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This is the first in a series of four papers which are entitled:

I. The Stokes structure in asymptotic analysis I: Bessel, Weber and hy-
pergeometric functions.

II. The Stokes structure in asymptotic analysis II: generalized Fourier
(Borel)-Laplace transforms.

III. The Stokes structure in asymptotic analysis III: remainders and prin-
ciple of functional closure.

IV. The Stokes structure in asymptotic analysis IV: Stokes’ phenomenon
and connection coefficients.

They introduce a methodology for the asymptotic analysis of differential
equations with polynomial coefficients which also provides a further insight
into the Stokes’ phenomenon. This approach consists of a chain of steps
based on the concept of the Stokes structure an algebraic-analytic structure,
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the idea of which emerges naturally from the monodromic properties of the
Gauss hypergeometric function, and which can be treated independently of
the differential equations, and Fourier-like transforms adjusted to this Stokes
structure. Every step of this approach, together with all its exigencies, is
illustrated by means of the non-trivial treatment of Bessel’s and Weber’s
differential equations. It will be the aim of our future series of papers to
extend this approach to matrix differential equations.

It is our great pleasure to publish this series of papers in our home town
and to dedicate it to the memory of our dear teacher, Naum II'ich Akhiezer,
who taught us the basic knowledge of the theory of transcendental functions
and inculcated in us the taste and the love for this theory.

In honor of the 100th birthday of Naum Il’ich Akhiezer

1. Introduction

We introduce our principal subject using the three well known function pairs:
(i) the incomplete Gamma function I' (p, z) and the constant function 1, where

+oo

Lz = [ e tdt 2 20 1)

z

(ii) the Bessel functions of third kind or the Hankel functions H, M (), H @ (2)

. r(i-v)(2)" 1. vl
1 (o= TE L [yt e < T s 05 =10, 0
Vi

with v1, 72 simple loops bypassing t = 1 but not enclosing ¢ = F1, respectively,

1 3 .
andu#i,i,...,

(iii) the Weber functions Dy_1 (v/22) ,D_E_% (x/ize*%i)

1
2

Dy,

r(g+1 ; 2
(\/ﬁz) = —(7,2)6_72§_% /eZttél (—t)_E_% dt, |argz| < g (3)

v

1
2

with « the simple loop starting at +oc on the real axis, circling the origin in the
counterclockwise direction and returning to the starting point, see, for example,
3, 8].

These function pairs are respectively linearly independent solutions of:

(i) the incomplete Gamma differential equation

z

u"(z)+<1—p_1>u'(z)20; (@)
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(ii) Bessel’s differential equation

" 1L, v?
u'(2) + -u(2) + |1 - 5 Ju(z) =0; (5)
(iii) Weber’s differential equation
u" (z) + (2E — 2*) u(2) = 0. (6)

Note, that equations (4), (5) have z = 0 as their only regular singular point.
However, all three equations have z = oo as their only irregular singular point,
hence all solutions have exponential behavior at z = oo.

In fact, it follows from (1)—(3) that

O Te)=e?F ' (1+0(1), 2] = o0, ~F <argz < F;
1=(14+0(1)), 2z — o0;

(i) HY) (2) = (2)" emCmm/27m/0 (14 0 (1))

Tz

|z| = 00, —27 < argz < 7,

HISZ) (z) — (1)1/2 e tz—vm/2-m/4) (1 + 0(1)),

|z]| = 00, — < argz < 2m;

) (9)

It is worthwhile noting that firstly, the sectors shown in (8), (9) are wider
than those in (2), (3) respectively and secondly, the sectors indicated in (7)—(9)
are the widest possible sectors in which the above relations are valid.

Two immediate questions arise:

(a) How does one decode properly the symbol o0 (1) in the above relationships.
In fact, the symbols o (1) in each pair of relations (7)—(9) conceals a formal power
series in z~! and the logic of our approach is to reveal this formal series to uncover
simultaneously their true relation to regular solutions.

(b) What is the behavior of all these functions outside the indicated sectors.

Of course, one could answer these questions in the traditional way using the
above integral representations (1)-(3). However, these representations do not
provide the means for a deeper unified understanding of the related questions of
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asymptotic and resurgent analysis for the above differential equations, and more-
over such representations are not generally available except for special differential
equations. We thus need another point of view.

2. Monodromic relations

For this purpose we have derived other integral representations of these func-
tions solely in terms of Gauss hypergeometric function F'(a,b,c, z).

Theorem 1. The following integral representations are valid in the indicated

sectors:
—+00

(i) T(p,z) =e 2P Of e *F (1 —p,1;1;—¢€) d¢, (10)

—F<argz<7%g, z#0;

.. . +0oo
() A (2) = (2/m)"/? emilemvml2m) et (L v, L o1 — £ ) de,
0
—g<argz<g, 2z#0,

(11)

. +0o0
£ (2) = (22/m) 2 e l2mnl) [ R (3=} bt bf) de,
S <argz< g, z#0;
(12)

— 9 5tie% (B+3) , B+l [ (L (B+ 1B 431, 46%)ede,
0
%<argz<3f, z # 0.
(14)

All the above representations contain respectively an exponential factor times
the Laplace (or generalized Laplace) transforms of the Gauss hypergeometric func-
tions:
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(i) F(1—p,151;-8) = (1+6P

(i) F(%— ,%+u;1;¢§) :

(i) F(F5 + 5 F5 + HLFE)

Interestingly, although these representations are generally unavailable in the
literature* , nevertheless for us they provide the primary clue for our investigation
to follow.

