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The paper continues the study of the notion of Riemann—-Lebesgue inte-
gral, which was introduced before by two of the authors. The result about
the convexity of the limit set of integral sums is generalized to the case of
weakly-compactly generated spaces. The notion of Riemann-Lebesgue in-
tegral is used to introduce new classes of Banach spaces. The properties of
these new spaces are studied.’

1. Introduction

There are many definitions of integral for Banach-space-valued functions and
their corresponding classes of integrable functions. The easiest one is the Riemann
integral. This definition looks exactly like the one for real-valued functions.
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Some remarks on vector-valued integration

Definition 1.1. Let f : [0;1] — X be a bounded function. This function
is said to be Riemann integrable if there exzists an © € X (called f’s Rie-
mann integral) such that for any € > 0 there is a 6 > 0 such that for any
partition of the segment [0;1] into a finite number of intervals {A;}N | with
max; |A;| < & and any choice of sampling points t; € A; the corresponding
Riemann integral sum Sg(f,{A:},{t:}) = Zfil f () |A;] is close to z, that is,
1Sr(f, A} (1)) — all < e

The most commonly used definition of a vector-valued integral is, however,
that of Bochner integral.

Definition 1.2. Let (Q,%, ) be a measure space and f : Q — X be a func-
tion. The function f is called Bochner-integrable if there exists a sequence of
simple (measurable finite-valued) functions f, such that [ ||f — falldu — 0, as
n — 0o. The Bochner integral of f is then defined as fQ fdp = limy, fQ fndu,
where the integral for simple functions is defined in the obvious way: if f, =
Yo zixa;, then [ fadp = 3 xiu(A;). It is easy to see that such a limit indeed
ezists and does not depend on the choice of a sequence f, approrimating the given
function f.

Although the Bochner integrability is a direct generalization of the Lebesgue
one and has many properties of the latter, there are Riemann-integrable functions
that are not Bochner integrable.

E xam ple Consider the space I3([0;1]). It consists of all functions
f+[0;1] = R such that }Zc10.] |f(t)|? < oo (it follows that these functions take
non-zero values on countable subsets of [0;1]). The norm on I3([0;1]) is given
by |[fIl = (Xtefo] I£(#)>)Y/2. Tt is easy to see that I5([0;1]) is a non-separable
Hilbert space. Its orts are given by e; = x4}

Now consider a function f : [0;1] — I2([0;1]): f(¢) = e;. This function is
not measurable, since it is not even “almost separable-valued”. Thus it is not
Bochner-integrable. However, it is Riemann-integrable. To see this, note that for
any partition IT = {A;} with any sample points T' = {¢;},

ISR(FILT) = 1Y fE) Al =11 e A

= (1A < (3 dm) - a2
VA (Y [AY2 = /a(m,

where d(IT) denotes max{|A;|}. Now take an arbitrary ¢ > 0. Denote § = €2.
Then for any partition IT with d(II) < § with any set of sampling points 7" we

will have
ISr(f,TL,T)|| < Vd(IT) < Vb = e
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Thus f is Riemann-integrable and the integral equals 0.
This gap may be covered by the idea of weak integration.

Definition 1.3. Let (Q, %, u) be a measure space and f : Q — X be a func-
tion. This function is called weakly integrable if for any functional F € X* the
scalar function F o f is Lebesque-integrable.

The function f is called Pettis-integrable if for any A € X there exists an
z € X such that F(z) = [, F o fdu, whenever F € X*. The point x is then
called f’s Pettis integral over A.

Pettis integrability is useful enough and covers both Riemann and Bochner
types of integration, but it has its own drawbacks. The definition of the Pettis
integral does not use any “simple” approximations, that is why some of the usual
Lebesgue-integration theorems do not hold for the Pettis integral. For example,
there exists a Pettis-integrable function f : [0;1] — X, for which the “antideriva-
tive” F(t) = f(f f(7)dp is not differentiable ([3]); the space of all Pettis-integrable
functions is not complete, etc. We refer the reader to [4] and [1] for the detailed
treatment of this theory.

In the present paper we study a new definition of integrability, introduced by
two of the authors in [2] and named the RL (Riemann-Lebesgue) integrability,
which covers both Riemann and Bochner integrals (Theorems 2.4 of this paper
and 1.3 of [2]), but is less general than the Pettis one. As will be shown below, this
notion is a very natural and convenient one. The properties of the RL integration
depend on the properties of the space X, which makes this concept a valuable tool
for the study of Banach space structure (especially in the non-separable case).

