMY IIPEJIOJHOPIAHOMY BEKTOPHOMY IIPOC-
Topi V' (koMyTaTuBHOrO mapabosivHOro THIy), Ta, GLIBII TOrO, BiANOBiIHY
(mekomyTaTHBHY) anrebpy HAZIIEHO CTPYKTYDPOK U -Mmodyavhoi anrebpu, ne
U — nesika, KBAHTOBA yHIBEPCAJILHA OrOPTYO4a, anredpa. Mu n0BoauMO, 110
Tpu g-anasoru anre6bpu C[V] e isomopduumu six U-moaynsHi anrebpu.

JL715t IpOCTOTH PO3IUISTHYTO TLNBKY BUNAJ0K, KO V — IMPOCTip KOMILIEK-
CHUX MATPHIIb JIPYTOTO TOPSIAKY. AJie MU HABOIMMO JIOBEJIEHHSI, SIKE MOXKHA
TIEpEHECTU Ha BUMAJIOK JOBLIHLHOTO HE3BIIHOTO MPEIOTHOPIIHOTO BEKTOPHO-
r'o IPOCTOPY KOMYTATHUBHOT'O apabOivdHOTO THUILY.
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