Applying the well known monodromic property of the Gauss hypergeometric
function

F (a,b;¢;1+ (€ — 1) eX2™) = F (a,b; ; €)

2%l (C) e:tiw(c—a—b)

c—a—b . T
:FF(a)F(b)I‘(l—f—c—a—b)(l_z) F(c—a,c—bl+c—a—b1l-¢)

(15)

(see, for example, [10], [11]) to (10)—(14) one can obtain the corresponding
monodromic-algebraic relations for the above transcendental functions.

Theorem 2. The incomplete Gamma function T (p,z), Hankel functions
H,Sl) (2) ,H,@ (z), and Weber functions DE_% (\@z) ,D_E_% (\/ﬁze_%l) have
the following monodromic properties:

2mi
rl-p)’

) (z) — 2eT™7 cos (v )H,SQ) (ze?m) |
) (z) — 2e~%T cos (vr) M (2) ;

(1) T (p,ze*™) = >™T (p, z) + (—1)' " (16)

@)  H (ze2m) =

e ita
1
B (17)

= e+m(E_%)DE—l (V2ze7™) + T12+E6_%(E+%)D—E—§ (ﬁze_%i) ;

D_E_% (\/ize_L)
= e_m(E+%)D_E_l (x/ﬁze_%) +T22_E 1E_TDE 1 (fze‘““) ,
2
(18)

M)

’L7TE2*—E Z7TE22+E
o PV

* Formulae similar to (11)—(14) were discovered comparatively recently by Marichev [9] (see,
also [5]).

—iE

=TTy
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Of course, the relations (16)—(18) provide immediately by recurrence the be-
havior of all these functions as z — oo for all z outside the indicated sectors in
(10)-(14).

More importantly, we shall regard these algebraic relations as the essence of
the Stokes structure for the differential equations ( 4)—(6). We shall consider this
structure as an independent object, the primary basis for our investigations.

3. The Stokes structure

We represent all functions pairs (1)-(3) in phase-amplitude form:
(i) T'(p,z) =e ?2P 1P (2); (19)
(ii) ngl) (2) = (7%)1/2 e ilevn/2=7/4) Py (3) |
HIS2) (z) _ (1)1/2 €+i(z—u7r/2—7r/4) P (z) :
2
(111) DE—% ( 22;) :2+%_%z+E_%e_% Q1 (z) ,

E 1

T L) z2
D_ ;1 ( 2ze3) = 2_7__67(E+%)Z_E_%67Q2 (2) .
2

Using (19)—(21) we can rewrite the monodromic relations (16)—(18) as

iy - 2mg
P (2e¥™) = P(2)+ (-1 p@

1 =1 +0xP(2),

6727mp 6zzlfp % 1’

Pi(ze®™) = Pi(z) + 2i (cosvm) e Py(ze®™) ,
Py(2e?™) = Py(2) + 2i(cosvm) e 2 Pi(z),

Q1 (ze™) = Qi(2)+ Tie 2B, 2Eo+2° ), (ze™) ,
Qa2 (ze™) = Qa2(2) + Toe 2B 4282 Q) (2)

respectively, where T} and T3 are defined in (18).
For the sake of uniformity we perform the change of variable

_mi
z—=e 12z

to reduce Weber’s differential equation (6) to the reduced Weber’s equation

o (2) + %u (2) + (—E;—z + 1) w(z) =0 (25)
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and rewrite (24) in a form similar to (22), (23)
Py (2e*™) = Pi(z) + T (E) 2 e Py (2e*™)

) . 26
P1(2e°™) = Pi(2) + T2 (BE) 2" 2* Py (2) , (26)

where Pi1(z), Pa(z) are the phase amplitudes of DE_% (26_%\/5),

D_E_% (26%6_% \/E), respectively.
It follows from differential equations (4), (5), (25 ) that the phase amplitudes
P (z); P1(z), P2 (z); Pi(z),P2(z) are analytic on the Riemann surface of logz

{z:0< |z| < 00, —00 < argz < oo}

all with at most exponential growth at oo, since equation (4) is a perturbation
of v" + v’ = 0 with solutions e~#,1 and equations (5), (25) are perturbations of
u” + u = 0 with solutions e™%, e %,
Moreover, P (z) is a bounded function in closed subsectors of
3 3T

{z:—7<argz<7, 0 < |z] < oo} (27)
while Py (z),P1(z) and P (z),P2(z) are bounded functions in closed subsectors
of

{z: 2r<argz<m, 0<]|z]<o0},
(28)
{z:—7m<argz <2m, 0<]|z|< oo},

respectively.