2. RL-integral sums and RL-integral

Let (©2,%, 1) be a space with finite measure p and X be a Banach space.

Definition 2.1. Let f : Q — RT be a function. We call the value Efdu =
inf{ [, gdp : g(t) > f(t)Vt; gis Lebesgue integrable} f’s upper Lebesgue integral.
In particular, [,fdp =~o00, if f has no Lebesgue-integrable majorant.

Using the notion of the upper Lebesgue integral we introduce the upper-L,
(L1) space.

Definition 2.2. The space Li(Q,%, u, X) is defined as the space of all func-
tions f : Q — X such that fQ Ifldp < +o00. The norm on this space is given by
1= Jollf @)l du(t), and is called the RL-norm (||-[| gy, )-
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We will also denote the space L1(£2, %, u, X) as L1(X, u) when the set  and
the o-field ¥ are clear from the context.

It is easy to see that any bounded function as well as any Bochner-integrable
function belongs to L;. Using usual classical methods, one can also prove that L
is a Banach space.

Let us now introduce the notion of RL integral sums, first defined in [2].

Definition 2.3. Let f : Q — X be a function. LetIT = {A;}°, be a partition
of Q into a countable number of measurable subsets. Let T = {t;}52, be the
set of sampling points for 11, i.e., t; € A;. We can construct a formal series
S(f,ILT) = 3222, f(ti)u(Ai). This series is called the (absolute) RL integral
sum of f with respect to Il and T, provided it is absolutely convergent.

It seems natural to order the set of partitions in the following way. We will say
that the partition Iy = {D;} follows partition Ils = {E}}, or II; is inscribed into
I, (II; > II3), whenever II; is a finer partition, that is, the set of indices N can
be broken into disjoint subsets Iy, k € N, [J;2; Iy = N such that Ey = {J;c;, Di.

Lemma 2.1. Let f € L1(Q,%, 4, X). Then there exists a partition II of Q so
that for any finer partition I' = II and any set of sampling points T the series
S(f,T,T) is absolutely convergent.

Proof Since f € Li(Q,%,u,X), there exists a Lebesgue-integrable
function g : @ — R* that dominates the norm f(t) pointwise. Since g is
Lebesgue-integrable, we can choose an € > 0 so small that the upper Lebesgue
integral sum Y oo i€ - u(g ' ([(4 — 1)€; i€])) is absolutely convergent. Denoting
A; = g7 1([(4 — 1)¢; i€]) we obtain a partition II for which the series u(4;) is
absolutely convergent.

Now if ' > II, then we can write I' = {A;;}, where Uj Ayj = A;. Let
T = {ti;} be a set of sampling points for I'. Then the integral sum S(f,T,T) =
>_ij f(tij)u(Aij) is dominated in norm by the series ). supyea,; 9(¢)(Aij), which
is convergent. Thus S(f,T',T') is absolutely convergent. ]

Now we can introduce the definition of the RL integral.

Definition 2.4. A function f : Q@ — X is called Riemann-Lebesque (RL)
integrable over a measurable set A C Q) if there exists a point x € X such that for
any € > 0 there is a partition II of A such that for any finer partition I > 11 with
any set of sampling points T we have ||S(f,T,T) —z|| < € and the sum S(f,T',T)
converges absolutely. This point x s called then the Riemann—Lebesgue integral
of f and denoted, as usual, by [, f(t)dt.
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Let us point out several simple properties of the RL integral:

1. RL integral is additive: if functions f and g are RL-integrable over some
subset A C €, then f + g is RL-integrable over A too and [,(f + g)du =

Jufdu+ [, gdp.

2. If a function f is RL-integrable over a set A, it is also RL-integrable over
any measurable subset of A.

3. If f: Q — X is an RL-integrable function over Q, then f € L1(Q,3, s, X).

4. As a function of set, RL integral is a countably-additive measure of bounded
variation.

5. If f:Q — X is an RL-integrable function and 7' : X — Y is a continuous
linear operator, then the composition T'f : @ — Y is an RL-integrable
function and we have T' [, fdu = [T fdp.

Definition 2.5. The RL:(€Q,%,u,X) space is the linear subspace of
L1(Q,%, 4, X) consisting of all those functions that are RL-integrable.

We will also denote the space RL1(Q, %, u, X) as RL(X, u) when the set Q
and the o-field ¥ are clear from the context.

RL; is a closed subspace of Li and as such is a Banach space.

The following theorem is a useful sufficient condition for a function to be
RL-integrable. It can be used to prove the RL-integrability of the Bochner and
Riemann integrable functions.

Theorem 2.2. Let f € L1(Q, %, s, X) be a function and g € L1(, X, i) be its
integrable majorant. Let also {I1,,} be a sequence of partitions, for each of which
the upper integral sum of g is absolutely convergent. Assume that for any choice

of sampling points T, for I, the sequence S(f,I1,,T,) converges to a certain
element © € X. Then f is RL-integrable and x = [, fdp.

Let us prove first a simple lemma.

Lemma 2.3. Let f € Li(,3,u,X) be a function and g € L1(,%,p) be
its integrable majorant. Let II = {A;} be a partition of Q for which the upper
integral sum of g is absolutely convergent. Then for any finer partition I' = II
the following inclusion holds:

{S(f,T,T): T any choice of sampling points} C
conv{S(f,II,T) : T any choice of sampling points}.
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Proof. LetI'={A;;} be a partition of  with A;; C A, for every pair 1, j.
Then for any choice Ty of sampling points for I and for arbitrary linear functional
¥ e X*

2 (S(f,T,T0)) <> sup z* f(t)u(Aij) = Y sup z* f () u(A)
ij teA; i teA;
= sup{z*S(f,II,T) : T any choice of sampling points}.

By the Hahn—-Banach theorem this means the inclusion we need. ]

Now we are in a position to prove Theorem 2.2.

Proof of Theorem2.2. Note that under the conditions of the theo-
rem, the following fact is true: for any e > 0 there exists a partition II,, such that
for any choice of sampling points Ty, for it, ||.S(f, Iy, Tn) — z|| < €. Indeed, if this
were not true, then there would exist an ¢ > 0 for which we could find a sub-
sequence {II,, }2°, with sampling points T, so that ||S(f,II,,,Ty,) —z| > €.
Then choosing arbitrary sets of sampling points T, for partitions II,, where n ¢
{nx}, we would have a sequence (II, T5,) for which S(f,II,,T,) does not converge
to x.

Now fix an € > 0. Take a partition II,, for which ||S(f,II,,T,) — z|| < € for
any choice of sampling points 7}, . Then, by Lemma 2.3, for any I" > II,, and
any choice of sampling points T for I we have ||S(f,T',T) — z|| < €, which proves
that f is RL-integrable and the RL-integral of f equals z. ]

Theorem 2.4. Let a bounded function f :[0;1] — X be Riemann integrable.
Then it is RL-integrable and its RL integral equals its Riemann integral.

Proof  Indeed, since f is bounded, it belongs to Li;. The constant
function that bounds f can serve as the dominant g from the Theorem 2.2. Its
upper Lebesgue integral sum for any partition is obviously convergent. Let II,, be
a partition of the segment [0;1] into 2" equal subsegments. By the definition of
the Riemann integral, {II, } is a sequence of partitions that satisfies the conditions
of Theorem 2.2. Therefore it is RL-integrable. ]

Let us mention some more properties of the RL integral proved in [2].

1. A Bochner integrable function is RL-integrable and its RL-integral equals
its Bochner integral.

2. An RL-integrable function is Pettis-integrable and the values of both inte-
grals coincide.

3. If the space X is separable, then RL-integrability is equivalent to Bochner
integrability.
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3. RLi(X,u) Space

Let us investigate the properties of the space RL;(X,u). As a closed sub-
space of the space L1(X, u), it is a Banach space. Note that the space Li(X, )
of Bochner-integrable X-valued functions is a closed subspace of RL1(X, ). It
seems natural to ask: under what condition on the space X, Lq(X, i) is comple-
mented in RL; (X, u)? One sufficient condition can be formulated with the help
of the following notion.

Definition 3.1. Let f : Q@ — X be an RL-integrable function. We say that
a function g : Q@ — X is f’s Bochner-integrable equivalent if g is Bochner-
integrable and for any measurable A C €1,

(RL) / Fdu = (Bochner) / gdy.
A

A

It is easy to see that if every X-valued RL-integrable function has a Bochner-
integrable equivalent, then L;(X,u) is complemented in RL;(X,u). Indeed,
the equivalent Bochner-integrable function for the given RL-integrable function
f is f’s projection onto Li(X, u). In view of this, let us investigate under what
conditions on the space X every RL-integrable function has a Bochner-integrable
equivalent.

One easy sufficient condition for X is to have the Radon—-Nikodym property
(RNP).

Theorem 3.1. Let the Banach space X have the RNP. Then any RL-integ-
rable function f: Q — X has a Bochner-integrable equivalent.