This suggests an algebraic-analytic structure which serves not only the in-
complete Gamma, Bessel’s and reduced Weber’s differential equations but also
all their perturbations. For example the differential equation

b p—1 c

" m ! m _

u' (2) + (Z z—m>u (2) + (1—7+Zz—m>u(z)_o
m=1 m=2

can be considered as a perturbation of (4).

Definition. A pair of functions {p1 (z),p2 (2)}

(1) analytic on the Riemann surface of log z with at most exponential growth
at o0,

(ii) bounded in closed subsectors of

3 3
S(1) = {z:—g—arga< argz < g—arga, 0 < |z| < oo},

5
S(2) = {z: —g —arga<argz<7ﬂ—arga,0<|z|<O°}’
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(iii) satisfying the monodromic relations with connection coefficients Ty, Th

pi(ze¥™) = pi(2) + Tie® 2P po(2e?™) 0)
p2(2e"™) = pa(2) + Toe™ 2 Ppy(2)

forms the two-element Stokes structure
6 (2) = &{p1(2),p2(2)}

generated by e**zP for given constants «, f.

Thus, the above phase amplitudes

(i) {P(2),1}, (31)
(ii) {Pi(2), Pa(2)} (32)
(i) {P1(2), Pa(2)} (33)

form the two-element Stokes structures Gr (2), G5 (2), Sw (2) with

2m

i) Th= (_1)17]) ﬂe—%ﬂp, =0, a=1, p=1-p, (34)

(i) Ty =2icosvm, Tp =2icosvm, a=1i, =0, (35)

eitE9}—E e—imE93+E

(i) T =ivre ) Ty= iV e ™ a=i, f=-F,
(- E) (3 +E)

respectively.

4. From the Stokes structure to asymptotic expansions

Without any reference to the differential equations, the Stokes structure*
contains very important information about the behavior of its elements on the
Riemann surface of log z.

For example, we can show that in any closed subsectors of S (1), S (2) respec-
tively p1 (z), p2 (2) tend to finite limits a9, agp as z — oco. For all the particular
cases (31)—(33) considered above clearly a9 = ago = 1 as evident from (7), (19);

* The terminology of ‘Stokes structure’ first appeared in [6]. However this definition appears
to be too complicated to use it for practical purposes. Our definition and preliminary results
were announced in [1, 2].
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(8), (20); (9), (21). However, in general this result is not obvious from the defini-

tion the Stokes structure nor do we know how to derive it directly from it in any

better way except using our techniques to follow in future papers of this series.
In fact, we will prove that the following theorem is true.

Theorem 3. Let p1 (z),p2(z) be the elements of the Stokes structure Gy (2),
Gp (2). Then the limits

ajo=_ lim p;(z), j=12, (37)

z2—00,2€5(7)

and

1
ajr= lim (pj(z)—z“;—’mm)zk,k:1,2,...,j:1,2, (38)

k—
z2—00, 2€S5(j) 0

erist, and the formal power series p1 (z) , P2 (z)

. >~ ai, . >N as,
YOI SUE PR S o

are the Poincaré asymptotic expansions of p1(z),p2 (z) in sectors S(1),S(2)
respectively.

It is interesting to note that traditionally asymptotic expansions arose either
from integral representations or from differential equations. For example, Sir
Harold Jeffreys writes in his book [7]: "...The function represented by the ex-
pansion is always precisely defined at the start, as either a definite integral or a
solution of a differential equation with stated terminal conditions..." .

This is definitely not the case in our approach, since the functions p; (2) , p2 (2)
above are not defined at the start, neither as a definite integral nor as a solution of
a differential equation with stated terminal conditions. They are simply elements
of the Stokes structure & {p; (2),p2(2)}.

It is worth noticing also that the relations (30) can be considered as a jump

condition of the form
1 —T 2P p1(2) B 1 0 p1(2) (40)
0 1 p2(2) | Tyz Pe2% 1 pa2(2) N

on the ray

argz:—g—a,0<|z|<oo. (41)
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The jump condition (40) determines a Riemann-Hilbert boundary problem for

. . p1(2) . . .
the pair of functions [ ] holomorphic in the exterior domain —5 — a <
p2(z

arg 2 < 3 —a, 0<|z] <oo.

Thus, our approach is to derive the asymptotic expansions (37)—(39) and other
properties of the functions p; and py directly from this Riemann—Hilbert problem.
It should be mentioned that the Riemann—Hilbert problem has already been used
in other fields of asymptotic problems([12] and the references there): to obtain
asymptotic for orthogonal polynomials.

In the subsequent papers of this series our procedure will be as follows:

(1)
(i)

126

derive & directly from the differential equation,

define appropriately generalized Fourier(Borel)-like transforms to the ele-
ments of & and study their analytic properties,

extract formal power series associated with the elements of & and study
their interrelationships,

obtain asymptotic expansions with precise estimates for the remainders of
the elements of G,

check the validity of the principle of functional closure,

explain the Stokes phenomena, “asymptotics beyond all orders” and “resur-
gence” using &,

derive from & integral representations of transcendental functions,

evaluate the connection coefficients of & using adjusted Fourier(Borel)-like
transforms,

solve spectral and scattering problems using &.
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