Proof  Consider the vector measure v : ¥ — X defined by v(A) =
i) 4 fdp. Tt is countably-additive and has bounded variation (this follows from
the existence of integrable majorant of f). Since X possesses the RNP there
must exist a Bochner-integrable function g : © — X such that v(A) = [, gdu for
any measurable A. Obviously, g is f’s Bochner-integrable equivalent. |

Another simple condition is the following:

Theorem 3.2. Let f : Q@ — X be an RL-integrable function and the set
{[y fdu : A € £} be contained in a separable complemented subspace Y of X.
Then f has a Bochner-integrable equivalent.

Proof  Let P be the projection from X onto Y. Put ¢ = Pf. Since
g is an image of f under continuous linear map, it is RL-integrable. Moreover,
the values of g lie in the separable space Y. Hence g is also Bochner integrable.
Obviously, [ 4 9dp = P / 4 fdp for any A € 3, and since all integrals / 4 fdp lie
inY, P [, fdu= [, fdu. Thus g is the Bochner-integrable equivalent of f. m
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Now let us note the following fact.

Theorem 3.3. Let f : Q@ — X be an RL-integrable function. Then the set
{J,fdu: A€ X} is separable.

Proof. Fix asequence of positive numbers €, — 0. Since f is RL-integrable,
for each n there exists a partition II, such that for any two finer partitions I
and I'" with any sets of sampling points 7" and T" we have

|S(f. T, 7") = S(£, 7", T")|| < €. (1)

For each II, fix a set of sampling points T,,. Obviously, S(f,IL,,T;,) — [ fdu.
Let U = U2 ; Ty, Since U is countable, the subspace Y = Lin(f(U)) is separable.
Obviously, S(f,I,,Ty) € Lin(f(U)) and therefore [ fdu € Y. Let us now show
that in fact [, fdu €Y for all A € .

Indeed, take an arbitrary A € X. Since U is negligible, [, fdu = [,  fdp-
Therefore, without loss of generality we may and do assume that U C A. Denote
by Hﬁ the partition of A formed by intersection of subsets of II,, with A. Then for
any two partitions of A, T/ > TT2 and T - T2 with any sets of sampling points 7"
and T" respectively, condition (1) remains true. Therefore S(f, I3, T;,) — J4 fdp
and hence, [, fdu €Y. [

Theorems 3.2 and 3.3 together give us the following useful corollary:

Theorem 3.4. Let the Banach space X have the following property: every
separable subspace of X is contained in a separable complemented subspace of X
(the class of such spaces includes, for example, all the WCG spaces). Then any
RL-integrable function f :Q — X has a Bochner-integrable equivalent.

Thus, we have shown that in quite a wide class of Banach spaces every
RL-integrable function has a Bochner-integrable equivalent. However, there exist
spaces where this is not true. Let us show an example.

Example Consider the function f :[0;1] = Luo[0;1] defined by f(t) =
X[t;1]- We prove that it is RL-integrable, but does not have an equivalent Bochner-
integrable function.

Indeed, let us show the following identity:

( / fdu)(t) = p(AN [0;4]) (2)
A

for any ¢ € [0;1] and any Borel set A.
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Since both sides of the equality contain Ly-valued countably-additive mea-
sures, it suffices to show the statement for A = [£; %] where n € N U {0},
0<k <2,

To this end, we take an arbitrary e > 0 and find such a positive integer N that
i < €. Let us partition A into N equal intervals {A;}Y, of length 5 and
let {A; }Z:1 =1 be an arbitrary finer partition into non-empty intervals, where
U;“Zl Ajj =A;,i=1,...,N. Let also {t;;} be a set of sampling points for this
finer partition. We show that for the functions

N n;
= <Z D F (i) (i), t>

i=1 j=1

and
g(t) = p(AN[0;))
the condition
|5(t) —g(t)| <e
holds for any ¢ € [0;1].

Indeed, for t € [0; £&] we have
S(t) =0=g(?) (3)
If ¢t € [E£L:1], then
S(t) = p(4) = g(2) (4)
For t € A;yj, we can estimate
10 Tig
ZZN ij <ZZN Z] Z,u 2”N’
i=1 j=1 i=1 j=1
0 Jo—1 19—1 Tig—1 0—1 ’[;0 1
>N T u(hyg) =) w(Ay) = () = onpy s fordo > 1,

i=1 j=1 i=1 j=1 i=1

S(t) > O, for ’i() =1.

Analogously, the same estimates are checked for the function g. Thus, for
t € Ajyj, we have

1

() - 9(8)| < 5

< €. (5)
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Combining (3)—(5), we obtain
15— gllo <e.

Since €, {A;;} and {¢;;} have been chosen arbitrarily, equality (2) is proved,
meaning by [, fdu the Riemann integral (for A of the form [2%, %]) But since
the Riemann integrability implies RL-integrability, we have shown a stronger
result.

It remains to prove that f does not allow a Bochner-integrable equivalent.
Since the Bochner integral is differentiable as the function of the upper limit, it

suffices to show that the function
t
G(t) = [ fdu
0

is not differentiable at any point ¢ € (0;1).
Let t9 € (0;1), At > 0. Then

Glo+ A8 —Glt)) 1 T
0+ —Glo) 1
At ; / fdp.
to

But equality (2) shows that the functions Ait t2°+At fdp do not form a fun-

damental family, as At — 0. So, this family has no limit and hence G(t) is not
differentiable.

In the example above, note that the values of f are functions with at most
one discontinuity of the first order. The space of all such functions is isomorphic
to a subspace of the space C(K), where K is the topological space known as “two
arrows of Alexandrov”. On the other hand, the values of [ 4 fdu are all contained
in C[0;1]. Since f has been shown to have no a Bochner-integrable equivalent,
Theorem 3.2 implies the following interesting corollary:

Corollary 3.5. The space C[0;1] is not complemented in C on “two arrows”
and is not contained in any separable complemented subspace thereof.

Another question that seems natural to ask is under what condition RL1 (X, p)

coincides with L1(X, i), i-e., when every RL-integrable function is also Bochner-
integrable. Let us present one sufficient condition.
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Theorem 3.6. Let X be a Banach space such that every X -valued RL-integ-
rable function has a Bochner-integrable equivalent. Let X have a countable set
of functionals separating the points of X. Then every RL-integrable X -valued
function is Bochner-integrable.

Proof. Let f:Q — X bean RL-integrable function and g € L1 (€, X) its
Bochner-integrable equivalent. We show that f = g almost everywhere. Indeed,
for any z* € X* and any measurable A C 2 consider:

/w*(f—g)du Z/x*fdu—/w*gdu =:v*(/fdu) —:v*(/gdu) =0,
A A A A

A

where [, fdu denotes f’s RL-integral and [, gdu denotes g's Bochner integral.
These two integrals are equal, since g is f’s Bochner-integrable equivalent. Thus
the Lebesgue integral of z*(f —g) is zero over any measurable set A, which means
that z*(f —g) =0 a.e.

Now let {z}}5°; be the countable set of functionals separating the points of
X. Put A, ={t € Q: z}(f —g) # 0} and let A = [J;, An. Note that for
any t € 2\ A and any functional z},, =} (f — ¢)(t) = 0. Since A is negligible,

z}(f —g) = 0 a.e., therefore f itself is Bochner-integrable. [ |

Let us further investigate the isomorphic structure of RL;(X, ). We show
that this space can be “very large”, meaning it can contain an isomorphic copy of
the space [ (T") even for a reflexive X.

Example. Suppose X =I5([0;1]) and yu is the Lebesgue measure on the
unit segment [0;1]. Then RL;(X, ) contains an isometric copy of I ([0;1]).

First note that there is a continuum-cardinality family of non-measurable
mutually disjoint sets { At }4¢[0;1], where A; C [0;1] and the outer measure of each
A; equals 1. Such a construction can be found, for example, in [2], in the proof
of Theorem 2.16.

Now consider the following function f : [0;1] — I2([0;1]): f(¢) = e, where e;
is an ort of 12([0;1]): e; = Xy} Define the linear map U : loo([0;1]) — RL1(X, p)
as follows:

U(Of) = Z atf'XAta

te(0;1]

whenever @ = (at)sejo;1] € loo([0;1])-
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To see that U(a) is indeed in RL;(X,u) for every a € ([0;1]), take any
partition IT = {A;} and any sample points U = {¢;} and estimate:

Z etiU(Ai)
=1
o0 o

= (O n@A)HY2 < (3 dm) - pu(a) 2

= VA p(A))? < VaA@)(Y ] p(ai)'? = Vd(T),
=1

i=1 %

ST, ILT)[| < [l

where d(II) denotes sup{u(A;)}. Now take an arbitrary e > 0. Fix a partition
IT with d(IT) < e. Then for any II' = II, any T", ||S(U (), ', T")|| < /d(IT") <
Vv d(II) < e. Thus U(a) is RL integrable and the integral equals 0.

Further, it is clear that ||U(a)(?)|| < ||| for every t € [0;1]. So [|[U(a)||rr <
||| o On the other hand, for a fixed n € N any integrable majorant of ||U () (t)]|
must be not less than ||ef|oc— 1 on a set of full outer measure, and therefore almost
everywhere. Therefore ||U(a)|lrr > [|afloc — £, n € N. So |[U(a)||lrz = [|eleo
and we are done.

4. Limit set I(f)

Even if a function is not RL-integrable, we still can consider the set of limit
points of its RL-integral sums, which, in a sense, plays the role of RL-integral.

Definition 4.1. Let f: Q — X be an arbitrary function with values in a Ba-
nach space X. We say that a point x € X belongs to the limit set I(f) if for every
€ > 0 and any partition II there exists a partition I' = II and a set of sampling
points T such that ||S(f,T,T)—z|| <€, S(f,T,T) being an absolute integral sum.
In other words, I(f) is the set of all limit points of the net of f’s absolute integral
sums.

Let us point out two important facts about the set I(f) (the proofs can be
found in [2]):

1. The limit set I(f) is always convex.

2. For an arbitrary bounded convex closed set S of no more than continuum
cardinality in a Banach space X, there exists a function f : [0;1] — X such
that I(f) = S.
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We will show below that the problem of existence of such limit points is not
always solved in positive. However, as the following theorem shows, for a large
class of Banach spaces it is.

Theorem 4.1. Let (2,%,u) be a measure space, X — a WCG space and
f€Li(Q%,u,X) — a function. Then I(f) is not empty.

The proof is almost entirely contained in the following lemmas.

Lemma 4.2. Let (Q,%, 1) be a probability measure space, X a WCG space
generated by a convexr balanced weakly-compact set K. Suppose f : Q@ — X
is an arbitrary function, not necessarily measurable. Then for any sequence of
positive real numbers €, there exists a sequence of functions g : Q — X, sequence
of subsets A, C S and sequence of integers ny € N so that the following properties
hold:

1. M*(nﬁk Ai) > 1~ Zf\ik € for any k < N;
2. gr(Ax) C i K;
3. Nlgr(t) — f@)|| < €k fort € A and gi(t) =0 fort € Q\ Ag.

Proof. Note that ;2 (nK + ¢,B(X)) = X for any k. Due to this, for
any € we can choose an index n so large that u*(f~1(nK + ¢ B(X))) > 1 — &.
Moreover, for an arbitrary B C 2 we can choose n so large that p*((f~*(nK +
e,B(X))) N B) > p*(B) — €. These two observations allow us to construct
the sequence {n;} C N by induction, so that if 4y = f }(ngK + ¢, B(X)), then

U*(Ak) > 1 — ¢,
for any k, and

k—1 k—1
P (A N (.ﬂ' 4;)) > M*(n A;) — e,

for any k and any j < k.
It is easy to see now that the first of lemma’s conditions is satisfied:

al N1 N—1
W A4) = p (A (] 4)) 2w ([] A) —en
i=k i ol
N-2 N
> n Aj) —en —en—1 > ... 2> p(Ag) — Z €
=k i=k+1
N
> 1-Y e
i=k
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Now note that by the construction,
f(Ag) C K + e B(X). (6)

This allows us to construct functions g, satisfying Conditions 2 and 3 of the
Lemma 4.2. Indeed, we put gg(t) = 0 for t € Q\ Ag. If t € Ay, then by (6), there
exists a point y € nigK such that ||f(¢) — y|| < ex. We put then gx(¢) = y. This
finishes the proof. |

Definition 4.2. Let g: Q — X be a function, A C Q. We denote by o(g|A)
the set of all integral sums of g, controlled by A, that is, a sampling point is
always chosen in A, whenever the partition subset intersects with A. We also
denote by I(g|A) the set of limits of the integral sums from o(g|A).

Lemma 4.3. Suppose a function f : Q@ — X has an integrable majorant h:
If @ < h(t), h € L1(Q,2, ). Let the real numbers €, > 0 be so small that if
Ae€X, u(A) < e, then

/ hdp < 27"71, (7)

A

Assume also that €1 < % and epy1 < 2%6”. Then, under the conditions of Lem-
ma 4.2, there ezists a convergent sequence {z,} C X such that z, € I(gn|An).

Proof. On the set of all partitions define an ultrafilter I/, which dominates
the filter of the refinement direction.

For every partition I' = {A;}°, define a number N(I') € N so that
N(T') — o0, as T gets finer (e.g., N(I') = [1/sup; u(4;)]). Construct the integral
sums

Sk(T) = 3" gu (P (0)u(Ay) € algrlA),

where k =1,2,... ,N(T'), so that the following condition is satisfied: if for some
J € N there exists an index s < N(I') such that

N(T)

Ajﬂ nAZ#Q

1=$
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(denote the smallest such index by s(j)), then

N(D)

() () = 456 .

() =T e ) A
i=5(J)

for k = s(j),s(j) +1,... ,N(T).

Note that under such a choice of sampling points, in view of the first condition
of Lemma 4.2, for each k the total measure of all those A; where tg-k) = tg-kH)
bounded below by

, is

N(T)
1-— Zek>1—ek_1.
1=k

Since h + € is a majorant for g, we have

lim |5, (T) = Se41 (D] < 2ep + 27k, (8)

Since for any k, given a sufficiently fine partition I', the number N (T") is greater
than k, the sum Si(T") will be correctly defined and, due to Condition 2 of
Lemma 4.2, Si(T") € nx K. From the compactness argument we infer that there
exists a weak limit w — limy Si(I"). Denote this limit by zx. It was proved in
[2] that actually =) € I(gk|Ak). Due to (8), {zx} forms a fundamental sequence.
Thus {zy} is required. ]

Proof of Theorem4.l. Let {zx} be the sequence from Lemma 4.3,
x = limg_, o . Due to the condition p*(Ag) > 1—¢ , Condition 3 of Lemma 4.2
and (7), each zj can be approximated with the precision of ¢ + 2% by arbitrary
fine integral sums of f. Therefore z € I(f), which is to be proved. ]

So, we have shown that I(f) is non-empty for any f € L1(X) for quite a large
class of WCG spaces. This result supersedes the one of [2]|, where an analogous
theorem is shown for separable and reflexive spaces X. However, there exist
spaces where I(f) can be empty for certain functions f € L;(X). Let us exhibit
an example.

E xample Consider the space X = [1([0;1]) and function f : [0;1] —
11([0;1]) given by f(t) = e, ie, f(t) = xqy- Obviously, f is bounded and
therefore f € Li(X). It is easy to see that the l;-norm of any integral sum
S(f,I',T) of f equals 1. Suppose that there exists an z € I(f). Then ||z||;, = 1.
Consider the coordinate functionals §; € (I1]0;1])*: &:(g9) = ¢g(¢t). For every
t € [0;1] we have §;(f(7)) = 0 for almost all 7 € [0;1] (in fact, for all 7 # t).
Since z # 0, there exists a to € [0;1] such that s, (z) # 0. On the other hand,

3ty (x) € b1y (1(f)) C I(do © f) = {0}
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This contradiction shows that I(f) = @.

If a function f is RL-integrable, then I(f) obviously consists of a single point,
f’s integral. The converse is not always true: a function may have a single-point
I(f) and still not be RL-integrable. The following weaker statement is true,
however.

Theorem 4.4. Let X be a Banach space such that every function
f € Li(Q,3, 4, X) from any measure space (Q, %, u) has a non-empty limit set
I(f). Let a function f € L1(Q,%,u,X) be such that I(f) consists of a single
point x. Then f is Pettis integrable and x is f ’s Pettis integral.

Let us prove some lemmas first.

Lemma 4.5. Let X and f be such as in Theorem 4.4 and let A € X.. Then
for the restriction f|a of f on A, I(f|a) is a singleton.

Proof. Due to the properties of X, I(f|4) cannot be empty. To prove
that I(f|a) is a singleton, assume there are two distinct points z1,z2 € I(f|a).
Fix an € > 0. Denote B = Q\ A and pick any y € I(f|g).

Now take an arbitrary partition IT of Q. Let I’ be a partition that is finer
than both II and the partition of €2 into two sets A and B. Then every member
set of II' is either a subset of A or a subset of B. Therefore we can consider
the partition II* of A formed by those members of II' that lie within A, and
a partition IIZ of B formed by those members of II’ that lie within B.

Since 2, € I(f|a), there exists a partition II{f = II4 and a set of sampling
points T for it such thatJ|S(f|A,H‘14,Tf4) —a1|| < €/2. Since also z3 € I(f]a),
there exists a partition II5 > 14 and a set of sampling points T2A for it such
that ||S(f|A,H§4,T2A) — 25| < €/2. And since y € I(f|p), there exists a partition
18 = TIP and a set of sampling points 732 for it such that ”S(f|B, e ) - yH <
€/2. Combine the partitions Hf and Hf; into partition II; of the entire €2, and put
T, = TA UTE. Then ||S(f,I11,T1) — (z1 +9)|| < €. At the same time combine
the partitions I14* and IT? into partition ITy of the entire Q, and put Ty = TS UTE.
Then ||S(f, I, Ty) — (z2 + y)|| < €. Since I1; > II and IIs > II, both z; + y and
x9+y belong to I(f), which is impossible. Hence I(f|4) consists of a single point.

[ ]

Lemma 4.6. Let X and f be such as in Theorem 4.4. Then f is weakly
measurable.

Proof  Assume the contrary. Then there exists a functional z* € X*
such that z*f is a non-measurable function. Since f € L1(Q, %, u, X), z*f must
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have an integrable (and hence measurable) majorant. Therefore, there must exist
the smallest measurable majorant fo of z* f and the largest measurable minorant
f1 of *f. In other words, if ¢ : & — R is measurable and z*f < g a.e., then
fo < g a.e., and similarly, if g : 2 — R is measurable and z*f > g a.e., then
f1 > g a.e. Note that f; and fo cannot coincide almost everywhere, since that
would mean that fi = z*f = fy a.e. and z*f would be measurable. Note that
{t: fi(t) # fo(t)} = Up21{t : fo(t)— fi(t) > 1/n}. Since the set at the left-hand
side is non-negligible, one of the sets on the right-hand side must be non-negligible
too. Therefore, there exists a non-negligible measurable set A and an € > 0 such
that fi(t) < fa(t) — e for any t € A.

Consider f|4. Due to Lemma 4.5, I(f|4) consists of a single point. Consider
the following two sets:

A = {tEA: 1) > 2ht) + A0,

3 3
Ay = {teA: " f(t) < §f1(t) + %fz(t)}a

and let By = A\ A1, By = A\ Ay. Note that B; cannot contain any measurable
non-negligible set. Indeed, assume that C is a measurable set, u(C) > 0 and
C C Bj. This means that for any t € C, 2*f(t) < 2fo(t) + $£1(t) < fa(t).
But now consider function g, which is equal to % fa(t) + % fi(t) for t € C and
coincides with fo outside of C. This function is measurable, it is a majorant
of z*f, but ¢ < f on a non-negligible set C. This contradicts the definition of
fo as the smallest measurable majorant of z*f. Thus we have shown that By
contains no measurable non-negligible subset, which means that p.(B;) = 0 and
p* (A1) = p(A). It is easy to apply the same argument to B and Ay to show that
p*(Az) = p(A).

Now consider a o-field ¥ 4, of subsets of A; of the form C'NA;, where C € X.
Define p|a(C N A;) = pu(C N A). So, we obtain a measure space (A1, X4, 4]a)-
It is easy to verify that this space is correctly defined, since p*(A;1) = u(A). The
restriction f|4, is a function from this measure space to the Banach space X. Due
to the properties of X, there exists an z; € I(f|4,). By an analogous argument
we can construct the measure space (A2, ¥ 4,, #|4) and find a point zo € I(f]|4,)-

Let us show that 21 # z9. Indeed, note that z*(z1) € I(z*f|4,) and z*(z2) €
I(z*f|a,). Consider an integral sum of z*f|4,. It has the form > z* f(¢;)pu(A; N
A1) =Y " f(ti)n(A;), where {A;} is a partition of A and ¢; € A;NA;. Thus all
integral sums of z* f| 4, dominate the integral sums of the function 2 fa(t)+ % f1 (¢)
over A. On the other hand, the same argument shows that all integral sums of
z* f| 4, are dominated by the integral sums of the function 2 f(t) + 3 f2(t) over A.
Since the values if these two functions differ by at least €/3 at all points of A,
this implies that z*(z1) > z*(z2), which means that z; # zo.
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Let us show that z1,z2 € I(f|4). Indeed, since p*(A;1) = p*(A2) = u(A), any
integral sum over A; of the form Y f(¢;)pu(A; N Ap) is equal to the integral sum
> f(ti)pu(A;) over A, and the same is true for As. So, we have found two different
points z1 and z in I(f|4), which is impossible. This contradiction proves that
f is weakly measurable. n

Proof of Theorem44.

The previous lemma shows that the function f is weakly measurable. Take
any measurable A C Q. Take an z* € X*. The real-valued function z*f|4 is
measurable. Since f has an integrable majorant, so does z* f| 4. Therefore z* f| 4 is
Lebesgue-integrable and thus, RL-integrable. Hence I(z* f|4) consists of a single
point, [, z*fdu. Let x4 be the only point of I(f|4). Since z*(x4) € I(z*f|a),
we have z*(z4) = [, «* fdu, and this holds for any functional z* € X* and any
subset A € X. So f is Pettis integrable and [ fdu = =. [ ]
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